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CYP24A1-deficient (Cyp24a1 KO) rats were generated using
the CRISPER/Cas9 system to investigate CYP24A1-dependent
or -independent metabolism of 25(OH)D3, the prohormone
of calcitriol. Plasma 25(OH)D3 concentrations in Cyp24a1 KO
rats were approximately twofold higher than in wild-type rats.
Wild-type rats showed five metabolites of 25(OH)D3 in plasma
following oral administration of 25(OH)D3, and these metab-
olites were not detected in Cyp24a1 KO rats. Among these
metabolites, 25(OH)D3-26,23-lactone was identified as the
second major metabolite with a significantly higher Tmax value
than others. When 23S,25(OH)2D3 was administered to
Cyp24a1 KO rats, neither 23,25,26(OH)3D3 nor 25(OH)D3-
26,23-lactone was observed. However, when
23S,25R,26(OH)3D3 was administered to Cyp24a1 KO rats,
plasma 25(OH)D3-26,23-lactone was detected. These results
suggested that CYP24A1 is responsible for the conversion of
25(OH)D3 to 23,25,26(OH)3D3 via 23,25(OH)2D3, but en-
zyme(s) other than CYP24A1 may be involved in the conver-
sion of 23,25,26(OH)3D3 to 25(OH)D3-26,23-lactone.
Enzymatic studies using recombinant human CYP species and
the inhibitory effects of ketoconazole suggested that CYP3A
plays an essential role in the conversion of 23,25,26(OH)3D3
into 25(OH)D3-26,23-lactone in both rats and humans. Taken
together, our data indicate that Cyp24a1 KO rats are valuable
for metabolic studies of vitamin D and its analogs. In addition,
long-term administration of 25(OH)D3 to Cyp24a1 KO rats at
110 μg/kg body weight/day resulted in significant weight loss
and ectopic calcification. Thus, Cyp24a1 KO rats could
represent an important model for studying renal diseases
originating from CYP24A1 dysfunction.

Vitamin D3 is metabolized by CYP2R1 and CYP27A1 to 25-
hydroxyvitamin D3 (25(OH)D3) in the liver and by CYP27B1
to 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in the kidneys,
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thereby binding to vitamin D receptors (VDRs) and exhibiting
various physiological effects. The key enzyme in the meta-
bolism of 25(OH)D3 and 1,25(OH)2D3 is CYP24A1, which is
known to generate multiple metabolites via C-24 and C-23
hydroxylation pathways (1, 2).

There are two vitamin D responsive elements in the pro-
moter region of the CYP24A1 gene, and the binding of active
vitamin D to VDRs leads to profound transcriptional induction
of CYP24A1. The resultant CYP24A1 protein inactivates the
active form of vitamin D. This mechanism is crucial for
maintaining constant plasma levels of active vitamin D.
CYP24A1 dysfunction causes elevated plasma levels of
1,25(OH)2D3 and is associated with idiopathic infantile hy-
percalcemia or kidney stones, which indicates the importance
of this enzyme for vitamin D metabolism (3, 4).

We expressed rat and human CYP24A1 in Escherichia coli
and examined their enzymatic properties (5, 6). We identified
that rat CYP24A1 catalyzes a six-step reaction commencing
with 24R-position hydroxylation, leading to calcitroic acid,
which is designated as the C-24 pathway. In contrast, human
CYP24A1 catalyzes a four-step reaction starting at position
23S, leading to the formation of a 26,23-lactone.

The ratios of the C-23 and C-24 pathways vary among species.
For human CYP24A1, the ratio in the initial reactions of C-23
and C-24 is approximately 1:4, whereas in rat CYP24A1, it is
approximately 1:25 (6, 7), based on the comparison of first step
metabolic reaction. In species such as guinea pig and opossum,
the C-23 pathway is, in contrast, predominant (7, 8).

However, when 25(OH)D3 was administered to wild-type
(WT) rats and mice, 25(OH)D3-26,23-lactone, which is the
final product of 25(OH)D3 in the C-23 pathway, was produced
as a major metabolite (9–11). This fact strongly suggests that
enzymes other than CYP24A1 are involved in the C-23
pathway in rats and mice. To date, Masuda et al. (12)
administered tritium-labeled 25(OH)D3 to hetero- and
Cyp24a1 KO mice and analyzed their metabolites in the
plasma, liver, kidneys, and small intestine. Their results
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Study on metabolic pathway of 25(OH)D3 using Cyp24a1 KO rats
showed that metabolites of 25(OH)D3, 24,25(OH)2D3, 24-
oxo-25(OH)D3, and 24-oxo-23,25(OH)2D3 were abundant in
plasma of hetero-mice, but none were detected in Cyp24a1 KO
mice, indicating the importance of CYP24A1 in the meta-
bolism of 25(OH)D3 (12).

Recently, it has become possible to quantify various vitamin
D metabolites more sensitively using LC/MS/MS, and Kauf-
mann et al. have succeeded in quantifying various metabolites
by performing analysis after derivatization by DMEQ-TAD
(13–16). They demonstrated that metabolites in the C-24
and C-23 pathways, such as 24-oxo-25(OH)D3 (C-24), 24-oxo-
23,25(OH)2D3 (C-24), and 25(OH)D3-26,23-lactone (C-23),
are not detected in Cyp24a1 KO mice (13), suggesting that
Cyp24A1 plays a crucial role in both C-23 and C-24 pathways
in mice. Our focus is investigating which steps of the C-24 and
C-23 pathways are carried out only by CYP24A1 and which
steps contribute to the extent of involvement by other en-
zymes. Although Cyp24a1 KO mice appear to be useful, it is
difficult to evaluate detailed time courses of metabolites in
terms of blood sampling volumes possible in small rodents.

