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Microglia play an essential role in maintaining central nervous system (CNS) homeostasis,
as well as responding to injury and disease. Most neurological disorders feature
microglial activation, a process whereby microglia undergo profound morphological and
transcriptional changes aimed at containing CNS damage and promoting repair, but
often resulting in overt inflammation that sustains and propagates the neurodegenerative
process. This is especially evident in multiple sclerosis (MS), were microglial activation
and microglia-driven neuroinflammation are considered key events in the onset,
progression, and resolution of the disease. Our understanding of microglial functions
in MS has widened exponentially in the last decade by way of new tools and
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markers to discriminate microglia from other myeloid populations. Consequently, the
complex functional and phenotypical diversity of microglia can now be appreciated.
This, in combination with a variety of animal models that mimic specific features and
processes of MS, has contributed to filling the gap of knowledge in the cascade of
events underlying MS pathophysiology. The purpose of this review is to present the
most up to date knowledge of the dynamic responses of microglia in the commonly
used animal models of MS, specifically the immune-mediated experimental autoimmune
encephalomyelitis (EAE) model, and the chemically-induced cuprizone and lysolecithin
models. Elucidating the spectrum of microglial functions in these models, from
detrimental to protective, is essential to identify emerging targets for therapy and guide
drug discovery efforts.

Keywords: microglia, neuroinflammation, neurorepair, multiple sclerosis, neurological disease

INTRODUCTION

Microglia play an essential role inmaintaining homeostasis in the
central nervous system (CNS), as well as responding to injury and
disease (Tay et al., 2017b). Most neurological disorders feature
microglial activation, a process whereby microglia undergo
profound morphological and transcriptional changes aimed
at containing CNS damage and promoting repair. However,
prolonged and dysregulated microglia activation may result
in damaging inflammation that sustains and propagates the
neurodegenerative process. This is especially evident in multiple
sclerosis (MS), a chronic demyelinating CNS disorder whose
initiation, progression, and clinical course are dictated by a
combination of dysregulated immunity, genetic predisposition,
and environmental factors (Thompson et al., 2018). Microglia are
prominent in MS immunopathology and take on specific roles
depending on anatomical location and disease phase. Microglial
activation and microglia-driven neuroinflammation have been
recognized as key events in the onset, progression, and resolution
of MS (Voet et al., 2019).

Our understanding of microglial functions in MS has
expanded in the last decade by way of new tools and markers
to discriminate microglia from other myeloid populations
(Ginhoux et al., 2010; Goldmann et al., 2013). Consequently, the
complex functional and phenotypical diversity of microglia can
now be appreciated (Masuda et al., 2020). This, in combination
with a variety of animal models that mimic specific features
and processes of MS pathophysiology, has helped fill the gap
of knowledge in the cascade of events that sustain initiation,
progression, and resolution of the disease.

The purpose of this review is to present the most up to
date knowledge of the dynamic responses of microglia in the
commonly used animal models of MS, specifically the immune-
mediated experimental autoimmune encephalomyelitis (EAE)
model, and the chemically-induced cuprizone and lysolecithin
models. Elucidating the spectrum of microglial functions in these
models, from detrimental to protective, is essential to identify
emerging targets for therapy and guide drug discovery efforts.

MICROGLIA IN HEALTH AND DISEASE

Known as the resident immune cells of the CNS, microglia are a
highly specialized population of mononuclear phagocytes whose
origin has been traced to yolk sac progenitors colonizing the
neuroepithelium during developmental hematopoiesis (Ginhoux
et al., 2010; Gomez Perdiguero et al., 2015). Once established
in the CNS, microglia can repeatedly self-renew over the
individual’s life span through coordinated apoptotic and
proliferative processes (Askew et al., 2017). Self-renewal
occurs randomly in homeostatic conditions but becomes
targeted in disease states with site-specific clonal expansion
of select microglia clusters to respond to local perturbations
(Tay et al., 2017a).

In the adult CNS, the primary role of microglia is to preside
over tissue homeostasis and carry out surveillance functions
to prevent any disturbances to CNS integrity. Their highly
ramified and plastic morphology, as well as their motility, allow
them to reach into the microenvironment and sense alterations
caused by endogenous and exogenous signals. This capability is
attributed to amolecular machinery unique tomicroglia encoded
by a cluster of genes that have been collectively defined as the
microglial sensome (Hickman et al., 2013).

The distribution, number, and phenotype of microglial cells
is condition and region-dependent, with the white matter
(WM) containing more microglia than the gray matter (GM;
Mittelbronn et al., 2001). Genome-wide transcriptional profiling
of microglia from various areas of the adult mouse brain
has shown that, aside from the defined core of sensome
genes, microglia possess region-specific transcriptional profiles
that account for a high degree of cellular heterogeneity. This
has also been shown by ex vivo flow cytometric analysis,
whereby microglia has been found to have region-specific
differences in the expression of immunoregulatory proteins (de
Haas et al., 2008). The diversity of their molecular repertoire
enables microglia specialized homeostatic functions and may
explain their varying responses in CNS pathological states
(Grabert et al., 2016).
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Phagocytosis is a key function of microglia. During
development, particularly in the early postnatal period,
microglia deploy their phagocytic capability to remove excess
neurons and synapses, shaping the structure of adult neuronal
networks (Paolicelli et al., 2011; Schafer et al., 2012). This
function is also executed through the production of trophic and
synaptogenic factors (Parkhurst et al., 2013; Ueno et al., 2013).
In pathological conditions, phagocytic microglia clear cellular
debris and pathogens, making way for reparative processes
(Galloway et al., 2019b).

In response to injury and disease, microglia undergo a
process of cellular activation characterized by morphological
changes (e.g., amoeboid, enlarged, sphere-like cell body with
shorter branching), increased cell proliferation, and functional
modifications that include the production of soluble mediators.
These processes can result in both detrimental and protective
effects depending on timing and location and together influence
the neurological outcome. Moving away from the classification
that labeled damaging microglia as M1 and reparative microglia
as M2, single-cell transcriptomic studies have unequivocally
established that, in vivo, microglia exist in a multitude of
dynamic states constantly interchanging (Martinez and Gordon,
2014; Kim et al., 2016; Masuda et al., 2019, 2020). As
effectors of the innate immune response, microglia express a
variety of chemotactic mediators that sustain the trafficking
and activation of immune cells recruited at the site of
damage. They also acquire antigen presentation capability by
expressing MHCII and co-stimulatory molecules such as CD40
(Butovsky and Weiner, 2018).

