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Background: National estimates of the sizes of key populations, 
including female sex workers, men who have sex with men, and 
transgender women are critical to inform national and international 
responses to the HIV pandemic. However, epidemiologic studies typ-
ically provide size estimates for only limited high priority geographic 
areas. This article illustrates a two-stage approach to obtain a national 
key population size estimate in the Dominican Republic using avail-
able estimates and publicly available contextual information.
Methods: Available estimates of key population size in priority areas 
were augmented with targeted additional data collection in other 
areas. To combine information from data collected at each stage, we 
used statistical methods for handling missing data, including inverse 
probability weights, multiple imputation, and augmented inverse 
probability weights.
Results: Using the augmented inverse probability weighting 
approach, which provides some protection against parametric model 

misspecification, we estimated that 3.7% (95% CI = 2.9, 4.7) of the 
total population of women in the Dominican Republic between the 
ages of 15 and 49 years were engaged in sex work, 1.2% (95% CI 
= 1.1, 1.3) of men aged 15–49 had sex with other men, and 0.19% 
(95% CI = 0.17, 0.21) of people assigned the male sex at birth were 
transgender.
Conclusions: Viewing the size estimation of key populations as a 
missing data problem provides a framework for articulating and eval-
uating the assumptions necessary to obtain a national size estimate. 
In addition, this paradigm allows use of methods for missing data 
familiar to epidemiologists.
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In many countries, the HIV epidemic is concentrated among 
key populations, including sex workers, men who have sex 

with men, people who inject drugs, and transgender women.1,2 
Even in countries with generalized HIV epidemics, key popula-
tions have disproportionate risks for the acquisition and trans-
mission of HIV that include biologic, network, and structural 
risks. National estimates of the sizes of key populations are crit-
ical to inform national and international responses to the HIV 
pandemic, including prioritization of public health programs, 
resource allocation, intervention planning, and evaluation.3

However, key population size estimates are typically 
incomplete, often available only for towns or areas included 
in epidemiologic studies or surveillance sites.4 These sub-
national size estimates are typically derived from program-
matic mapping or from sample surveys using Time Location 
Sampling5–7 or Respondent Driven Sampling8–10 that are most 
effectively conducted in limited geographic areas. Moreover, 
the data collection activities required to obtain reasonable esti-
mates of the sizes of key populations are resource intensive, 
particularly when the population of interest is hidden, stigma-
tized, or legally criminalized, such as sex workers, people who 
inject drugs, and men who have sex with men. Thus, available 
estimates tend to be constrained and are often derived from 
sites selected on the basis of perceived need rather than with 
national representativeness in mind.11
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Despite these challenges, there is increasing demand 
for national size estimates to guide HIV-related decision 
making and global reporting.2,12 Existing international guide-
lines11,13,14 suggest a range of approaches to obtain national 
estimates from incomplete data, including (1) applying the 
average prevalence of a given key population to all areas with-
out a direct estimate; (2) applying the average prevalence of a 
given key population from a certain stratum of an important 
variable (e.g., population density) to areas without a direct 
estimate within that stratum; or (3) matching areas without 
estimates to areas with direct estimates that “are most similar 
in terms of HIV risk.”11

However, these ad-hoc approaches rely on hidden 
assumptions, and current guidelines provide little guidance 
on how to select between the proposed methods or choose 
important covariates for matching or stratification. Here, we 
demonstrate how the need for a national key population size 
estimate maps on to a standard missing data problem in epide-
miology and how modern epidemiologic theory and methods 
developed to handle missing data can guide analyses in this 
setting. We illustrate this approach to estimate the sizes of key 
populations at the national level using an example from the 
Dominican Republic (DR).

To improve HIV-related services for key populations in 
the DR, a 2014 study obtained estimates of the sizes of key 
populations in priority areas.15 This article details how epi-
demiologic methods for missing data and targeted additional 
data collection were used to develop national key population 
size estimates. Because data collection efforts were targeted to 
areas at high perceived risk, we hypothesized that using data 
from the 2014 study alone would overestimate the national 
sizes of the key population groups.