Recently, we successfully generated genetically modified
(GM) rats deficient in Cyp27b1 or Vdr genes (17). Type II
rickets model rats with a mutant Vdr (R270L), which recognizes
1,25(OH)2D3 with an affinity equivalent to that of 25(OH)D3,
were also generated. Although Cyp27b1-knockout (KO), Vdr-
KO, and Vdr (R270L) rats exhibit rickets symptoms, they are
significantly different to each other. Comparison among WT
and three types of GM rats led to novel concepts regarding
vitamin D actions, including genomic and nongenomic actions.

In this study, we generated Cyp24a1 KO rats and succeeded
in measuring the time course of 25(OH)D3 plasma levels and its
metabolites after the administration of 25(OH)D3. Furthermore,
we revealed for the first time that not only CYP24A1, but also
CYP3A1/2 is involved in the bioconversion of
23S,25,26(OH)3D3 to 25(OH)D3-26,23-lactone, which is known
to have a biological activity to reduce serum Ca level (18).

Results

Comparison of 25(OH)D3 metabolism between an in vitro
system containing rat recombinant CYP24A1 and an in vivo
system using WT rats

In order to obtain authentic standards for 25(OH)D3 me-
tabolites, 25(OH)D3 was metabolized in a reconstituted sys-
tem containing rat recombinant CYP24A1 expressed in E. coli
cells. As shown in Figure 1A, 24R,25(OH)2D3, 23S,25(OH)2D3,
24-oxo-25(OH)D3, 24-oxo-23,25(OH)2D3, and tetranor-
23(OH)D3 were isolated as authentic standards. Although
24R,25(OH)2D3 and 23S,25(OH)2D3 were eluted at the same
retention time (Fig. 1A), they were clearly separated by
normal-phase HPLC, as described previously (6). All of the
metabolites standards showed an absorbance maximum at
265 nm. The purity of 24R,25(OH)2D3, 24-oxo-25(OH)D3, 24-
oxo-23,25(OH)2D3, and tetranor-23(OH)D3 was estimated to
be 94, 92, 84, 95%, respectively, based on HPLC-UV profiles.

Figure 1B presents the HPLC profile of 25(OH)D3 and its
metabolites in the plasma of WT rats 24 h after 25(OH)D3
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administration. A metabolite at a retention time of 19.8 min,
which was not detected in vitro, was detected in rat plasma
(Fig. 1, B and C). The DMEQ-TAD adduct of this metabolite
showed the same LC retention time and similar MS and MS/
MS patterns to those of the synthetic standard of (23S,25R)-
25(OH)D3-26,23-lactone. These results appear to be consis-
tent with the finding that one of the major metabolites of
25(OH)D3 in the plasma of 25(OH)D3-treated rats is
(23S,25R)-25(OH)D3-26,23-lactone (9, 10, 19). Thus, the peak
observed at a retention time of 19.8 min (Fig. 1B) was iden-
tified as (23S,25R)-25(OH)D3-26,23-lactone.

Simultaneous quantification of 25(OH)D3 and its metabolites

Ion spectra involving DMEQ-TAD adducts of 25(OH)D3,
24,25(OH)2D3, and 25(OH)D3-26,23-lactone were similar to
those shown in our previous study (11). The ion product spectra
of DMEQ-TAD adducts of 24,25(OH)2D3, 24-oxo-25(OH)D3,
24-oxo-23,25(OH)2D3, tetranor-23(OH)D3, 25(OH)D3-26,23-
lactone, and 23,25,26(OH)3D3 are shown in Figure S1. The
major characteristic ions for DMEQ-TAD adducts of
24,25(OH)2D3, 24-oxo-25(OH)D3, 24-oxo-23,25(OH)2D3,
tetranor-25(OH)D3, 25(OH)D3-26,23-lactone, and 23,25,
26(OH)3D3 were their molecular ion species [M + H] at m/z of
762.4, 760.4, 776.4, 690.4, 774.4, and 778.4, respectively, and
fragment ions at m/z 247 and 468 were detected as major ion
products of all compounds (Fig. S1). The ion fragment atm/z 468
was selected formultiple reactionmonitoring (MRM) analysis, as
shown in Table S1, because of greater specificity and lower
background than the fragment at m/z 247. Chromatograms for
each metabolite are shown in Figure S1. Two peaks for each
metabolite were detected, which represented the 6R- and 6S-
isomers of the DMEQ-TAD adduct of each metabolite, as in the
case of 25(OH)D3 reported in a previous study (20). The mix-
tures of each authentic standard could be quantitatively analyzed
simultaneously using MRM scan mode.

Generation of CYP24a1 KO rats

Twenty-six offspring were obtained, one of which had a 1 bp
insertion at a target site. Consequently, 30 amino acid residues
from 439 to 469 were substituted, resulting in the introduction
of a premature stop codon at residue 469 (Fig. S2). This frame
shift causes loss of the cysteine residue at position 462, which
is the fifth ligand of heme iron and the active center, and
causes a deletion involving the C-terminal portion of
CYP24A1, which consists of 514 amino acids. Thus, this
truncated CYP24A1 could not show enzymatic activity. Ho-
mozygotes for this mutant CYP24A1 allele were used in this
study. We confirmed that no off-target site (OTS) events
occurred in potential OTSs searched using the CRISPR Direct
tool for CYP24A1 sgRNA (Fig. S3).

Appearance, growth, and bone-metabolism-related
parameters in the blood of Cyp24a1 KO rats

No significant difference was observed in the appearance
and growth rate between Cyp24a1 KO and WT rats (Fig. 2).
Femoral length in Cyp24a1 KO rats at 15 weeks of age was
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Study on metabolic pathway of 25(OH)D3 using Cyp24a1 KO rats
similar to that of WT rats. CT scanning, von Kossa staining,
and toluidine blue staining of femora revealed no noticeable
differences between Cyp24a1 KO and WT rats (Fig. S4).