MICROGLIAL RESPONSES IN MULTIPLE
SCLEROSIS

Multiple sclerosis is a chronic inflammatory disease of the
CNS, whose onset and progression have been attributed to
the interplay of aberrant immune system activation (both
innate and adaptive), genetic susceptibility, and environmental
factors (Dendrou et al., 2015). Its clinical hallmarks range from
sensory, visual, and motor disturbances to cognitive dysfunction
and fatigue (Compston and Coles, 2008). MS manifests
with distinct phenotypes, all characterized, to various extents,
by compromised blood-brain barrier (BBB) permeability,
infiltration of immune cells into the CNS parenchyma, and
glial activation (Dendrou et al., 2015; Brambilla, 2019).
Together, these events synergize to induce and propagate
neuroinflammation, the formation of demyelinating lesions, and
ultimately neurodegeneration (Dendrou et al., 2015).

Microglial activation is a prominent feature in all stages and
forms of MS. Indeed, histological characterization of microglial
morphology and the expression pattern of select markers in
normal and pathological conditions has allowed a detailed
classification of MS lesions in relation with disease stage and
evolution (van der Valk and De Groot, 2000; Zrzavy et al.,
2017). In the normal brain, microglia display low expression of
CD68, CD45 and HLA-DR (MHC class II receptor) molecules,
and high expression of homeostatic markers such as the
purinergic receptor P2RY12 (van der Valk and De Groot, 2000;

Zrzavy et al., 2017). In the early stages of lesion development,
microglia form clusters, or nodules, within the normal-appearing
white matter (NAWM) with no signs of demyelination. These
structures, classified as pre-active or early active lesions, are
uniquely composed of microglia with upregulated CD68, CD45,
HLA-DR, and are not accompanied by BBB alterations nor
astrogliosis, but are associated with degenerating axons. Here,
microglia show both pro-inflammatory and pro-reparative (e.g.,
expression of TNF, NADPH oxidase-2 subunits, and IL10)
signatures (Howell et al., 2010; van Horssen et al., 2012;
Singh et al., 2013). In active WM lesions, microglial activation
increases with further upregulation of CD68, CD45, HLA-DR,
and B7 costimulatory molecule (De Simone et al., 1995), and
microglial processes are observed in close contact with transected
axons (Trapp et al., 1998). At this stage, microglia lose their
homeostatic signature, for example downregulating expression
of P2RY12 in favor of the inflammatory P2X7 receptor (Beaino
et al., 2017; Zrzavy et al., 2017). Chronic active WM lesions are
characterized by a hypocellular demyelinated center surrounded
by a rim of CD68+ microglia/macrophages containing residual
lipids. Chronic inactive demyelinated WM lesions are also
hypocellular, with rare residual CD68+ microglia/macrophages
(Kuhlmann et al., 2017).

A similar classification based on microglia morphology has
been established for gray matter (GM) lesions, where microglial
activation has been associated with cortical demyelination and
neurodegeneration (Trapp et al., 1998; Magliozzi et al., 2010,
2013; Reynolds et al., 2011). Here, microglial activation follows
a gradient pattern, higher in the superficial layers close to
the meningeal surface where GM damage is most severe, and
progressively lower in the deepest layers of the cortex (Magliozzi
et al., 2010).

Histological studies on post-mortem MS tissue revealed that
microglia in active and chronic active MS lesions produce
a variety of molecules, which have been attributed both
detrimental and neuroprotective functions (Voet et al., 2019).
These include cytokines such as TNF and TNF family members
(e.g., lymphotoxin, TWEAK), but also IL1β, IL6, IL12, IL23, and
IL33, all of which have been mostly associated with damaging
inflammatory processes (Selmaj et al., 1991; Li et al., 2007;
Serafini et al., 2008; Christophi et al., 2012). In a recent
study by Magliozzi et al. (2019), loss of TNFR2-mediated
protective TNF signaling in microglia in favor of enhanced
detrimental TNFR1 signaling in neurons and oligodendrocytes
has been directly implicated in the development and severity of
submeningeal GM lesions.

Chemokines (e.g., CCL4, CCL5, CCL8, CXCL9, CXCL10,
CXCL2, and CXCL4), which play a role in the recruitment of
T cells and monocytes into the CNS, are also produced by
microglia (Selmaj et al., 1991; Li et al., 2007; Serafini et al., 2008;
Saikali et al., 2010; Christophi et al., 2012). Elevated expression
of the chemokine receptors CCR5, CCR8 and CXCR4 has
been described in microglia at lesion sites (Trebst et al.,
2001, 2003, 2008; Moll et al., 2009), indicating they respond
to chemoattractant cues to reach the demyelinating lesion
environment. Interestingly, CCR5+ microglia with phagocytic
morphology are found not only in active lesions but also in early
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remyelinating lesions, suggesting that this microglia population
may be associated with damaging phagocytic activity at the
acute stage of lesion activity and reparative phagocytosis to
clear debris at a later stage to favor the remyelination process
(Trebst et al., 2008).

The introduction of single nucleus transcriptomics on
post-mortem MS tissue has marked a turning point in our
appreciation of the functional diversity of microglia in the MS
affected CNS. Within and close to lesion areas of the WM and
GM, microglia lose their homeostatic signature and transition
into a variety of activated phenotypes (e.g., upregulation of
CD163, CD68, CD74, FTL, MSR1) that dynamically change
as the disease evolves (Schirmer et al., 2019). Microglia show
different gene signatures in GM and WM. In the GM, microglia
upregulates the expression of glycolysis and iron homeostasis
genes, whereas in the WM lipid metabolism genes are increased,
demonstrating region-specific functional roles for microglia (van
der Poel et al., 2019).

Activated microglia has also been shown to participate in
tissue damage caused by reactive oxygen species (ROS) in
MS. Indeed, ROS producing enzymes such as myeloperoxidase
(MPO) and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase subunits have been found upregulated in
microglia within and in the proximity of MS lesions, both
in WM and GM (Nagra et al., 1997; Gray et al., 2008a,b;
Fischer et al., 2012).

EXPERIMENTAL AUTOIMMUNE
ENCEPHALOMYELITIS (EAE)

EAE is the most utilized model of MS (Constantinescu et al.,
2011). Typically, it is induced via immunization with synthetic

peptides matching highly immunogenic regions of myelin
proteins such as myelin oligodendrocyte glycoprotein (MOG),
myelin basic protein (MBP), and proteolipid protein (PLP).
Peptides are injected emulsified in Complete Freund’s Adjuvant
(CFA) to boost immune activation and are usually accompanied
by administration of pertussis toxin, which is thought to favor
BBB breakdown and facilitate immune cell extravasation into
the CNS parenchyma. Being T cell-mediated, EAE is especially
suited to mimic the pathological hallmarks of the acute and
relapsing-remitting phases of MS and has paved the way for
the development of first-line disease-modifying therapeutics
currently in clinical use. Similar to MS, EAE features profound
immune-inflammatory activation sustained by the synergistic
action of immune cells trafficking into the CNS and resident glia,
especially microglia (Figure 1).

