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PANoptosis-like cell death in ischemia/reperfusion 
injury of retinal neurons

Abstract  
PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis, apoptosis, and necroptosis, which simultaneously occur during the 
pathophysiological process of infectious and inflammatory diseases. Although our previous literature mining study suggested that PANoptosis might occur in 
neuronal ischemia/reperfusion injury, little experimental research has been reported on the existence of PANoptosis. In this study, we used in vivo and in vitro 
retinal neuronal models of ischemia/reperfusion injury to investigate whether PANoptosis-like cell death (simultaneous occurrence of pyroptosis, apoptosis, 
and necroptosis) exists in retinal neuronal ischemia/reperfusion injury. Our results showed that ischemia/reperfusion injury induced changes in morphological 
features and protein levels that indicate PANoptosis-like cell death in retinal neurons both in vitro and in vivo. Ischemia/reperfusion injury also significantly 
upregulated caspase-1, caspase-8, and NLRP3 expression, which are important components of the PANoptosome. These results indicate the existence of 
PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons and provide preliminary experimental evidence for future study of this new type of 
regulated cell death. 
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Introduction 
PANoptosis is a phenomenon in which pyroptosis, apoptosis, and necroptosis 
simultaneously occur during the pathophysiological process of some diseases, 
and they can be regulated at the same time (Malireddi et al., 2019). A series 
of studies have reported that PANoptosis is regulated by the PANoptosome 
complex, which is assembled by some key regulators of pyroptosis, apoptosis, 
and necroptosis (Malireddi et al., 2019, 2020; Banoth et al., 2020; Christgen 
et al., 2020; Samir et al., 2020). The protein complex simultaneously regulates 
pyroptosis, apoptosis, and necroptosis (Christgen et al., 2020; Samir et 
al., 2020). In addition to infectious diseases, many other diseases, such as 
nervous system diseases, involve cell death and immune response, and there 
are many studies on the regulated cell deaths (RCDs) pyroptosis, apoptosis, 
and necroptosis (Yuan and Yankner, 2000; Elmore, 2007; Tan et al., 2014; 
Ofengeim et al., 2015; Kesavardhana and Kanneganti, 2017; Ge et al., 2018; 
Yuan et al., 2019; Guo et al., 2020; Liao et al., 2021; Yan et al., 2021). These 
RCDs have been shown to be associated with immune response (Semmler et 
al., 2005; Takeda et al., 2008; Basuroy et al., 2009; Huang et al., 2018; Liu et 
al., 2019b; Wang et al., 2019a; Zhou et al., 2019; Chen et al., 2021; McKenzie 
et al., 2020; Hu et al., 2021; Wu et al., 2021). These studies indicated the 
possibility that PANoptosis plays a larger role in the nervous system. Thus, 
we conducted a literature mining study to explore this hypothesis (Yan et al., 

2022). In that study, we found that under experimental conditions, the three 
RCD forms of PANoptosis exist in models of middle cerebral artery occlusion 
and oxygen-glucose deprivation/recovery (OGD/R). To validate the hypothesis 
that PANoptosis exists in retinal ischemia/reperfusion (I/R) injury, the present 
study used both in vitro and in vivo I/R models (OGD/R and acute high 
intraocular pressure [aHIOP]) of retinal neurons to investigate the existence of 
PANoptosis-like cell death under experimental conditions. 
 
Methods   
Animals and aHIOP model
The animals used in the experiment were male Sprague-Dawley rats (n = 90) 
with a weight range of 250–300 g and an age of 8 weeks. The experiments 
were approved by the Animal Ethics Committee of Basic Medical School of 
Central South University on March 2, 2021 (approval No. 2021-XMSB-0002). 
The animals were purchased from the Hunan STJ Laboratory Animal Co., Ltd 
(Hunan, China) (license No. SCXK (Xiang) 2019-0004), and the experimental 
protocols and operating procedures were in accordance with the Guidelines 
for Animal Experiments of Central South University under the Law of Animal 
Protection and Management of the Chinese Government. Rats were randomly 
divided into three groups using a random number table: Sham, aHIOP, and 
aHIOP + inhibitor (n = 30 rats/group).
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Graphical Abstract

PANoptosis-like cell death kills retinal neurons following OGD/R and aHIOP injury
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An aHIOP model was prepared using previously reported methods 
(Rosenbaum et al., 1998, 2001; Huang et al., 2013; Wang et al., 2020). 
Sprague-Dawley rats were intraperitoneally injected with 2% pentobarbital 
sodium (40 mg/kg; FWD Chem Co., Shanghai, China) to ensure that the 
animals were generally anesthetized. A sterilized 30-gauge needle was 
inserted into the anterior chamber of one randomly selected eye (this eye 
was then referred to as the ocular hypertension [OHT] eye) of the rats, 
and normal saline (NS) was injected into the anterior chamber through an 
intravenous tube to generate artificial intraocular pressure (IOP). 

IOP was slowly increased to 110 mmHg and maintained for 60 minutes by 
adjusting the NS volume based on the IOP, which was measured with the 
hand-held tonometer Tono-Pen XL (Medtronic Inc., Jacksonville, FL, USA). 
Then, IOP was gradually returned to normal level and maintained for 48 
hours before retinal tissue collection. In the Sham group, a sterilized 30-gauge 
needle was inserted into the anterior chamber of the eyes without elevating 
the IOP. Specific inhibitors for RCDs were used in vivo as follows: the inhibitor 
was dissolved in NS, and the inhibitor solution (or dimethyl sulfoxide [DMSO] 
for control) was injected into the vitreous cavity 30 minutes before treatment 
with high IOP. 