St-Arnaud (21) demonstrated that 50% of Cyp24a1 KO mice
(homozygous mutant) died before 3 weeks of age, but no such
situation was observed with Cyp24a1 KO rats. μCT scans
showed no particular symptoms such as soft tissue calcifica-
tion (data not shown). Neither plasma Ca and P levels nor
parathyroid hormone (PTH) levels were significantly different
between Cyp24a1 KO and WT rats (Table 1).

Comparison of plasma concentrations of 25(OH)D3 and its
metabolites in Cyp24a1 KO and WT rats

Plasma concentrations of 25(OH)D3 and its metabolites in
WT and Cyp24a1 KO rats before 25(OH)D3 administration
were compared (Fig. 3, A and B and Table 2). 25(OH)D3,
24,25(OH)2D3, and 24-oxo-25(OH)D3 were detected in the
plasma of WT rats. As shown in Table 3, approximately twice
as much 25(OH)D3 was detected in the plasma of Cyp24a1
KO rats than in the plasma of WT animals, whereas
24,25(OH)2D3 and 24-oxo-25(OH)D3 were not detected
(<0.8 nM and 1 nM for 24,25(OH)2D3 and 24-oxo-25(OH)D3,
respectively), which suggested that CYP24A1-dependent
metabolites were not detected in Cyp24a1 KO rats. Plasma
concentrations of 25(OH)D3, 24,25(OH)2D3, and 24-oxo-
25(OH)D3 in Cyp24a1 mutant-heterozygous rats were 15.4 ±
J. Biol. Chem. (2021) 296 100668 3



Table 1
Plasma concentration of Ca, P, and PTH of WT and Cyp24a1 KO rats
at 15 weeks of age

Plasma Ca, P, and PTH levels WT CYP24a1 KO

Ca (mg/dl) 9.4 ± 0.4 9.5 ± 0.5
P (mg/dl) 7.9 ± 0.6 7.5 ± 0.2
PTH (pg/ml) 200 ± 90 260 ± 29

Each value represents the mean ± SD (n = 5–8; biological replicates).

Table 2
Plasma concentration of 25(OH)D3 and its metabolites of WT and
Cyp24a1 rats at 15 weeks of age

Vitamin D3 metabolites

WT Cyp24a1 KO

nM nM

25(OH)D3 20.0 ± 7.1 44.3 ± 3.4
24,25(OH)2D3 17.8 ± 6.9 n.d.
24-oxo-25(OH)D3 3.9 ± 1.9 n.d.
1,25(OH)2D3 0.070 ± 0.033 0.049 ± 0.016

Each value represents the mean ± SD (n = 5–7; biological replicates).
n.d. indicates less than 0.8 nM and 1 nM for 24,25(OH)2D3 and 24-oxo-25(OH)D3,
respectively.

Study on metabolic pathway of 25(OH)D3 using Cyp24a1 KO rats
8.1, 22.0 ± 10.2, and 5.6 ± 2.1 nM, respectively, similar to those
of WT rats. Plasma concentrations of 1,25(OH)2D3 in WT and
Cyp24a1 KO rats were 29 ± 14 pg/ml (70 ± 33 pM) and 21 ± 7
pg/ml (49 ± 16 pM), respectively, and no significant difference
was observed between them (Table 2).

In the next step, 25(OH)D3 was orally administered to WT
or Cyp24a1 KO rats at 200 μg/kg body weight, and plasma
concentrations of 25(OH)D3 and its metabolites were
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examined periodically over 0–48 h. After 25(OH)D3 admin-
istration, plasma 25(OH)D3 concentrations in Cyp24a1 KO
rats were markedly elevated than in WT animals (Figs. 3 and
4). The maximum plasma concentration (Cmax) of 25(OH)D3
in Cyp24a1 KO rats was four times higher than that in WT
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Table 3
Tmax and Cmax values of 25(OH)D3 and its each metabolite with
single dose administration of 25(OH)D3 to WT or Cyp24a1 KO rats at
15 weeks of age

Strain Vitamin D3 metabolites Tmax (h) Cmax (nM)

WT 25(OH)D3 3.0 ± 1.1 370 ± 150
24,25(OH)2D3 4.3 ± 0.8 436 ± 164
24-oxo-25(OH)D3 4.7 ± 1.0 101 ± 29
24-oxo-23,25(OH)2D3 4.8 ± 1.8 84 ± 31
tetranor-23(OH)D3 5.0 ± 2.0 6.8 ± 1.3
26,23-lactone-25(OH)D3 10.7 ± 2.1 195 ± 48

Cyp24a1 KO 25(OH)D3 5.3 ± 1.0 1460 ± 630

The values are shown as the mean ± SD. (n = 5–7; biological replicates).

Study on metabolic pathway of 25(OH)D3 using Cyp24a1 KO rats
rats (Table 3 and Fig. 4). Figure 3, C and D show the MRM
chart of 25(OH)D3 and its metabolites in rat plasma 4 h after
administration of 25(OH)D3. In addition to 24,25(OH)2D3 and
24-oxo-25(OH)D3, three metabolites 24-oxo-23,25(OH)2D3,
tetranor-23(OH)D3, and 25(OH)D3-26,23-lactone were
detected in WT rats, whereas none of these were detected in
Cyp24a1 KO rats. Figure 5 shows the time course of plasma
concentration of all metabolites detected in WT rats. Among
the five metabolites detected in WT rats, 24,25(OH)2D3, 24-
oxo-25(OH)D3, and 25(OH)D3-26,23-lactone remained at
high plasma concentrations 48 h after administration. It is
noted that they are known to have a high vitamin D binding
protein (DBP)-binding affinity (22). It is reasonable to assume
that the half-life (t1/2) in plasma of these metabolites is closely
linked to their affinity for DBP.