METHODS
Throughout this article, we will refer to the estimated 

sizes of key populations from specific data collection activi-
ties in defined geographic regions as direct estimates. In this 
example, as in many countries, direct estimates were obtained 
from areas chosen for programmatic planning purposes, 
rather than to achieve a representative sample of areas within 
the country.

We focus on describing methods and assumptions that can 
be used to generalize results from areas with direct estimates 
of the parameters of interest to the national level. Specifically, 
the parameters of interest were point prevalences in 2016 cor-
responding to (1) the proportion of the adult female population 
(ages 15–49) in the DR engaged in sex work; (2) the proportion 
of the adult male population (ages 15–49) who engage in sex 
with another man; and (3) the proportion of people assigned the 
male sex at birth (ages 15–49) who were transgender women. 
This article describes a two-stage sampling approach and ana-
lytic methods to estimate these parameters.

In the two-stage approach, direct estimates for a subset 
of areas sampled for programmatic planning purposes (stage 1)  

were augmented by direct estimates from a smaller random 
sample of areas (stage 2) and contextual data available for all 
areas. We compare analytic strategies to analyze the resulting 
data using inverse probability weights, multiple imputation 
(MI), and augmented inverse probability weighting.

Assumptions for Missing Data
We view the need for a national population size esti-

mate as a missing data problem in which data are missing for 
geographic areas without direct estimates. As such, we rely 
on the standard assumptions for inference in the presence of 
missing data, namely that areas with and without missing data 
are exchangeable. Exchangeability implies that the expected 
proportion of men or women who fall into each key popula-
tion is the same in areas with and without direct estimates.16–18 
However, when at least some areas are purposively selected 
based on perceived risk, as in stage 1 of this example, the pro-
portion falling within a key population may systematically 
differ between sampled and nonsampled areas.

In this case, we may relax the exchangeability assump-
tion to be conditional on contextual covariates Z , such that we 
assume exchangeability only within strata of these covariates, 
or that the key population size is independent of sampling into 
the study, given Z .19–21 However, relaxing the exchangeability 
assumption to be conditional on the context Z  requires that 
we additionally assume that at least some areas are sampled 
within all levels of Z . This is also known as the positivity 
assumption.22 The sections that follow illustrate how these 
assumptions were used to guide our study design and analysis.

Stage 1: Direct Size Estimates from a Program 
Planning Survey

The DR is divided into 154 municipalities nested within 
31 provinces. Direct estimates of the sizes of key populations 
were available from a 2014 Priorities for Local AIDS Control 
Efforts (PLACE) study conducted in 30 municipalities randomly 
sampled from six areas perceived by national stakeholders to 
be at high risk of HIV transmission.15 These municipalities are 
highlighted in panel A of the Figure. All other municipalities 
originally had no direct estimates of the parameters of inter-
est. Full details of the 2014 PLACE study have been previously 
published.15 Briefly, the purpose of the PLACE 2014 study was 
to describe the characteristics, access to HIV prevention ser-
vices, and risk behaviors among people socializing in public 
places, including key populations. As part of its mandate, the 
study produced estimates of the sizes of the populations of sex 
workers, men who have sex with men (MSM), and transgender 
women for the selected municipalities. The Comisión Nacional 
de Bioética en Salud in the DR and the University of North Car-
olina institutional review board approved all study protocols.

Stage 2: Direct Size Estimates from a Sample of 
Municipalities

The sampling frame for the 30 municipalities selected 
for direct estimates in stage 1 was limited to perceived high 
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burden areas. Accordingly, municipalities with and without 
direct estimates in stage 1: (1) were not likely to be uncondi-
tionally exchangeable; and (2) may have been exchangeable 
within levels of important contextual variables, but it is likely 
that not all levels of these variables were represented in the 
sample (i.e., the positivity assumption was violated).

Therefore, we obtained additional direct estimates of 
the sizes of key populations through a 2016 PLACE study 
conducted in 20 additional municipalities. Panel B of Figure 
displays all municipalities sampled during either stage 1 or 
stage 2 data collection activities. More information about the 
2014 and 2016 PLACE studies and direct estimates from all 
sampled municipalities, can be found in eAppendices 1 and 2; 
http://links.lww.com/EDE/B400.