Detrimental Microglial Activation in EAE
As with MS, we are beginning to appreciate the diversity
and complexity of the microglia repertoire in response to the
EAE challenge. By single-cell RNAseq (scRNAseq) analysis, at
least four disease-associated microglia subsets were identified
following EAE, three of which showed high upregulation of
inflammatory and proliferative genes (Ly86, Mki67, CCL2,
CCL5, and CXCL10) and were localized to demyelinating lesions
(Jordão et al., 2019).

It has been suggested that microglial activation is a two-phase
process in EAE. The first, occurring at the onset, is independent
of CD40, a costimulatory molecule found on antigen-presenting
cells and required for their activation, and also known to
augment CD3 mediated T cell activation (Munroe and Bishop,
2007): this phase features cell proliferation and upregulation of
the activation markers MHC-II, CD40 and CD86. The second, at

FIGURE 1 | Schematic of microglia activation and responses during experimental autoimmune encephalomyelitis (EAE). After EAE induction, microglia begin to
proliferate and upregulate activation markers. Upon binding of CD40L from T cells to microglial CD40, microglia decrease their proliferation rate and acquire
amoeboid reactive morphology. Amoeboid microglia have both pro- and anti-inflammatory functions through secretion of cytokines, chemokines and growth factors.

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 August 2020 | Volume 14 | Article 269

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Plastini et al. Microglia in Multiple Sclerosis Models

disease peak, is CD40-dependent, features further upregulation
of activation markers, and is paralleled by a reduction in
cell proliferation. At this stage, CD40-dependent microglial
activation is necessary for encephalitogenic T cell expansion and
for the continued infiltration of leukocytes which sustain chronic
disease progression (Ponomarev et al., 2006). Importantly, T
cells themselves produce CD40 ligand (CD40L), hence directly
influence microglial reactivity by binding to microglial CD40 in a
positive feedback loop (Ponomarev et al., 2006). Studies indicate
thatmicroglial control of T cell encephalogenicity occurs through
IL23, specifically via the p40 subunit. Without microglial p40,
EAE is suppressed due to a shift towards a Th2 rather than
Th1 phenotype (Becher et al., 2003).

Some of the intracellular signals that control microglial
activation in EAE have been identified thanks in part to the
development of CX3CR1-CreER mice that allow for microglia-
specific conditional gene knockout. CX3CR1 itself, primarily
expressed by microglia in the CNS, is crucial for mediating
cellular activation. Its ablation leads to increased microglial
activation which parallels an early EAE onset and a more severe
clinical course (Cardona et al., 2006; Wlodarczyk et al., 2015).
Another important signal for microglia activation is the TGFβ-
activated kinase 1 (TAK1), as its ablation prevents microglia
from acquiring activated amoeboid morphology and producing
pro-inflammatory IL1β and CCL2. This leads to suppressed
EAE with reduced immune cell infiltration and demyelination
(Goldmann et al., 2013). The NF-κB regulatory protein A20 also
plays a role in microglial activation following EAE. Its deletion
causes hyperactivation of the NLRP3 inflammasome with
enhanced IL1β release and exacerbated neuroinflammation
(Voet et al., 2018).

As part of the activation process, microglia ramp up
production of inflammatory mediators, which include cytokines
(e.g., TNF, IL1β, IL6) chemokines (e.g., CCL1, CCL2, CCL5,
CCL7, CXCL2), complement factors (e.g., C4a) and nitric
oxide (NO; Renno et al., 1995; Villarroya et al., 1996; Tran
et al., 1997; Lewis et al., 2014; Yamasaki et al., 2014; Stoolman
et al., 2018). This is driven, at least in part, by IFNγ and
IL17 secreted by T cells infiltrated in the CNS (Renno et al.,
1995; Murphy et al., 2010). Microglial IL6 has a pathogenic
role in EAE, as its conditional ablation significantly ameliorates
EAE symptoms and reduces immune cell infiltration and
demyelination (Sanchis et al., 2020). This may be due, in part, to
stimulation of IL6 receptors (IL6R) on endothelial cells, causing
BBB disruption and increased CNS immune cell trafficking
(Petković et al., 2020). Similarly, IL1β and IL18 produced by
microglia are neurotoxic, and preventing their production
via administration of the caspase-1 inhibitor VX-765, which
blocks the inflammasome pathway, is therapeutic in EAE
(McKenzie et al., 2018). Along the same line, microglia derived
growth factors sustain detrimental CNS inflammation in EAE.
Transforming growth-factor-β (TGFβ) is produced by microglia
after activation of the Angiotensin II type-1 receptor (AT1R) by
Angiotensin II (Ang II). Blockade of AT1R with candesartan,
an anti-hypertensive drug, inhibited TGFβ production and
improved EAE, suggesting this category of molecules may
have a therapeutic effect in MS (Lanz et al., 2010). It should

be noted that some studies suggest that TGFβ has beneficial
functions in EAE (Lee et al., 2017). However, the protective
functions of this cytokine during EAE have not been assessed
in a cell-specific manner, thus it has not been determined
whether or not they are dependent on microglia (Xu et al., 2019).
Microglial VEGF-B triggers FLT-1 signaling in astrocytes causing
activation of pro-inflammatory NF-κB signaling, upregulation
of NF-κB-dependent cytokines, and worsening of EAE
(Rothhammer et al., 2018).

In addition to cytokines, diverse signals have been shown to
promote detrimental microglial activation in EAE, such as the
CCR8-CCL1 axis. Indeed, CCL1, highly produced by microglia
after EAE, by interacting with its cognate receptor CCR8, also
expressed in microglia, sustains cell activation at EAE onset
(Murphy et al., 2002). This mechanism has been suggested to take
place in MS as well (Trebst et al., 2003). Stimulation of toll-like
receptor (TLR) signaling leads to microglia activation and results
in the production of soluble mediators, including TNF, IL10,
IL6, CCL2, CCL5, and GM-CSF (Olson and Miller, 2004).
Among the various TLRs, TLR2 is directly activated by 15-alpha-
hydroxicholestene (15-HC), an oxidized cholesterol derivative
found in the serum of patients with secondary progressive
MS and mice with EAE. TLR2 activation by 15-HC caused
detrimental neuroinflammation and correlated with increased
microglial production of CCL2, iNOS, and TNF, as well as
worsening of EAE symptoms (Farez et al., 2009). TLR signaling
was shown to be regulated by the E3 ubiquitin ligase Peli1 via
TRAF3 degradation, as ablation of Peli1 abrogated microglial
activation and suppressed EAE (Xiao et al., 2013).