Among the five metabolites, other than 25(OH)D3-26,23-
lactone, the time to maximum plasma level (Tmax) was approxi-
mately 4 h (4.3 ± 0.8, 4.7 ± 1.0, 4.8 ± 1.8, 5.0 ± 2.0 h for
24,25(OH)2D3, 24-oxo-25(OH)D3, 24-oxo-23,25(OH)2D3, and
tetranor-25(OH)D3, respectively), whereas only 25(OH)D3-
26,23-lactone exhibited markedly higher values (10.7 ± 2.1 h;
Table 3). Previous studies demonstrated that 25(OH)D3-26,23-
lactone is one of the major metabolites in rats and mice upon
25(OH)D3 administration (9, 10), which agrees with our pre-
sent results. The Tmax values of 25(OH)D3-26,23-lactone
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deviation.
compared with those of other metabolites, with no detection
of 25(OH)D3-26,23-lactone in our in vitro system containing
recombinant rat CYP24A1 (Fig. 1), strongly suggested the likely
involvement of enzyme(s) other than CYP24A1 in the forma-
tion of 25(OH)D3-26,23-lactone.

Identification of enzymes involved in 25(OH)D3-26,23-lactone
formation

As described above, 25(OH)D3-26,23-lactone has been
previously reported to be detected as a 25(OH)D3 metabolite,
and its structure has been reported to be (23S,25R)-26,23-
lactone-25(OH)D3(19). It has also been reported that this
metabolite is generated from 25(OH)D3 via 23S,25(OH)2D3
and 23S,25R,26(OH)3D3 (9, 23). To investigate the participa-
tion of CYP24A1 and other enzyme(s) in 25(OH)D3-26,23-
lactone formation in vivo, 23S,25(OH)2D3 and
23S,25R,26(OH)3D3 were separately administered to Cyp24a1
KO rats and examined for the formation of 25(OH)D3-26,23-
lactone. As shown in Figure 3, no conversion of 25(OH)D3
into 23S,25(OH)2D3 was observed in Cyp24a1 KO rats. When
23S,25(OH)2D3 was administered to Cyp24a1 KO rats, neither
23,25,26(OH)3D3 nor 25(OH)D3-26,23-lactone was detected
(Fig. 6C). These results strongly suggested that CYP24A1 is
responsible for the conversion of 25(OH)D3 into
23S,25,26(OH)3D3 via 23S,25(OH)2D3 (Fig. 7). However,
when 23S,25R,26(OH)3D3 was administered to Cyp24a1 KO
rats, 25(OH)D3-26,23-lactone was detected in the plasma
(Fig. 6, B and D). These results strongly suggested that con-
version of 25(OH)D3 to 23S,25R,26(OH)3D3 via
23S,25(OH)2D3 is catalyzed by CYP24A1, but enzymes other
than CYP24A1 are involved in the conversion of
23S,25R,26(OH)3D3 to 25(OH)D3-26,23-lactone.

To identify the enzyme(s) involved in the conversion of
23S,25R,26(OH)3D3 to 25(OH)D3-26,23-lactone, we prepared
mitochondrial, microsomal, and cytosolic fractions from
Cyp24a1 KO rat liver and added 23S,25R,26(OH)3D3 to each
fraction as a substrate to investigate 25(OH)D3-26,23-lactone
30 40

r)

WT (     )

Cyp24a1 KO (    )

a1 KO rats after single dose administration of 25(OH)D3. The dotted and
ts, respectively (n = 5–7; biological replicates). Error bars represent standard
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Study on metabolic pathway of 25(OH)D3 using Cyp24a1 KO rats
formation. Subsequently, 25(OH)D3-26,23-lactone was detec-
ted in hepatic microsomal fractions when incubated in the
presence of NADPH or NADH (Fig. 8). As reported by Mat-
sunaga et al. (24), CYP3A species show NADH-dependent
monooxygenase activity. To the best of our knowledge,
hepatic microsomal CYPs other than CYP3A show no NADH-
dependent activity. A small quantity of 25(OH)D3-
26,23-lactone was also detected in the liver mitochondrial
fraction in the presence of NADPH or NADH. On the con-
trary, 25(OH)D3-26,23-lactone was not detected in the cyto-
solic fraction, even in the presence of NADPH and NADH.
These results suggested that enzymes present in the liver
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microsomal fraction are involved in 25(OH)D3-26,23-lactone
formation from 23S,25R,26(OH)3D3. Inhibition studies on
25(OH)D3-26,23-lactone formation revealed that ketocona-
zole, which is a specific inhibitor of CYP3A, strongly inhibited
enzymic activity (Fig. 8B). In addition, recombinant rat
CYP3A1 and 3A2, as well as human CYP3A4, catalyzed
25(OH)D3-26,23-lactone formation from 23S,25R,26(OH)3D3
(Fig. 9). Inhibitory effect of ketoconazole was also observed in
the mitochondrial fraction. The activity of NADPH-cyt.c
reductase, which is a marker enzyme of microsomes, was
also observed in the mitochondrial fraction (data not shown).
These results strongly suggest that the lactone formation
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detected in the mitochondrial fraction was due to contami-
nation by the microsomal fraction. It was noted that recom-
binant human CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19,
2D6, and 2E1 exhibited no activity (data not shown). These
results suggested that CYP24A1 and CYP3A are involved in
25(OH)D3-26,23-lactone formation from 23S,25R,26(OH)3D3.