Contextual Information
Direct estimates of key population sizes were avail-

able only for municipalities with data collection activities in 
2014 or 2016, but municipal-level contextual information was 
available for all municipalities. Contextual information came 
from publicly available sources that provided insight into how 
sampled municipalities differed from nonsampled municipali-
ties with regard to variables that predicted the sizes of the key 
populations of interest.

Key stakeholders in the HIV research, treatment, and 
advocacy communities in the DR identified important contex-
tual variables using diagrams,21,23 namely, those variables that 
were both associated with sampling and the sizes of each key 
population. Information on contextual variables was obtained 
from the Oficina Nacional de Estadística, stakeholder knowl-
edge, and the DR 2013 Demographic and Health Surveys 
(DHS).24 From Oficina Nacional de Estadística, we retrieved 
information on total population density, the joint distribution 
of age and sex, the proportion of the population of Haitian 
descent, and the proportion living in poverty for each munici-
pality. Stakeholders from the Ministry of Health provided 
input on the presence of tourist areas, borders, and ports, 

and the count of universities within each municipality; this 
information was verified by the study team using geographic 
databases.

We used data from the 2013 DHS to estimate the overall 
HIV prevalence, average number of years of education among 
women, and proportion of female adolescents who were preg-
nant in each municipality. Because the DHS is designed to 
generalize to the DHS region level, rather than the municipal 
level, we interpolated each of the above indicators between 
DHS clusters for each cell on a fine grid overlaid on the coun-
try.25 Values were interpolated only for grid cells within the 
convex hull determined by the cluster locations using the 
R package akima,26 and summarized by taking the average 
within grid cells falling within each municipality. Contextual 
variables contained no missing data.

Statistical Methods
Let the number of municipalities m( ) be indexed as 

i m= …1, ,  and Yi represent the count of the key population of 
interest in municipality i. ni  is the population in municipality i
that could be part of the key population of interest if they met 
the defining criteria (i.e., for female sex workers, ni  is the total 
number of women ages 15–49 and for MSM and transgender 
women, ni  is the number of people assigned male sex at birth 
ages 15–49). For each of the three parameters of interest, we 
represent this proportion in each municipality as µi i iY n= /  

and at the national level as  µ = ∑ ∑
i

m

i
i

m

iY n
= =1 1

/ . For municipali-

ties without direct estimates, Yi, and therefore µi, are missing. 
We assume the parameters of interest are stable from 2014 to 
2016 such that data from both data collection efforts may be 
used to estimate a single set of key population sizes.

Under the assumption that the proportion of the popula-
tion falling within each key population of interest is the same 
(i.e., exchangeable) between sampled and nonsampled munic-
ipalities, µ could be consistently estimated as the proportion 

FIGURE. Map of the Dominican Republic with municipalities purposively sampled in 2014 in black (panel A) and with randomly 
sampled municipalities added in gray (panel B).

http://links.lww.com/EDE/B400


Edwards et al. Epidemiology • Volume 29, Number 6, November 2018

798 | www.epidem.com © 2018 Wolters Kluwer Health, Inc. All rights reserved.

classified as a member of that key population in the sampled 
municipalities (“complete cases”) only. Using a complete 
case approach, we estimated µcc as exp α( ) in the Poisson 
regression model log logE Y n( ){ } = ( ) + α  fit to the sampled  
municipalities.

We next relaxed the exchangeability assumption to be 
conditional on a set of contextual variables Z  that both pre-
dicted the sizes of the key populations and differed between 
sampled and nonsampled areas. Because the set of contextual 
variables affecting key population size varies by key popu-
lation, stakeholders selected a separate set of covariates for 
female sex workers, MSM, and transgender women popula-
tions. All models included population density, the proportion 
of people living in poverty or extreme poverty, presence of 
tourism, and HIV prevalence among the general population. 
For female sex workers, Z  additionally included the propor-
tion of female adolescents pregnant at the time of the DHS 
survey, the mean number of years of education among women, 
and presence of an international border or port. For MSM and 
transgender populations, Z  additionally included the presence 
of universities in the municipality.