Microglial activation in EAE has been linked to direct
impairment of neuronal function through various mechanisms
(Mandolesi et al., 2015). Inflammatory mediators produced
by microglia, especially TNF, have been shown to mimic the
synaptic alterations in hippocampal glutamatergic signaling
observed in EAE (Centonze et al., 2009). Also, ROS released
by microglia via the activity of mitochondrial NADPH oxidase
was associated with synaptic and cognitive alterations after
EAE (Di Filippo et al., 2016). In the cerebellum, microglia
produced IL1β was linked to altered glutamate transmission at
Purkinje cell synapses following EAE (Mandolesi et al., 2013).
In the cortex, contact of activated microglia with the axon
initial segment responsible for action potential initiation caused
axonal pathology independently of T cell presence, and this
could be reversed by pharmacological deactivation of microglia
with the ribonucleotide reductase inhibitor didox (Clark et al.,
2016). Inhibition of mixed lineage kinases, which have been
associated with microglial activation and neurodegeneration,
reduced loss of postsynaptic structures (Bellizzi et al., 2018).
Importantly, disease-modifying drugs used in MS therapy
have shown efficacy in rescuing synaptic dysfunction in EAE
through inhibition of detrimental microglial activation. These
include fumarates, through blockade of NF-κB signaling (Parodi
et al., 2015), and sphingosine-1-phosphate (S1P) receptor
modulators such as fingolimod, laquinimod, and ozanimod,
through reduction of the release of proinflammatory mediators
(e.g., TNF) from microglia (Rossi et al., 2012; Gentile et al., 2018;
Musella et al., 2020).
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Overall, these studies indicate that persistent and overt
microglial activation has a net detrimental role in CNS
autoimmunity, and preventing or suppressing this process may
be therapeutic. This has been demonstrated in a seminal study
by Heppner et al., who provided the first direct evidence
that ‘‘microglial paralysis’’—intended as microglia with reduced
capacity to proliferate, migrate and produce cytokines—leads
to EAE suppression (Heppner et al., 2005). Indeed, tg620chi
transgenic mice with selective deactivation of microglia after
administration of ganciclovir showed a marked delay in EAE
onset as well as a reduction of the clinical disease score. This
was associated with the absence of Iba1+ microglia and a lack
of inflammatory infiltrates in the CNS (Heppner et al., 2005).
Interestingly, it has also been shown that ganciclovir per se has a
direct inhibitory effect on microglial proliferation and activation,
suggesting that its beneficial effects in the CNS go beyond its
known antiviral properties (Ding et al., 2014). Along the same
line, induction of microglia apoptosis via administration of the
anti-hypertensive drug nimodipine has proven beneficial in EAE.
The apoptotic effect of nimodipine on microglia, independent of
its calcium channel blocking effect, led to reduced NO and ROS
and promoted remyelination (Schampel et al., 2017).

Colony-stimulating factor 1 receptor (CSF1R) is essential
for microglial survival and proliferation. Microglia depletion
induced pharmacologically by inhibition of CSF1R in a mouse
model of EAE reduced neuroinflammation and increased
myelin preservation, suggesting that the presence of microglia
contributes to an environment that prevents remyelination and
CNS recovery (Nissen et al., 2018). Similarly, in a rat model
of EAE, it was found that administering the CSF1R inhibitor
GW2580 slowed disease progression and reduced the EAE
clinical scores (Borjini et al., 2016).

Further indication that keeping microglia reactivity in check
is desirable, exogenous administration of miR-124, which
inhibits the transcription factor C/EBP-α and its downstream
targets polarizing microglia towards a quiescent phenotype,
prevents EAE development (Ponomarev et al., 2011). Similarly,
the administration of miR-146a, which inhibits microglial
inflammatory activation by suppressing TLR2 signaling, inhibits
EAE (Zhang et al., 2019). Notably, miR-146a is upregulated
in EAE and MS (Fenoglio et al., 2011; Madsen et al., 2016),
possibly indicative of an endogenous anti-inflammatory response
that alone, however, is not sufficient to suppress disease.
Astrocyte-derived Gal-1, by binding to core 2-O-glycans on
CD45, is retained at the microglial cell surface, where it exerts
a deactivating function by augmenting its phosphatase activity
(Starossom et al., 2012). Estrogens, via stimulation of microglial
ERβ, also promote microglia deactivation, and this occurs
through inhibition of NF-κB signaling and downregulation of
NO synthase (Wu et al., 2013). ERβ agonists have been proven
effective in suppressing EAE (Wu et al., 2013; Moore et al., 2014).

Protective Microglial Activation in EAE
Despite the large body of evidence pointing at a primary
detrimental role of microglia in EAE, various reports depict
a more complex picture of microglia involvement in EAE
pathogenesis. It has been shown that the recruitment of

peripheral monocytes/macrophages to the CNS is necessary
for EAE onset and that activation of microglia alone is not
sufficient (Ajami et al., 2011). This was also underscored in
a study by Yamasaki et al. (2014) who identified differences
in the gene expression profile of infiltrating macrophages
and resident microglia at EAE onset. While macrophages
are highly phagocytic and inflammatory driving disease,
microglia demonstrate a signature of globally suppressed cellular
metabolism, suggesting a lesser pathogenic role at EAE onset.

In response to signals present in the CNS environment
at the various stages of EAE, microglia is directed towards
producing beneficial factors and performing reparative functions
to restore CNS homeostasis. One of these signals is IFNγ

released by encephalitogenic T cells, as lack of microglial
IFNγR resulted in exacerbated EAE through increased microglia
proliferation (Ding et al., 2015). Microglia is also the major
CNS source of type I interferons following EAE, including IFNβ,
which, administered exogenously, is a standard treatment for
relapsing-remitting MS (RRMS). Microglia expressing IFNα−β

are localized within active demyelinating lesions and are
highly efficient in clearing myelin debris through an enhanced
phagocytic capacity (Kocur et al., 2015). Microglia not only
produce type I interferons but are also responsive to them as they
express IFNAR1. Stimulation of IFNAR1 leads to the expression
of IFN-dependent genes including IFNα−β themselves, further
sustaining the protective signaling evoked by this class of
molecules. Although the amount of microglial type I interferons
naturally produced during EAE is not sufficient to suppress EAE,
stimulation with polyI:C, which upregulates IFNα-β inmicroglia,
limits EAE development, suggesting this is a potent protective
mechanism that microglia controls (Khorooshi et al., 2015).

During EAE, microglia upregulates the production of IL4,
a cytokine known for its anti-inflammatory function. Mice
lacking IL4 in the CNS are more susceptible to EAE, indicating
that microglial IL4 serves as a suppressive signal that may
balance overt pro-inflammatory cascades (Ponomarev et al.,
2007). In parallel, microglia exposed in vitro to IL4 produce
reparative, anti-inflammatory factors and could potentially be
exploited for therapeutic purposes. Indeed, IL4-treated microglia
delivered via adoptive transfer to EAE-induced mice reduced
EAE severity and overall demyelination (Zhang X. M. et al.,
2014). Microglia produced TGFα is also protective in EAE by
limiting the pathogenic functions of astrocytes via activation of
ErbB1 receptors and inhibition of NF-κB signaling (Rothhammer
et al., 2018).