The enzymatic activity of rat CYP3A1 and CYP3A2 and
human CYP3A4 in conversion of 23S,25R,26(OH)3D3 to
25(OH)D3-26,23-lactone was compared with that of rat or
human CYP24A1 (Fig. 9B). However, their activities cannot
be directly compared because CYP3A is a microsomal P450
enzyme whose electron donor is NADPH-P450 oxidore-
ductase, and CYP24A1 is a mitochondrial P450 whose
electron donor is ADX. Rat CYP24A1 and CYP3A2 showed
comparable activity, and human CYP24A1 and CYP3A4
showed comparable activity (Fig. 9B). Plasma concentrations
of 25(OH)D3-26,23-lactone in WT and Cyp24a1 KO rats at
6 h after administration of 50 μg/kg of 23S,25R,26(OH)3D3
were 101 ± 45 and 80 ± 31 nM (n = 3), respectively, sug-
gesting a greater contribution by CYP3A than CYP24A1
in vivo.

When 25(OH)D3 and ketoconazole to WT rats were
simultaneously administered, plasma 25(OH)D3-26,23-lactone
level was reduced to 50% compared with that without keto-
conazole (Fig. S5, A and D). When 23S,25R,26(OH)3D3 and
ketoconazole were simultaneously administered to WT and
CYP24A1 rats, 25(OH)D3-26,23-lactone levels were reduced
to 44% and 27% at 6 h after administration, respectively,
compared with those without ketoconazole (Fig. S5, B, C, E,
and F). Because the lactone formation in CYP24A1 KO rats
appears to depend on CYP3A1/2, it is possible that the activity
of CYP3A1/2 was decreased to 27% by the administered ke-
toconazole. Based on these results, and when the contribution
of CYP3A1/2 and CYP24A1 is X and Y, respectively, the
following equations could be represented.

X + Y = 1, and 0.27 × X + Y = 0.44
Thus, X and Y are calculated to be 0.77 and 0.23, respec-

tively. These results indicate that the contribution ratio of
CYP3A1/2 is 77%, and that of CYP24A1 is 23%.
Effects of daily administration of 25(OH)D3 to Cyp24a1 KO
rats

25(OH)D3 was also administered daily to Cyp24a1 KO rats
to clarify the effects of long-term administration. As described
in “Materials and Methods,” Cyp24a1 KO rats were fed normal
chow before 9 weeks of age and were then converted to 25(OH)
D3-containing chow at a dose of approximately 110 μg/kg body
weight/day. Significant weight loss was observed compared with
rodents on a normal diet (Fig. 10A). Food consumption was also
markedly reduced, with initial food consumption of 73.0 ±
12.7 g/kg bw/day (n = 5), which was approximately halved to
36.5 ± 14.6 g/kg bw/day after 6 weeks of 25(OH)D3 treatment.
Furthermore, ectopic calcification was observed in Cyp24a1 KO
rats receiving 25(OH)D3-containing chow, based on μCT im-
ages. Figure 10B illustrates the calcification of the aorta in the
chest. On the contrary, when WT rats were fed the same
25(OH)D3-containing diet for 6 weeks, body weight increased
as anticipated, with no reduction in food consumption or
noticeable phenotypic changes.

Plasma Ca concentrations in the Cyp24a1 KO rats receiving
25(OH)D3-containing chow for 0, 1, and 2 weeks were 8.8 ±
1.4, 10.1 ± 1.3, and 11.0 ± 0.9 mg/dl, respectively. Thus, plasma
Ca levels increased after daily administration of 25(OH)D3, but
remained at approximately 11 mg/dl thereafter. Some Cyp24a1
KO rats died after daily 25(OH)D3 administration for 14–-
17 weeks. Although this study was conducted at a dose of only
approximately 110 μg/kg body weight/day, the effects of long-
term administration of 25(OH)D3 on CYP24A1 dysfunction
should be investigated in greater detail in the future.
Discussion

In in vitro systems containing recombinant rat CYP24A1
expression system, 25(OH)D3 metabolites in the C-24 pathway
were predominant compared with those in the C-23 pathway,
and metabolites in the C-23 pathway, except for
23S,25(OH)2D3, were not detected. However, the end product
of the C-23 pathway, 25(OH)D3-26,23-lactone, has been
detected as a major metabolite in the plasma of WT rats
J. Biol. Chem. (2021) 296 100668 7



+NADPH

-NADPH
A

(min)

B
(min)

In
te

ns
ity

In
te

ns
ity

25(OH)D3-26,23-lactone

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No inhibitior +KTZ

NADPH NADH

25
(O

H
)D

3-
26

,2
3-

la
ct

on
e 

Pr
od

uc
tio

n
 (p

m
ol

/m
in

/m
g 

pr
ot

ei
n)

WT

No inhibitior +KTZ

Cyp24a1 KO

12 14 16 18 20 22 24

12 14 16 18 20 22 24
0

100

200

300

400

0

100

200

300

400

Figure 8. 25(OH)D3-26,23-lactone formation from 23S,25R,26(OH)3D3
in the liver microsomal fractions prepared fromWT or Cyp24a1 KO rats.
A, indicates MRM chromatogram to detect -25(OH)D3-26,23-lactone as the
metabolites of 23S,25R,26(OH)3D3 in the liver microsomal fractions pre-
pared from Cyp24a1 KO rats without (upper) or with (bottom) NADPH. B,
indicates the inhibitory effects by 1 μM of ketoconazole (KTZ), which is a
specific CYP3A inhibitor, on 25(OH)D3-26,23-lactone production from
23S,25R,26(OH)3D3 in the liver microsomal fractions using NADPH or NADH
as a coenzyme. White and gray bars indicate the averages of the individual
data of WT (n = 3–4, biological replicate) and Cyp24a1 KO group (n = 3–4,
biological replicates), respectively. Error bars represent standard deviation.