We explored three analytic approaches to relax the 
exchangeability assumption. First, we used an inverse prob-
ability of sampling weighted (IPSW) approach in which 
sampled municipalities included in the Poisson model used 
in the complete case approach were up-weighted based on 
Z  to represent all municipalities in the country. Weights for 
each municipality, denoted by π i, were defined as the inverse 
probability that a municipality was sampled, conditional on 
Zi, or π i P S= = =1 1/ ( | )Z z . The conditional probability of 
sampling in the denominator was estimated using the logis-

tic regression P S g= =( ) = + ( ){ }1 0 1| Z z Zexpit β β , where 

expit x x{ } = + −( )[ ]1 1/ exp  and g Z( ) indicates that variables 

in Z  were modeled using flexible functional forms (e.g., 
restricted quadratic splines27). µipw was estimated as exp α( ) 
in the weighted Poisson model log logE Y nπ α( ){ } = ( ) + , where 

the superscript π  indicates that sampled municipalities were 
weighted by π i. Ninety-five percentage confidence intervals 
(CIs) were constructed using the robust sandwich variance 
estimator.28

Next, we used MI29,30 to impute the number of people 
in each key population in municipalities without direct esti-
mates. We first fit a Poisson regression model for the count of 
each key population in municipalities with direct estimates, 
conditional on Z , log logE Y n g( ){ } = ( ) + + ( )γ 0 1γγ Z . We then 
drew a set of regression coefficients for each of K = 100 impu-
tations from the posterior distribution of the parameters γ .  
We assumed parameters followed a multivariate normal dis-
tribution with mean vector ( ˆ , ˆγ 0 1γγ ) and covariance matrix 
£
�

z. We created a new variable Y k to represent the count of 
the key population of interest in imputation k. For munici-
palities with direct estimates, Y Yi

k
i=  for all imputations. For 

municipalities without direct estimates, Y k was imputed based 
on the regression coefficients γγ k  drawn for imputation k, such 
that Y n gi

k
i

k
i= ( ) + +exp{log ( )}γ 0 1γγ k Z .

Finally, we fit an analysis model in each imputed data-
set and summarized across imputations. The analysis model 

was the Poisson regression model log logE Y nk k( ){ } = ( ) + α ,  
and the estimated proportion in each key population µmi 

was exp{ }α α=








−

=
∑exp K
k

K
k1

1

� , where α̂ k was the natural 

log of the proportion in each key population from the kth 
imputed dataset. The variance for µmi was given by Rubin’s 

rules29
V

K
V
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A third approach estimated µ using an augmented IPSW 
approach. The standard IPSW approach relied on correct spec-
ification of the logistic regression model for the probability of 
being sampled into the study, while the MI approach relied on 
correct specification of the Poisson model for Y  conditional on Z .  
The augmented IPSW approach was designed to improve on 
the efficiency of the standard IPSW estimator and to yield a 
consistent estimate of µ if the statistical specification of either 
the model for sampling or the model for the outcome were 
correct.31,32 Note that at least one of the models must include 
all variables needed for exchangeability between sampled and 
nonsampled municipalities and neither model may contain 
variables affected by sampling (e.g., mediators) or collid-
ers.33 We implemented this approach using the “regression” 
augmented IPW estimator described by Robins et al.34 (and 
implemented by others; e.g.,35) designed to improve the per-
formance of standard IPW estimators.

To implement this approach, we predicted  
Y by fitting the weighted Poisson regression model 
log ( ) logE Y n gπ θ θ{ } = ( ) + + ( )0 1 Z , where the weights 
were the inverse probability of sampling described above. 
µaipw  was estimated as exp ζ( ) in the Poisson model for 

Y E Y n� �, log log( ){ } = ( ) + ζ , where Y� is the predicted count 

obtained using θ̂. Ninety-five percentage CIs for µaipw  were 

constructed as µaipw stderr± ×1 96. , where the standard error 

was estimated as the standard deviation of µaipw  from 1,000 
bootstrap samples of the original data.36

We explored the finite sample properties of the three 
analytic approaches to relax the exchangeability assumption 
using simulation experiments. Details on the simulation design 
and results can be found in the Appendix. SAS code to ana-
lyze a sample simulated dataset is provided in eAppendix 3;  
http://links.lww.com/EDE/B400.