Interleukin-1 receptor-associated kinase (IRAK)-M is
selectively expressed by microglia in the CNS and has been
associated with shifting microglia towards an anti-inflammatory
phenotype by inhibiting TLR4 signaling (Liu et al., 2019). Indeed,
the ablation of IRAK-M in mice exacerbated EAE and increased
pro-inflammatory microglia (Liu et al., 2019), suggesting
that enhancing IRAK-M signaling could be a therapeutic
option for MS.

Although some reports have shown that inhibition of CSF1R
is protective in EAE (Borjini et al., 2016; Nissen et al., 2018),
others suggest the opposite. Indeed, stimulation of CSF1R
with its ligands CSF1 or IL34 increased protective CD11c+
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microglia and ameliorated EAE symptoms (Wlodarczyk et al.,
2018). Furthermore, depletion of microglia with a CSF1R
antagonist exacerbated EAE and increased neurodegeneration
and inflammation in the Non-Obese Diabetic (NOD) mouse
strain EAE model of secondary progressive MS, suggesting
that microglial CSF1R signaling may be protective in certain
conditions (Tanabe et al., 2019). It should be noted that the
NOD-EAE model of MS has a clinical course and pathological
hallmarks different form the typical EAE models in the
C57Bl/6 and SJL mouse strains. This could account for the lack
of efficacy of CSF1R inhibition in this model.

An important pathway controlling the protective host-defense
and homeostatic functions of microglia during EAE is the
tumor necrosis factor receptor 2 (TNFR2) signaling pathway.
Microglia-targeted ablation of TNFR2, which is activated by
the transmembrane form of TNF, resulted in the early onset
of EAE with exacerbated demyelination (Gao et al., 2017).
TNFR2 deficient microglia showed enhanced pro-inflammatory
profile while exhibiting deficiencies in homeostatic genes (e.g.,
P2X4R, P2X7R, P2Y12R, TREM2, and Siglech) and reduced
phagocytic capacity. Microglial TREM2 is especially important
in EAE repair, as TREM2 inhibition caused disease exacerbation
with increased immune cell infiltration and demyelination
(Piccio et al., 2007). Similar to TNFR2, microglial P2X4R is also
important for host defense function. Its blockade exacerbated
EAE by favoring pro-inflammatory microglia activation and
inhibiting myelin phagocytosis (Zabala et al., 2018). On
the contrary, potentiation of P2X4R signaling ameliorated
EAE, promoted anti-inflammatory microglia activation,
and potentiated myelin phagocytosis and remyelination
(Zabala et al., 2018).

Collectively, these studies indicate that microglia are tasked
with important homeostatic and reparative functions during
EAE and their maintenance is crucial for repair and recovery.

CUPRIZONE-INDUCED DEMYELINATION

Administration of the copper chelator cuprizone, typically
incorporated into the chow and fed to mice for 4–6 weeks,
induces death of mature oligodendrocytes and consequent
demyelination in the CNS, particularly in the corpus callosum
(Matsushima and Morell, 2001). The underlying mechanism
of this process or why myelinating oligodendrocytes are
especially susceptible is not entirely clear. Evidence indicates
that disruption of mitochondrial function and metabolism
in oligodendrocytes may be implicated, particularly in the
early days of cuprizone administration (Praet et al., 2014).
However, at later stages of cuprizone administration, when
the peak of oligodendrocyte death occurs, the activation
of the innate immune response, especially of microglia,
seems to be the key mechanism driving oligodendrocyte
death (Praet et al., 2014). Notably, unlike the EAE model,
demyelination in the cuprizone model is not dependent on nor
accompanied by a T cell-mediated immune response, allowing
for the study of mechanisms of demyelination/remyelination
without confounding superimposed inflammatory mechanisms.
Importantly, oligodendrocyte precursor cells (OPCs) are not

susceptible to cuprizone-induced cell death. They proliferate
and populate demyelination sites initiating the remyelination
process, thus making the cuprizone model a reversible model
of demyelination.

With cuprizone administration, evidence of microgliosis is
observed within 1 week. Microglia numbers continue to rise
through weeks 3–4 of cuprizone exposure, after which they
plateau (Hiremath et al., 1998). Spontaneous remyelination has
been shown to occur between weeks 5 and 6 of cuprizone
administration due to OPC migration and differentiation at
the sites of demyelination. This correlates with the time when
microglia numbers reach their highest, suggesting that at
this stage microglia may be important for the remyelination
process (Mason et al., 2000). Upon cuprizone withdrawal
after 6 weeks of administration, microglia numbers rapidly
reduce, and this coincides with the peak of the remyelination
phase (Mason et al., 2000). Interestingly, mice administered
cuprizone for an extended time of 12 weeks exhibit chronic
demyelination andmaintain increasedmicroglia numbers at sites
of demyelination. Chronic cuprizone exposure also results in
impaired remyelination capacity, though it is unknown if this
effect is linked to the prolonged presence of microglia (Mason
et al., 2004).

A recent scRNAseq study by Masuda et al. (2019) comparing
control, cuprizone-demyelinated and cuprizone-remyelinated
corpus callosum tissues provided a comprehensive picture of the
diverse microglia populations at the various stages of damage
and repair. Nine microglia clusters were identified in the naïve
corpus callosum, with the prevalence of homeostatic clusters.
Demyelination and remyelination states were associated with the
overwhelming presence of two disease-associated clusters with
inverse distribution. During demyelination, the most abundant
cluster expressed inflammatory genes, many of which identical
to those found in microglia of MS patients (e.g., osteopontin,
PADI2, ApoE). During remyelination, the most abundant
subset displayed an immunoregulatory gene signature. The clear
similarity observed with disease-related subtypes found in theMS
brain further validates the usefulness of the cuprizone model to
study myelin repair mechanisms relevant to MS.

Detrimental Microglial Responses in
Cuprizone-Induced Demyelination
Microglia are recruited to sites of demyelination in the cuprizone
model and contribute to the inflammatory environment.
Recruitment depends on chemoattractants such as CCL2, CCL3,
and CXCL10, which are upregulated in the corpus callosum
within 2 days of cuprizone administration. Ablation of any
of these molecules leads to reduced microglia numbers in the
corpus callosum and correlates with reduced and/or delayed
demyelination (McMahon et al., 2001; Clarner et al., 2015;
Janssen et al., 2016). Microglia accumulation in the demyelinated
brain coincides with further upregulation of chemokines and
cytokines (Morell et al., 1998; Jurevics et al., 2002; Arnett et al.,
2003), resulting in an inflammatory environment that propagates
microglia proliferation and activation (Figure 2).