Human CYP3A4A

B

In
te

ns
ity

(min) 

25(OH)D3-26,23-lactone

HumansRats

 R
el

at
iv

e 
25

(O
H

)D
3-

26
,2

3-
la

ct
on

e 
Pr

od
uc

tio
n

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

CYP24A1 CYP3A1 CYP3A2 CYP24A1 CYP3A4

12 14 16 18 20 22 24
0

500

1000

Figure 9. 25(OH)D3-26,23-lactone formation from 23S,25R,26(OH)3D3
in the recombinant each P450 isoform. A, indicates MRM chromatogram
to detect 25(OH)D3-26,23-lactone as the metabolites 23 S,25R,26(OH)3D3 in
the recombinant human CYP3A4. B, indicates the comparison of the
23S,25R,26(OH)3D3 production by between recombinant CYP24A1 and
CYP3A. Each bar indicates the average of the individual data (n = 3; tech-
nical replicates). Error bars represent standard deviation.

Study on metabolic pathway of 25(OH)D3 using Cyp24a1 KO rats
administered with 25(OH)D3. Although this metabolite has
also been reported to be present in humans at elevated 25(OH)
D3 levels, the plasma 25(OH)D3-26,23-lactone level was lower
than that in mice (16). This appeared to be inconsistent with
the fact that compared with rat and mouse CYP24A1, human
CYP24A1 displayed higher metabolism in the C-23 pathway
(5). Thus, these discrepancies in in vitro and in vivo 25(OH)
D3-26,23-lactone formation between rats, mice, and humans
still remain unexplained.
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In this study, we revealed that CYP3As are involved in the
conversion of 23,25,26(OH)3D3 into 25(OH)D3-26,23-lactone,
whereas CYP24A1 is responsible for the conversion of 25(OH)
D3 into 23,25,26(OH)3D3 via 23,25(OH)2D3 (Fig. 7). Com-
parison of the amount of 25(OH)D3-26,23-lactone produced
by administration of 23S,25R,26(OH)3D3 between WT and
Cyp24a1 KO rats suggests that the contribution of CYP3A1/2
to this reaction could be larger than that of CYP24A1 in WT
rats. Enzymatic studies using recombinant human CYP species
and the inhibitory effects of ketoconazole strongly suggest that
CYP3A plays an essential role in the conversion of
23,25,26(OH)3D3 into 25(OH)D3-26,23-lactone in both rats
and humans. It is noted that human CYP3A4 is the most
important CYP species among human drug-metabolizing P450
species belonging to cytochrome P450 families 1, 2, and 3.
Although CYP3A4 catalyzes 4β, 23R, and 24S-hydroxylation of
25(OH)D3 and 1,25(OH)2D3, it has not been given much
importance with regard to vitamin D metabolism. However,
we revealed another role of CYP3A4 in vitamin D metabolism
in this study. Thus, from the viewpoint of drug/drug interac-
tion, CYP3A4-dependent drug/vitamin D interaction may be
important. Recently, novel rickets type III has been discovered,
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which results from the Ile301Thr missense mutation in
CYP3A4, causing a 10-fold increase in activity over the normal
form (25). The levels of 25(OH)D3 and 1,25(OH)2D3 in the
plasma of rickets type III patients are severely reduced. Taken
together with our results, it might be possible that a high
25(OH)D3-26,23-lactone level could be observed in the plasma
of these patients. 25(OH)D3-26,23-lactone and 1,25(OH)2D3-
26,23-lactone are known to have antagonistic effects on VDRs
(18, 26). Thus, low plasma levels of 25(OH)D3 and
1,25(OH)2D3 and possibly high plasma levels of 25(OH)D3-
26,23-lactone and 1,25(OH)2D3-26,23-lactone might addi-
tively inhibit VDR-mediated regulation of gene expression to
cause rickets type III.

We conducted a metabolic study using Cyp24a1 KO rats
because the body size of these rats was about ten times larger
than that of mice, and enough blood could be collected peri-
odically over 48 h. This allowed a detailed analysis of the
pharmacokinetics of the various metabolites, as shown in
Figure 8 and Table 3. Such analyses appear to be difficult in
mice, even if the analyses are sensitive. It is noted that com-
parisons between WT and Cyp24a1 KO rats have resolved
previous inexplicable issues on 23,26-lactone-25(OH)D3 for-
mation in WT rats.

Recently, SULT2A1 and UGT1A4 have been reported as
metabolic enzymes of 25(OH)D3 and 1,25(OH)D3, respectively,
in addition to CYP3A (27, 28). In particular, the plasma con-
centration of sulfate conjugates formed by SULT2A1 was high.
The plasma concentrations of 25(OH)D3, 25(OH)D3-3-O-sul-
fate, 24R,25(OH)2D3, and 4β,25(OH)2D3 in healthy humans
were 131, 96, 12, and 0.26 nM, respectively (27). Furthermore,
some studies demonstrated that the increased expression of
VDR induced the transcription of CYP3A (29) and SULT2A1
(30). Based on these results, it is likely that CYP3A and
SULT2A1 play critical roles in vitamin Dmetabolism, especially
in cases of CYP24A1 dysfunction. The plasma concentration of
sulfate conjugates was not examined in this study, but we will
investigate it in more detail in the future.