RESULTS
Overall, sampled municipalities had slightly lower HIV 

prevalence, higher population density, a lower proportion of 
people living in poverty, and a greater proportion of female 

http://links.lww.com/EDE/B400
http://links.lww.com/EDE/B400
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adolescents pregnant at the time of the DHS survey than non-
sampled municipalities (Table 1). The proportion of people of 
Haitian descent and the average number of years of education 
among the female population were similar between the groups, 
though sampled municipalities were more likely to have tour-
ism, an international border or port, or a university than non-
sampled municipalities. In the PLACE 2014 data, strata with 
low population density and/or a high proportion living in 
poverty had very few sampled municipalities (Table 2). In the 
2016 sample and the union of the two datasets, all strata are 
represented.

For female sex worker and MSM populations, size esti-
mates from the 2014 sample alone were lower than size esti-
mates from the 2016 sample or the 2014 sample augmented 
with 2016 data (Table 3). In contrast, the estimated size of the 
transgender population was higher in the 2014 sample than 
in the augmented sample. The three approaches to account 
for differences between sampled and nonsampled municipali-
ties yielded similar results. As expected, results from MI were 
most precise. Results from the augmented IPSW approach 
were similar to, though more precise than, the IPSW estimates. 
Using the augmented IPSW approach, we estimated that 3.7% 
(95% CI = 2.9, 4.7) of the total population of women between 
the ages of 15 and 49 was engaged in sex work. Using the 
same approach, we estimated that the MSM population was 
1.2% (95% CI = 1.1, 1.3) and the population of transgender 
women was 0.19% (95% CI = 0.17, 0.21) of the total popula-
tion between 15 and 49 assigned male sex at birth.

DISCUSSION
The proposed two-stage approach produced esti-

mates of the sizes of three key populations in the Dominican 
Republic under a set of well-defined assumptions. Estimates 

obtained using MI were most precise, but estimates from 
the augmented IPSW approach offered improved precision 
over the IPSW approach and were expected by theory to be 
more robust to model misspecification than either the MI 
or IPSW approaches. Based on results from the augmented 
IPSW analysis, there were 97,755 women (3.7% of women) 
engaged in sex work, 31,424 MSM (1.2% of men), and 4,975 
transgender women (0.19% of people assigned male sex at 
birth) between the ages of 15 and 49 living in the DR in 2016. 
The estimated numbers of women engaged in sex work and 
MSM were higher under the proposed approach than would 
have been estimated by applying the crude proportion in each 
key population from the PLACE 2014 data alone (81,418 and 
25,401, respectively), while the number of transgender women 
was slightly lower than would have been estimated from the 
PLACE 2014 data (6,023).

Taken together, these results highlight important con-
siderations for the design and analysis of studies to estimate 
the sizes of key populations at the national level. Although 
data collected from purposively selected geographic areas for 
programmatic purposes can be (and often must be) leveraged 
to estimate the sizes of key populations,4 using such data to 
inform size estimates requires understanding the explicit or 
implicit sampling frame used. Knowledge of which segments 
of the population, based on demographics or location, are 
excluded systematically from the sampling frame is important 
to ensure these groups are represented through other sources 
of data or assumptions about the distributions of key popula-
tions in these groups.

Furthermore, generalizing the proportion of people in 
each key population to the national level requires collecting 
data on a minimally sufficient set of covariates conditional 
on which sampling is independent of key population size.37,38 

Table 1. Characteristics* of the 154 Municipalities in the Dominican Republic and for the Municipalities Sampled for Direct 
Estimates of the Sizes of Key Populations in PLACE 2014 and the Combined PLACE 2014 and PLACE 2016 Sample

Characteristic
All Municipalities  

m =( )154

Sampled 
Municipalities  
2014 m =( )30

Sampled 
Municipalities  
2014 and 2016 

m =( )50

Mean HIV prevalence (SD) 1.1 (1.0) 0.9 (0.01) 0.9 (1.0)