Several studies suggest that activatedmicroglia are responsible
for oligodendrocyte death, not cuprizone acting directly on
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FIGURE 2 | Schematic of microglia activation and responses in the cuprizone model of demyelination. Microglia become proliferative and reactive upon cuprizone
administration and populate sites of demyelination. During demyelination, microglia are primarily detrimental through production of chemokines and cytokines that
exacerbate inflammation and demyelination. During remyelination, microglia are primarily protective and express genes involved in debris phagocytosis, clearing the
way for reparative remyelination.

oligodendrocytes. Indeed, cuprizone administration to primary
rat oligodendrocytes in vitro does not affect their viability
even at high doses, nor does the concomitant addition of
astrocyte conditioned media (Pasquini et al., 2007). Instead,
the addition of microglia produced cytokines, such as TNF,
reduced oligodendrocyte viability, suggesting that synthesis
of inflammatory mediators by microglia is necessary for
oligodendrocyte death and demyelination (Pasquini et al., 2007).
However, TNF does not seem to be involved in the proliferation
and recruitment of inflammatory microglia at the site of
demyelination, as mice with TNF ablation do not show a
reduction in microglia numbers or activation state following
cuprizone administration (Arnett et al., 2001). On the contrary,
microglia-derived TNF may be important for the remyelination
process via stimulation of TNFR2 signaling in OPCs (reviewed
below; Arnett et al., 2001).

Inhibition of microglial activation with minocycline in
mice undergoing cuprizone treatment reduced demyelination,
highlighting the detrimental function of microglia in this model
(Skripuletz et al., 2010). Along this line, depletion of microglia
by the administration of the CSF1R inhibitor PLX3397 during
the remyelination phase resulted in increased remyelination rate
and improved recovery of motor deficits (Tahmasebi et al.,
2019). Short term treatment with the CSF1R kinase inhibitor
BLZ945 also led to reduced microglia numbers which correlated
with less demyelination and higher oligodendrocyte numbers in
the corpus callosum. Additionally, the few remaining microglia
had increased phagocytic and debris clearing ability (Wies
Mancini et al., 2019). Targeting of microglial CD38, which,

similarly to CSF1R, is important for microglial survival and
homeostasis, has also been shown to reduce microglia numbers
and activation after cuprizone exposure, protecting mice against
demyelination and neurodegeneration (Roboon et al., 2019).

Production of ROS by microglia has been suggested
as another mechanism driving oligodendrocyte death and
demyelination. Indeed, mice lacking Hv1, a microglia specific
voltage-gated proton channel required for ROS production
in the brain, showed reduced demyelination and decreased
microglia activation (Liu et al., 2015). On the other hand,
conditional ablation of the antioxidant enzyme methionine
sulfoxide reductase A (MsrA) in microglia resulted in increased
production of ROS, decreased activity of SODs, and exacerbated
demyelination (Fan et al., 2020).

Activation of signaling cascades favoring the switch of
microglia towards a proinflammatory, proliferative phenotype
has been correlated with increased demyelination and delayed
remyelination. This is the case for IFNγ and IFNβ signaling.
IFNγ promotes microglia recruitment to the demyelination
site (Maña et al., 2006) and tolerance to IFNγ through
constitutive expression of very low levels of IFNγ protects
against demyelination (Gao et al., 2000). IFNβ has a detrimental
effect as well, demonstrated by the fact that its ablation leads
to reduced microglia inflammatory activation and accelerated
remyelination (Trebst et al., 2007). TLR2 signaling plays a similar
role. Its ablation resulted in enhanced remyelination (Esser et al.,
2018), and so did TLR2 tolerance induced via administration
of TLR ligands (Wasko et al., 2019). This was associated with
a shift in phenotype from iNOS+ detrimental microglia to
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Arg1+ reparative microglia (Esser et al., 2018; Wasko et al.,
2019). Other signals implicated in the detrimental activation
of microglia are members of the TNF family of cytokines
lymphotoxin (LT) and TWEAK. Indeed, inhibition of the LT
beta receptor and suppression of TWEAK are both protective
in cuprizone-induced demyelination (Plant et al., 2007; Iocca
et al., 2008). Finally, miR-146a, which is upregulated following
cuprizone administration, has been associated with microglia
proliferation in the acute phase of cuprizone demyelination.
Its ablation reduces microglia numbers and protects against
demyelination of the corpus callosum (Martin et al., 2018).
However, in a report by Zhang et al. (2017), continuous
infusion of miR-146a mimics promoted remyelination in the
corpus callosum, likely by suppressing inflammatory microglial
activation, thus highlighting a difference in the function of
miR146a during the demyelination vs. remyelination process.

At the opposite end, activation of signaling cascades leading
to suppression of microglia inflammatory and proliferative
phenotype is protective. One example is the activation of
the kinase receptor Axl by its ligand Gas6. Mice ablated of
these molecules exhibited increased axonal damage, decreased
remyelination, and increased expression of proinflammatory
cytokines after cuprizone exposure, indicating a suppressive role
for the Axl-Gas6 axis (Ray et al., 2017). Protection against
demyelination was observed with overexpression of the cytokine
IL13, which promoted the polarization of microglia towards a
suppressive Arg1+ phenotype (Guglielmetti et al., 2016).

As expected, based on these reports, pharmacological
interventions leading to suppression of microglial inflammatory
activation and recruitment have shown protection in the
cuprizone model. The estrogen 17beta-estradiol (E2) delayed
microglial recruitment and reduced gene expression of TNF
limiting demyelination (Taylor et al., 2010). Lactacystin, a
naturally occurring proteasome inhibitor, impaired microglia
recruitment, and improved remyelination when injected into
the corpus callosum (Millet et al., 2009), similar to the
p53 inhibitor pifithrin alpha (Li et al., 2008). The antipsychotic
drug olanzapine reduced both microglia accumulation and
oligodendrocyte loss in the frontal cortex, which correlated
with an increase in the protective growth factor IGF1
(Zhang H. et al., 2014). The phosphodiesterase 5 (PDE5)
blocker sildenafil increased myelin preservation and decreased
microglia numbers as well as microglia produced inflammatory
cytokines (Nunes et al., 2012, 2016). Administration of
vitamin D3 reduced demyelination and this correlated with
reduced microglia numbers (Wergeland et al., 2011). In a
separate study, vitamin D3 given during the sixth week of
cuprizone administration increased microglia activation and
exacerbated demyelination, but in the long run, increased
remyelination and decreased microglial activation, suggesting
that temporal control of microglia activity is essential to
regulate demyelination/remyelination (Nystad et al., 2014).
Pharmacological inhibition of 5-lipoxygenase (5-LO), which
blocks the synthesis of inflammatory leukotrienes, reduced
microglia activation and axonal damage (Yoshikawa et al., 2011),
but did not prevent or limited demyelination, suggesting that
microglia may participate in cuprizone-induced damage also

by compromising neuronal integrity, not only oligodendrocyte
integrity (Yoshikawa et al., 2011). Sulfasalazine, commonly used
in rheumatoid arthritis, promotes repair of demyelinated lesions
in cuprizone mice by preventing microglia from acquiring a
proinflammatory profile, thus reducing their production of TNF
and INFγ (Duan et al., 2018).