In humans, CYP24A1 dysfunction sometimes causes elevated
plasma levels of 1,25(OH)2D3 and is associated with idiopathic
infantile hypercalcemia or kidney stones. However, Pronicka
et al. (31) reported that the plasma 1,25(OH)2D3 levels are
almost normal inmany cases of humanCYP24A1defects. In this
study, Cyp24a1 KO rats showed normal concentrations of
1,25(OH)2D3, and its concentration was slightly lower than
those in WT rats. It has been reported that 1,25(OH)2D3 con-
centration in the plasma of Cyp24a1 KO mice is slightly lower
than that of Cyp24a1-hetero mice (32), which is consistent with
our present study. In the case of mice, it has been reported that
50% of Cyp24a1 KO homogeneous pups with Cyp24a1 KO
parents died before the age of 3 weeks and displayed impaired
bone mineralization (32). Since Cyp24a1 and Vdr double-
knockout mice normalized bone formation without impairing
bone mineralization, St-Arnaud et al. (32) speculated that a
rapid increase in plasma 1,25(OH)2D3 during late gestation in
female Cyp24a1 KO mice, resulting in hypercalcemia, affects
calcification during development. In the present study, however,
Cyp24a1KO rats showed no abnormal phenotype and pups that
had Cyp24a1 KO parents grew normally. At present, the reason
J. Biol. Chem. (2021) 296 100668 9
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for this difference between mice and rats is unclear. Although
single 25(OH)D3 administration to Cyp24a1 KO rats did not
cause toxic effects, long-term administration of 25(OH)D3 to
the Cyp24a1 KO rats at 110 μg/kg b.w./day showed significant
weight loss and ectopic calcification. In contrast, no side effects
were observed in WT rats under the same conditions (Fig. 10).
Thus, Cyp24a1 KO rats treated with vitamin D, 25(OH)D3, or
1,25(OH)2D3 could be used as models of renal diseases origi-
nating from CYP24A1 dysfunction, although further studies are
needed.

In this study, we performed detailed metabolic analysis of
25(OH)D3 in vivo by using Cyp24a1 KO rats generated by
genome editing. We conducted a metabolic analysis of natural
25(OH)D3 and concluded that the Cyp24a1 KO rats could be
useful in developing various vitamin D derivatives as phar-
maceuticals in the future.

Experimental procedures

Materials and chemicals

25(OH)D3 was kindly provided by DSM. D6-25-
Hydroxyvitamin D3 (26,26,26,27,27,27-D6) (d6-25(OH)D3)
was purchased from Sigma-Aldrich Co, LLC. Recombinant hu-
man or rat drug-metabolizing P450 isoforms were purchased
from Corning. Recombinant human or rat CYP24A1 was pre-
pared as described in our previous study (5, 6). HPLC-grade
organic solvents were purchased from Kanto chemical CO, Inc.
23S,25(OH)2D3 and 23S,25R,26(OH)3D3 were synthesized as
described in our study (33). 23S,25R-25(OH)3D3-26,23-lactone
synthetic standard was kindly given by Dr Keiko Yamamoto
(Showa Pharmaceutical University, Tokyo, Japan). Other
chemicals were commercially available and of the highest quality.

Animals and diets

Jcl:Wistar rats were obtained from CLEA Japan Inc. Em-
bryonic microinjection for genome editing was performed by
KAC Co, Ltd. The generated Cyp24a1 KO rats were kept at
room temperature (22–26 �C) and in 50–55% humidity with a
12 h light/dark cycle. They were allowed food and water ad
libitum and fed F-2 formula diet (Oriental Yeast Co) con-
taining 0.74 w/w% calcium and 2000 IU vitamin D3/kg diet.

All experimental protocols using animals were performed in
accordance with the Guidelines for Animal Experiments at
Toyama Prefectural University and were approved by the Animal
Research andEthicsCommittee ofToyamaPrefecturalUniversity.

Generation of Cyp24a1 KO rats and validation of off-target

Cyp24a1 KO rats were generated by CRISPR/Cas9 genome
editing system as well as our previous study (17). The target
site was selected to delete the cysteine at position 462 in Exon
10, which is the fifth ligand of heme iron and an active center
of CYP24A1 (Fig. S2).

Potential off-target sites (OTS) of CYP24A1 in rat genomes
were searched by the CRISPR Direct tool (http://crispr.dbcls.
10 J. Biol. Chem. (2021) 296 100668
jp/) to valid the off-target events. The OTS region was
amplified, purified, and then directly sequenced (Fig. S3).
Founder generation

Pups delivered from the transferred embryos were obtained
by caesarean section on the day of birth and nursed by foster
mothers. After weaning, tail tips were biopsied for mutation
analysis. Crude genomicDNAwas extracted from the tail tips by
Lyppo (Wako Pure Chemicals). PCR was performed with KOD
Fx Neo (TOYOBO) using the set of primer 50- ATGAGGA-
GAATCAGTGGTCCTCCTGGCTGCC-30, 50- AGGACTTT-
TACCCAGCAGAGAGCCAGGTGG-30. PCR products were
purified using FastGene Gel/PCR Extraction Kit (Nippon Gene)
according to the manufacture’s protocol and directly sequenced
and analyzed on an Applied Biosystems 3500 DNA sequencer
(Thermo Fisher Scientific) using the BigDye Terminator v3.1
Cycle Sequencing Kit (Thermo Fisher Scientific).

Measurement of plasma 25(OH)D3 and its metabolites
concentration by LC/MS/MS analysis

Plasma concentrations of 25(OH)D3 and its metabolites
were measured by using a modified method of LC-APCI-
MS/MS (17). Briefly, internal standard d6-25(OH)D3
(0.5 ng/10 μl) was added to plasma (40 μl) and precipitated
with acetonitrile (200 μl). The supernatant was evaporated
and the residue was extracted with ethyl acetate (400 μl)
and distilled water (200 μl). Extracted 25(OH)D3 and its
metabolites in plasma were derivatized by 4-[2-(6,7-
dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalyl)ethyl]-1,
2,4-triazoline-3,5-dione (DMEQ-TAD) and analyzed by
LC/MS/MS using the selection of the specific pair of m/z
values associated to precursor and product ion (Supple
Table 1) with an MS/MS multiple reaction monitoring
(MRM) method. Calibration curves were obtained by rep-
resenting the peak area ratio between each concentration
of analyte and internal standard (d6-25(OH)D3). Concen-
trations of each metabolite, except 25(OH)D3, were
calculated considering the ratio of extraction efficiency
between 25(OH)D3 and each metabolite.