Mean population density in people/km2 (SD) 219.9 (695.3) 719 (1441) 477 (1154)

Mean percentage of residents of Haitian descent (SD) 7.7 (6.1) 7.9 (5.0) 7.8 (6.0)

Mean percentage of residents living in poverty (SD) 55.2 (17.3) 45.1 (13.0) 50.3 (17.0)

Mean years of education among women (SD) 8.9 (1.4) 9.1 (1.4) 9.2 (1.2)

Mean percentage of female adolescents pregnant at  

the time of DHS (SD)

4.2 (8.0) 5.9 (10.0) 6.5 (12.1)

Has a tourist area, (%) 12  33  26  

Includes an international border or port (%) 15  27  20  

Has a university (%) 22  47  34  

*HIV prevalence, years of education among women, and percentage of female adolescents pregnant were obtained from the 2013 DHS. Population density, percentage of residents 
of Haitian descent, and percentage of residents living in poverty were obtained from the Dominica Republic national statistics office (Oficina Nacional de Estadística). Presence of 
tourism, borders and ports, and universities was indicated by local stakeholders involved in the study.

SD indicates standard deviation.
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Because the stakeholders who were involved in selecting 
the municipalities for PLACE 2014 identified the contextual 
variables that informed this selection, it is unlikely that we 
omitted important covariates. Here, we were able to gather 
values of these contextual variables using online publicly 
available data sources and stakeholder knowledge. In other 
settings, additional data collection activities may be required 
to measure these covariates. Note that, if size estimates are 
needed for individual municipalities currently missing data, 
one would need to model all predictors of key population size 
that vary by municipality, which may require more intensive 
assumptions (e.g., that all predictors of key population size 
were included) and data collection activities.

Consistently estimating key population size at the 
national level requires correct specification of any parametric 
models used. These models must include all variables needed 

for conditional exchangeability between sampled and nons-
ampled municipalities to hold. In the approaches outlined 
in this article, we used parametric models for sampling (the 
IPSW approach), key population size (the MI approach), and 
both (the augmented IPSW approach). These models may be 
difficult to specify because, while one would like to model 
all variables flexibly (e.g., using splines or nonparametric ker-
nel smoothing techniques) and include interactions between 
variables, direct estimates are often based on data collected 
in few municipalities, making models with many parameters 
unstable. Bayesian techniques and frequentist shrinkage esti-
mators offer approaches to reduce mean squared error by trad-
ing some bias to reduce the variance of resulting estimators.39 
Indeed, recent work has outlined approaches to fit models in 
which the number of parameters approaches or exceeds the 
number of data points.40

The assumptions necessary to identify a national size 
estimate are analogous to assumptions necessary for quantita-
tive generalizability in other epidemiologic applications,19,37 
which can in turn be related to the assumptions necessary to 
make inference in the presence of missing data.21 Connecting 
the need for a national size estimate to the extensive literature 
on statistical approaches for missing data opens the door to a 
wide range of methods that can be adapted to suit the needs of 
each individual study.21,30,32,35,41,42

We expected that municipalities selected for data collec-
tion in 2014 due to high perceived risk of ongoing HIV trans-
mission would have higher proportions of key populations than 
municipalities not sampled as part of this exercise. However, 
municipalities randomly sampled in 2016 had a higher propor-
tion of women engaging in sex work and MSM than the munic-
ipalities purposively sampled in 2014, despite similar study 
protocols. This discrepancy has also been seen in other settings 
(e.g.43) and could have several causes. While areas identified by 
stakeholders as areas at high risk of ongoing HIV transmission 
likely had high counts of key populations, they were also areas 
with high population density, meaning that the proportion of the 
total population classified as part of a key population remained 
low. In addition, data collection activities in 2014 focused on 
urban municipalities, and therefore underrepresented rural 
areas where higher proportions of residents live in poverty. 
If sex work were associated with poverty, the 2014 data col-
lection activities may have missed these pockets of sex work. 
Furthermore, changes in the distributions of key populations 
could have occurred during the 2-year gap between data collec-
tion activities or due to seasonal mobility of sex workers. Our 
findings underscore the value of objective confirmation of areas 
identified by stakeholders as high priority areas and the need for 
a rapid assessment tool to identify underserved clusters of key 
populations in areas outside priority program areas.