Protective Microglial Responses in
Cuprizone-Induced Demyelination
One of the key functions of microglia in physiological and
pathological conditions is phagocytosis. Oligodendrocyte
cell death associated with cuprizone administration results
in the accumulation of myelin debris that microglia need
to clear for proper remyelination to take place. Microglia
phagocytic function is regulated by specific molecules, such as
the surface receptor Triggering Receptor Expressed on Myeloid
cells 2 (TREM2), which is elevated during demyelination
(Konishi and Kiyama, 2018). TREM2 ablation compromises
microglia phagocytic capacity, resulting in impaired myelin
debris clearance and persistent demyelination (Cantoni et al.,
2015; Poliani et al., 2015). Additionally, it has been shown
that Galectin 3 is an important signal for TREM2 regulation
during demyelination. Galectin 3 KO mice fail to upregulate
TREM2 leading to a lack of spontaneous remyelination
after cuprizone administration (Pasquini et al., 2011).
Galactocerebrosidase (GALC), which has been identified as
a risk factor for MS, also participates in microglia phagocytic
clearance of myelin debris, with GALC ablated mice showing
reduced remyelination (Scott-Hewitt et al., 2017). A similar
phenotype was observed in mice lacking Axl (TAM receptor),
CX3CR1, and interferon regulatory factor 8 (IRF8), all genes
important for microglia homeostatic function. Their ablation
leads to impaired myelin clearance and delayed recovery from
cuprizone demyelination (Weinger et al., 2011; Horiuchi et al.,
2012; Lampron et al., 2015).

In addition to phagocytosis, the immunomodulatory function
of microglia is necessary for repair in cuprizone demyelination.
Using knockout mice lacking TNF and its receptors, Arnett
et al. showed that TNF, which is produced primarily by
microglia, is necessary for remyelination by promoting OPC
differentiation via activation of TNFR2 signaling (Arnett et al.,
2001). Additionally, mice lacking MHCII, which is exclusively
expressed by microglia in the intact CNS, exhibited delayed
remyelination (Arnett et al., 2003). MHCII expression on
microglia is regulated by TNF, whose ablation leads to improper
microglia function and consequently reduced remyelination after
cuprizone exposure (Arnett et al., 2001, 2003).

Production of protective/reparative soluble factors by
microglia is beneficial in cuprizone demyelination. Cystatin F,
a cathepsin inhibitor synthesized by microglia, is important for
remyelination. Ablation of cystatin F increases demyelination
and expression of CXCL2 after cuprizone exposure. This
is reversed with cathepsin C gene knockdown, suggesting
that microglial cystatin F protective effect is through
inhibition of cathepsin C (Liang et al., 2016). Microglia
derived CNTF promotes remyelination. Indeed, suppression
of CNTF production with minocycline, which inhibits
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microglial activation, resulted in reduced remyelination
(Tanaka et al., 2013).

Strategies that promote the polarization of microglia
towards a reparative phenotype are protective in cuprizone
demyelination. Treatment with the IL6 family member
oncostatin M (OSM) shifted microglia to an anti-inflammatory
phenotype and prevented demyelination, while a deficiency
in the OSM receptor (expressed on microglia and astrocytes)
exacerbated demyelination in the cuprizone model (Janssens
et al., 2015). Progesterone treatment during cuprizone
exposure reduced demyelination by shifting microglia from
a pro-inflammatory to an anti-inflammatory phenotype with
elevated expression of TREM2, CD206, Arg1, and TGFβ.

LYSOLECITHIN-INDUCED
DEMYELINATION

Lysolecithin, or lysophosphatidylcholine (LPC), is a
demyelinating and inflammatory phospholipid that acts as
a membrane-dissolving detergent. When delivered by injection
into white matter tracts, LPC induces highly reproducible focal
demyelinating lesions. Injections are typically targeted to the
thoracic and lumbar regions of the spinal cord or the corpus
callosum (Blakemore and Franklin, 2008). Demyelination

occurs within hours and can last up to 7–10 days, with
noticeable remyelination observed by day 21. The insult causes
peripheral macrophages to infiltrate into the lesion, as well
as microglia to be recruited (Figure 3). Infiltration of T cells,
although transient (between 6–12 h after injection), appears
to be an important step in the activation of macrophages
and microglia. Indeed, nude mice lacking a T cell response
show marked reduction in phagocytic macrophages, activated
microglia, and extent of demyelination after LPC injection
(Ghasemlou et al., 2007). The involvement of peripheral
immune cells in the development of LPC-induced demyelination
differentiates this model from both the cuprizone model,
where immune cells are not required for demyelination to
occur, and the EAE model, where demyelination is strictly
dependent on the induction of a primary T cell response.
Advantages of the LPC model are the rapid establishment
of demyelination lesions (hours as opposed to weeks in
the cuprizone model), and the flexibility in choosing the
lesion location.

A recent bulk RNAseq study of microglia isolated from
LPC lesions during the demyelinating (3 days post-injury)
and remyelinating phase (10 days post-injury), showed that
in the demyelinating phase microglia have a predominantly
proinflammatory transcriptome, typically associated with

FIGURE 3 | Schematic of microglial activation in the lysolecithin (LPC) model. Microglia become activated after exposure to LPC itself, and in response to T cells
transiently present in the LPC-exposed CNS tissue. Once activated, microglia acquire amoeboid morphology via concurrent activation of non-selective cation
channels (1) and KCl cotransporters: non-selective cation channels in the cell body increase osmolarity and cause swelling, while KCl cotransporters in the cell
processes reduce osmolarity and cause shrinkage. LPC can also increase intracellular calcium by non-selective transient receptor potential melastatin 2 (TRPM2) (2).
Calcium influx in turn activates microglia and calcium-activated K+ channels (3). This results in the release of pro-inflammatory IL1beta in a mechanism independent
of P2X7R. Microglia can also release IL1beta via inflammasome activation. Indeed, LPC acts as a DAMP and results in activation of NLRP3 and NLRC4. Activated
microglia also release extracellular vesicles with proinflammatory functions early after injection and pro-regenerative effects 7-10 days after injury.
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damaging functions, while in the remyelination phase
microglia display a reparative/pro-regenerative profile.
Interestingly, the necroptotic death of proinflammatory
microglia is necessary for the replenishment of the cell pool
with regenerative microglia which drives the remyelination
process (Lloyd et al., 2019). ScRNAseq analysis at 7 days
post-injury, when the lesion is transitioning from a state of
myelin debris removal to the remyelination phase, revealed
the existence of four distinct injury-associated microglia
clusters, all of which with downregulated homeostatic genes
(e.g., Cx3cr1, P2ry12) and upregulated inflammatory genes
(e.g., Apoe, Cxcl10, Ccl2, Il1β, interferon pathway genes).
These signatures were similar to those observed in human MS
lesions and in other neurological diseases (e.g., Alzheimer’s;
Hammond et al., 2019).