Measurement of plasma 1,25(OH)2D3 with ELISA kit

Plasma concentration of 1,25(OH)2D3 was measured using
1,25-(OH)2 Vitamin D ELISA Kit (Immundiagnostik) as
described previously (11). Prior to the assay, solid-phase
extraction using Chromabond XTR (Immundiagnostik) and
Sep-pak Silica Cartridge (Waters) was performed according to
the manufacture’s protocol.

Measurement of plasma Ca, phosphorus (P), and parathyroid
hormone (PTH) concentrations

The plasma Ca and P concentrations were measured using
the Calcium E-Test Wako and Phospha C-Test Wako (FUJI-
FILM Wako Pure Chemical Corporation), respectively. The

http://crispr.dbcls.jp/
http://crispr.dbcls.jp/
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plasma PTH concentration was determined using the Rat
Intact PTH ELISA Kit (Immutopics Inc).

Phenotype of femura

Micro CT-scans analysis of femura was performed using an
X-ray CT system (Latheta LCT-200; Hitachi Aloka Medical).
Parameters used for the CT scans were same as described in our
previous study (17). Von Kossa staining and Toluidine Blue
staining were performed as described in our previous study (17).

Administration of a single dose of 25(OH)D3, 23S,25(OH)2D3,
or 23S,25R,26(OH)3D3 to WT or Cyp24a1 KO rats

Certain amount of 25(OH)D3, 23S,25(OH)2D3, or
23S,25R,26(OH)3D3 was suspended to 300 μl of corn oil, and
single dose of each vitamin D3 was orally administered to WT
or Cyp24a1 KO rats at the dose of 200 μg/kg-body weight for
25(OH)D3 or 50 μg/kg-body weight for 23S,25(OH)2D3 and
23S,25R,26(OH)3D3. Blood samples were collected from the
jugular vein at 0, 2, 4, 6, 8, 12, 24, 48 h after administration of
each vitamin D3. All of the blood samples were immediately
centrifuged at 1000g for 10 min, and the resultant supernatant
(plasma) was stored at –80 �C until analysis.

In order to investigate the effect of CYP3A inhibition
in vivo, 30 mg/kg-body weight of ketoconazole was coadmin-
istrated with each of 25(OH)D3 or 23S,25R,26(OH)3D3, and
the blood samples were collected at 6 h after administration.

Daily administration of 25(OH)D3 to Cyp24a1 KO rats

25(OH)D3 was also daily dietary administrated to Cyp24a1
KO rats to clarify effects of long-term administration. 25(OH)
D3 containing food was prepared as described in our previous
study (17). Briefly, pellet diet containing 1.5 mg 25(OH)D3 per
1 kg F-2 normal diet was prepared by Oriental Yeast Co.
Normal F-2 diet was fed prior to 9-week age, and after that
25(OH)D3-containing diet was fed. The average daily food
intake was 20.0 ± 5.0 g in the beginning of dietary 25(OH)D3
administration, and the food intake per kg body weight was
73.0 ± 12.7 g/kg bw/day (N = 5). Thus, the dose of the 25(OH)
D3 was calculated to be 110 ± 19 μg/kg bw/day in the
beginning of dietary 25(OH)D3 administration.

Preparation of liver mitochondrial and microsomal fractions
and analysis of productivity of 23,26-lactone-25(OH)D3 from
23S,25R,26(OH)3D3 in each fraction

The liver mitochondrial and microsomal fractions were pre-
pared from WT and Cyp24a1 KO rats, and the productivity of
25(OH)D3-23,26-lactone in each mitochondrial and microsomal
fraction was analyzed by modified methods described in the
previous study (11). The mitochondrial fraction was sonicated
on ice for 1 min in 10 s bursts with 1 min of cooling. It was then
incubated in 100 mM Tris-HCl buffer (pH 7.4) containing
5000 nM ADX, 500 nM ADR, 10 μM 23S,25R,26(OH)3D3, and
1 mM NADPH or NADH at 37 �C for 30 min. The microsomal
fraction was incubated in 100 mM phosphate buffer (pH 7.4),
10 μM 23S,25(OH)2D3 or 23S,25R,26(OH)3D3, and 1 mM
NADPH or NADH at 37 �C for 30 min. The substrate and its
metabolites were extracted and analyzed as described in the
section, Measurement of plasma 25(OH)D3 and its metabolites
concentration by LC/MS/MS analysis.

Productivity of 23,26-lactone-25(OH)D3 from
23S,25R,26(OH)3D3 by recombinant CYP24A1, rat CYP3A1/2,
and human CYP3A4

Metabolism of 23S,25R,26(OH)3D3 by human and rat
CYP24A1 was examined with the same methods as
described in our previous study (34). Briefly, The reaction
mixture containing 100 mM Tris-HCl (pH 7.5), 1 mM
EDTA, 2 μM ADX, 200 nM ADR, 20 nM recombinant
CYP24A1, 10 μM 23S,25R,26(OH)3D3, and 1 mM NADPH
was incubated for 30 min. Metabolism of
23S,25R,26(OH)3D3 by human CYP3A4 or rat 3A1 and 3A2
was examined as followed. The reaction mixture containing
100 mM phosphate buffer (pH 7.5), 20 nM recombinant
P450, 10 μM 23S,25R,26(OH)3D3, and 1 mM NADPH was
incubated for 30 min. Reaction was stopped by addition of
ethyl acetate, and metabolites were extracted and analyzed
as described in the section, Measurement of plasma 25(OH)
D3 and its metabolites concentration by LC/MS/MS
analysis.

Statistical analysis

Student’s t-test was used to identify significant differences
between WT and Cyp24a1 KO rats (p < 0.05).

Data availability

All data generated or analyzed in the present study are
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