This study had several limitations. Although we assumed 
all direct estimates were measured without error, estimating 
the sizes of key populations is difficult, even at the local level, 
and depends on strong assumptions.3 Direct estimates in this 

Table 2. Assessing Positivity: Probability of sampling a 
municipality for Direct Estimates of Key Population Size in  
the PLACE 2014 Study or the Combined PLACE 2014 and 
PLACE 2016 Dataset Among 154 Municipalities in the 
Dominican Republic

Covariate Stratum
Number of  

Municipalities P S14 1=( )* P S14 16 1∪ =( )†

HIV prevalence (%) < 0.3 36 0.25 0.39

(0.3–0.7) 38 0.24 0.42

(0.7–1.5) 38 0.18 0.26

≥ 1.5 42 0.12 0.24

Population density  

(in people per km2)

< 29 39 0.05 0.21

(29–75) 38 0.16 0.24

(75–200) 40 0.18 0.35

≥ 200 37 0.41 0.51

Proportion living  

in poverty (%)

< 40 37 0.30 0.41

(40–57) 41 0.29 0.44

(57–70) 39 0.16 0.21

≥ 70 37 0.03 0.24

Proportion  

Haitian (%)

< 3 30 0.10 0.25

(3–6) 51 0.22 0.43

(6–9) 26 0.19 0.31

≥ 9 47 0.23 0.38

Years of education  

among women

< 7 13 0.15 0.23

(7–10) 111 0.17 0.31

≥ 10 30 0.30 0.40

Proportion of female 

adolescents pregnant  

at time of DHS (%)

< 1 81 0.17 0.28

(1–5) 33 0.21 0.33

≥ 5 40 0.23 0.40

Presence of a tourist 

area

No 135 0.15 0.27

Yes 19 0.53 0.68

Includes international  

border or port

No 131 0.17 0.31

Yes 23 0.35 0.43

Presence of a  

university

No 120 0.13 0.28

Yes 34 0.41 0.50

*Probability of inclusion in 2014 study.
†Probability of inclusion in 2014 or 2016 studies.
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study could be improved using results from a validation study 
employing a more rigorous measure of key population size 
or prior knowledge about the amount of measurement error 
present.44–46 Moreover, we assumed the values of direct esti-
mates were known rather than estimated, as we did not take 
into account any uncertainty due to random error in the direct 
estimates, likely resulting in CIs that are too narrow. Although 
some methods to obtain direct size estimates produce standard 
95% CIs, others provide bounds that take into account only 
possible systematic error, while still others provide no mea-
sure of variability at all. When extrapolating direct estimates 
with measures of random or systematic error, this error could 
be propagated through to the national estimate using a hierar-
chical modeling approach,47 resulting in wider intervals that 
illustrate the uncertainty present in both stages of the analysis.

Here, we have presented a framework for estimating the 
sizes of key populations at the national level. These estimates 
are in demand from national governments and international 
organizations, and ad-hoc approaches to combine existing data 
sources to produce such estimates may yield misleading results. 
This work offers a principled approach to obtaining a national 
population size estimate by articulating the assumptions needed, 
describing how to leverage various types of data, and illustrat-
ing three statistical techniques to obtain national estimates 
from incomplete data, thus improving the knowledge base that 
informs the public health response to the HIV pandemic.
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APPENDIX. SIMULATION EXPERIMENTS
We conducted a series of simulation experiments to 

assess the finite sample performance of the proposed esti-
mators (i.e., complete case analysis, inverse probability 
weighting, multiple imputation (MI), and augmented inverse 
probability weighting) used to analyze the two-stage data. For 
the purposes of the simulations, we assumed that data from 
both stages were available.