Detrimental Microglial Responses in
LPC-Induced Demyelination
in vitro studies have determined that microglia viability/integrity
is not affected by LPC, differently from oligodendrocytes
(Vereyken et al., 2009). Instead, LPC appears to influence
the activation state of microglia. LPC exposure promotes
inflammatory microglia activation and accumulation, and
this response correlates with acute axonal damage (Höflich
et al., 2016). Following LPC injection in vivo, as well as
exposure in vitro, microglia transition from a steady-state
ramified to an amoeboid activated morphology (Schilling
et al., 2004; Stock et al., 2006; Jeong et al., 2017). Patch-clamp
experiments have shown that LPC activates non-selective
cation channels and KCl cotransporters (Schilling et al.,
2004), the first highly expressed in the cell body, and the
latter mostly expressed in the processes. The hypothesis is
that influx of ions through non-selective cation channels
increases osmolarity in the cell body resulting in swelling.
In parallel, KCl cotransporters reduce osmolarity in the
processes, causing shrinkage and retraction. The synergy of
these two mechanisms directs microglia towards an activated
amoeboid morphology (Schilling et al., 2004). Furthermore,
non-selective cation channels and calcium-activated potassium
channels seem to be required for processing and release of the
inflammatory cytokine IL1β from LPS-preactivated microglia
after exposure to LPC with a mechanism independent of
P2RX7 activation (Stock et al., 2006). More recent studies have
demonstrated that LPC acts essentially as a danger-associated
molecular pattern (DAMP) and induces IL1β release by
microglia in vitro via both NLRP3 and NLRC4 inflammasomes
through the canonical inflammasome pathway (Freeman
et al., 2017; Scholz and Eder, 2017). Both inflammasomes are
important signals in the innate immune response to pathogens.
Specifically, LPS-preactivated microglia from NLRP3 and
NLRC4 knockout mice showed a significant reduction in IL1β
release after LPC stimulation, suggesting both NLRP3 and
NLRC4 inflammasomes contribute to caspase-1 activation for
IL1β release to occur (Freeman et al., 2017). This indicates
that LPC can act both extracellularly and intracellularly.
Indeed, by binding to membrane receptors, LPC may activate
mechanosensitive non-selective cation channels, which could

trigger the activation of the NLRP3 inflammasome (Scholz
and Eder, 2017). Also, LPC could cross the cell membrane
due to its lipophilic nature and interact intracellularly with
the NLRC4 inflammasome (Scholz and Eder, 2017). It has
also been shown that LPC can potentiate P2X7R-mediated
responses, such as the formation of membrane pores, activation
of p44/42 MAPK, and calcium influx (Takenouchi et al.,
2007). This may be due to LPC increasing the sensitivity of
microglial P2X7R in the brain. LPC-dependent modulation
(increase) of intracellular calcium and, consequently,
increase in microglial activation has also been linked to
non-selective transient receptor potential (TRP) channels,
specifically TRPM2, via activation of p38 MAPK signaling
(Jeong et al., 2017).

Much of the detrimental functions of microglia in the LPC
model have been attributed to the inflammatory microglia
pool present during the demyelination phase. This pool shows
upregulation of genes associated with chronic inflammation and
cell-death mechanisms (Lloyd et al., 2019). It has been suggested
that damaging microglia carry out their function through the
shedding of extracellular vesicles (EVs) loaded with signals (RNA
and proteins) that cause oligodendrocyte cell death, prevent OPC
differentiation and inhibit remyelination (Lombardi et al., 2019).

Protective Microglial Responses in
LPC-Induced Demyelination
Microglia phagocytic function has been shown to have a
protective debris clearing role in LPC-induced demyelination,
similar to both the EAE and cuprizone models. An important
signal for the phagocytic activity of myeloid cells in LPC lesions
is miR-223. Ablation of miR-223 resulted in larger lesions
and impaired remyelination with the accumulation of lipid-
laden microglia/macrophages unable to process myelin debris.
Not only did microglia fail to clear myelin, but became more
inflammatory (Galloway et al., 2019a).

Aside from phagocytosis, the reparative roles of microglia
in the LPC model have been mainly associated with the
remyelination phase. At this stage, microglia return to expressing
homeostatic genes (e.g., Csfr1 and P2ry12) and upregulate
genes associated with oligodendrocyte differentiation andmyelin
formation (e.g., Osm, Fgf1, Bmp1; Lloyd et al., 2019). A
recent study demonstrated that the reparative effects of
pro-regenerative microglia are associated with the extracellular
vesicles (EVs) they shed. These EVs carry signals that promote
OPC recruitment and differentiation at LPC-induced lesions
favoring remyelination (Lombardi et al., 2019).

CONCLUDING REMARKS

Microglia play a key role in MS. Their cellular diversity as
well as complex functions in the pathophysiology of the disease
are increasingly being appreciated. Microglia’s multifaceted and
often dichotomous responses vary upon the stage of disease
(onset, acute, chronic) and their anatomical location in the brain
and spinal cord (e.g., within lesions, in NAWM, in gray matter).
While detrimental functions are highly associated with MS onset
and acute disease, protective functions have been attributed to
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microglia in facilitating the repair process. Thus, to be successful
in uncovering the underlying pathological mechanisms of MS
and, consequently, identifying novel drug targets, it is paramount
that animal models to study MS accurately reflect the complexity
and diversity of microglia responses. What emerges from the
numerous studies in the EAE, cuprizone, and LPC models is
that microglia indeed display signatures and responses highly
representative of the various stages of lesion formation and
resolution in the human disease. Generally speaking, in all
models detrimental microglial activation is maximal at the
acute phase of the disease (meaning peak EAE, and peak
demyelination in cuprizone and LPC), whereas microglia-
dependent reparative functions best correlate with sub-acute
and chronic EAE, or the remyelination phase in cuprizone and
LPC models. While T cell involvement is significant in the
EAE model, and present to some extent in the LPC model,
with cuprizone administration T cells are of minimal to no
consequence. This makes the cuprizone model the ‘‘cleanest’’
to appreciate microglial-dependent innate immune mechanisms
and to explore avenues to directly affect oligodendrocyte survival
and differentiation and promote remyelination. In summary,
this overview of the breadth of microglial responses provides

validation of the usefulness of the models commonly utilized to
recapitulate the different aspects of MS immunopathology, thus
a degree of confidence that findings with these tools may be
translated to MS therapy.
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