In each of 2000 simulated worlds, there were i = 1 to M  
units. In each unit, the proportion of interest was µi i iY n= / .  
The parameter of interest was the overall proportion 

µ = ∑ ∑
i

i
i

iY n/ . The purpose of the simulation experiment was 

to compare the bias and precision of each analytic approach 
to estimate the overall proportion µ from data in which some 
units were missing information on Yi i,and thus µ .

Specifically, the simulated data consisted of 3 inde-
pendent covariates: Z Z1 2, , and Z3. Each covariate was a 
binary random variable with probabilities of 0.3, 0.75, and 
0.2, respectively. Of the M  units in each simulated dataset, 
approximately 30% had complete data S =( )1 , whereas 70% 
were missing information on Y Si =( )0 . Z1 and Z2 predicted 

both sampling S  and the outcome µi, while Z3 predicted only 
µi but was independent of sampling.

Each unit’s probability of sampling depended on Z1 and 
Z2 such that 

P S Z Z=( ) = − − × + ×{ }1 2 675 1 5 1 1 5 2expit . . . ,

And each unit’s proportion µi depended on Z Z1 2, ,and 
Z3 such that 

µi Z Z Z= − + × + × + ×{ }expit 7 03 2 3 1 3 2 1 2 3. . .

And Yi was the number of successes drawn from ni  trials 
in a binomial distribution with probability µi.

In summary, units i M= …1 2, ,  were assigned variables 
Z Z1 3− , S,µ, and Y . In each simulated world, the true µ was 

defined as 
i

i
i

iY n∑ ∑/ . To compare the proposed approaches, 

Yi and µi were set to missing where Si = 0. In each simulated 

world, µ was estimated using the complete case approach, 
the inverse probability weighting approach, the MI approach, 
and the augmented inverse probability weighting approach, 
as described in the text. Under each approach, we compared 
bias (defined as 100 times the average difference between the 
true value and the estimated value across the 2,000 simulated 

http://cran.r-project.org/package=akima
http://cran.r-project.org/package=akima
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worlds), precision (defined as the standard deviation of the 
bias in the 2,000 simulated worlds), and mean squared error 
(the sum of the square of the bias and the square of the stan-
dard deviation of the bias).

Results are summarized in Appendix Table 1. The 
average true value of µ was 5.8%. The complete case 
approach produced an estimate with substantial downward 
bias. When only Z1 was considered in the IPSW, MI, and 
augmented IPSW approaches, these approaches also pro-
duced biased results. However, adding Z2 reduced bias and 
improved precision under all approaches. When Z1 and 
Z2 were both considered, all approaches produced results 
with little bias. The MI approach was most precise followed 
by the augmented IPSW approach and then the IPSW 
approach. When Z3 was considered in addition to Z1 and 
Z3, results were slightly more precise, but bias was not sub-
stantially reduced for any approach (and actually increased 
marginally for IPSW and augmented IPSW approaches). 
This supports our assertion that one need not measure or 
include predictors of the outcome that are not associated 
with sampling to use the proposed approaches, though add-
ing the additional predictor of the outcome did decrease 
mean squared error.

Appendix Table 1. Comparison of Bias, Precision, 
and Mean Squared Error Between Proposed Analytic 
Approaches in 2,000 Simulated Worlds

Approach Bias* Standard (Bias)† MSE‡

Complete case -1.89 1.51 5.83

Considering only Z1    

  IPSW 0.73 2.88 8.81

  MI 1.20 2.08 5.76

  Augmented IPSW 0.98 2.21 5.86

Considering Z1 and Z2    

  IPSW -0.12 2.70 7.30

  MI 0.01 1.62 2.62

  Augmented IPSW -0.04 1.84 3.39

Considering Z1, Z2, and Z3    

  IPSW -0.18 2.66 7.11

  MI 0.23 0.54 0.34

  Augmented IPSW 0.19 1.08 1.19

IPSW indicates inverse probability of sampling weights; MI multiple imputation, 
MSE mean squared error.

*Bias was defined as the average over the 2,000 simulated worlds of 100 times the 
true value of µ  minus the estimated value.

†Standard deviation of the bias across the 2,000 simulated worlds.
‡Mean squared error was the sum of the square of the bias and the square of the 

standard deviation of the bias.