After the aHIOP model was completed, the rats were sacrificed quickly, 
and their eyeballs were removed and fixed in 4% paraformaldehyde at 4°C 
for 24 hours. Then they were treated with 15% and 30% sucrose solution 
sequentially for dehydration. After dehydration, the eyeball was dissected, 
the cornea, lens and vitreous body were removed, and the retinal tissue 
was retained. The retina was embedded with OCT glue (Sakura Finetek, 
Tokyo, Japan) and frozen at –80°C for 24 hours. Frozen sections were cut 
to a thickness of 20 μm using a cryotome (Cryotome FSE, Thermo Electron 
Corporation, Waltham, MA, USA). The sections were stored at –20°C until use. 
All animal experiments were conducted independently at least five times.

Cell cultures
R28 cells (retinal precursor cells) were provided by Dr. Lei Shang (Jiang Xi 
Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye 
Hospital of Nanchang University, Jiangxi, China) as a gift. This R28 cell line has 
been tested by short tandem repeats (STR) analysis and it is not misidentified 
or contaminated according to current database and widely used in our 
previous studies (Rong et al., 2020; Wang et al., 2020; Huang et al., 2021). 
R28 cells were cultured in low glucose Dulbecco’s modified Eagle’s medium 
(DMEM; low glucose: 1000 mg/L glucose; Cat# MA0580, Meilunbio, Dalian, 
Liaoning, China) supplemented with 10% fetal bovine serum (FBS; Hyclone, 
Cat# SV30087GE Healthcare Life Sciences, Logan, UT, USA) and 1% penicillin/
streptomycin (PS; 10,000 U/mL penicillin, 10,000 μg/mL streptomycin in 0.85% 
NaCl; Thermo Fisher Scientific, Waltham, MA, USA, Cat# SV30010) at 37°C in 
a 5% CO2 cell culture incubator (Thermo Scientific Forma Series 3111, Thermo 
Fisher Scientific). R28 cells were subcultured every 2 or 3 days. The R28 cells 
were used for related experiments after drug treatment.

OGD/R injury of R28 cells in vitro
The OGD/R model was used to simulate I/R injury in vitro (Hu et al., 2020b; 
Xie et al., 2020). When R28 cells were subcultured to the 3rd generation and 
had grown to about 80% density, the OGD/R model was performed on the 
cells using a protocol based on published literature (Wang et al., 2018b, 
2020; Huang et al., 2021). When the R28 cells were cultured to a suitable 
state, the initial culture medium (low glucose DMEM with 10% FBS and 1% 
PS) was replaced with glucose-free medium (DMEM, no glucose, Thermo 
Fisher Scientific, Cat# 1966025) with FBS and PS. After the medium was 
changed, cell culture containers were placed in the OGD treatment device, 
which maintained a hypoxic condition (O2 < 1%). This device was made by our 
research team, and contained an airtight box, oxygen concentration sensor, 
and a hypoxic air supply pipeline (95% nitrogen and 5% CO2) to replace the 
oxygen containing air. It was well-tested and applied in our previous studies 
(Chen et al., 2016; Wang et al., 2018, 2020; Huang et al., 2021). The R28 cells 
subjected to OGD treatment were cultured at 37°C for 2 hours. After OGD 
injury, the cells were returned to the initial culture condition (low glucose 
DMEM with 10% FBS and 1% PS at 37°C in a 5% CO2 cell culture incubator) 
for 2 hours. The normal control group was maintained in the normal culture 
medium (low glucose DMEM with 10% FBS and 1% PS) in a culture incubator 
(Thermo Scientific Forma Series 3111, Thermo Fisher Scientific) at 37°C and 5% 
CO2 for the same length of time. All cell experiments were performed at least 
three times independently.

Drug treatments
Z-VAD-FMK (Z-VAD; Cat# S7023, Selleck Chemicals, Houston, TX, USA) was 
dissolved in DMSO at a final concentration of 50 μM. Disulfiram (DSF; Selleck 
Chemicals, Cat# S1680) was dissolved in DMSO at a final concentration of 
0.3 μM. Necrostatin-1 (Nec-1; Cat# S8037, Selleck Chemicals) was dissolved 
in DMSO at a final concentration of 20 μM. R28 cells were pretreated with 
drugs (or DMSO for control) for 1 hour before OGD modeling (Wang et al., 
2018, 2020; Huang et al., 2021). For treatment with a combination of these 
inhibitors in the OGD/R model, the final concentration of each inhibitor in 
combination was the same as that of a single inhibitor mentioned above. In 
the aHIOP model, the amounts of Z-VAD (10 mM), DSF (10 mM), and Nec-1 
(20 mM) injected into the OHT eye were 3, 0.5 and 1.5 µL, respectively. The 
processing time was 30 minutes. 

Propidium iodide staining
Propidium iodide (PI; MilliporeSigma, Burlington, MA, USA, Cat# P4170) 
staining combined with Nec-1 was used to indicate necroptosis. Nec-1 is 

a specific inhibitor of necroptosis that targets receptor-interacting protein 
kinase 1 (RIPK1), which is the key upstream kinase of necroptosis activation 
(Degterev et al., 2008). PI is a nuclear dye that fluoresces red when it binds 
to DNA. When the membrane integrity is damaged by cell necrosis, PI can 
enter the cell and bind to DNA, so it is usually used to detect necrotic cells 
(Nicoletti et al., 1991; Riccardi and Nicoletti, 2006). PI was dissolved in 0.01 M 
phosphate buffered saline (PBS) at a final concentration of 10 μg/mL (Wang 
et al., 2018, 2020; Huang et al., 2021). After OGD/R and drug treatment, R28 
cells were gently washed three times with PBS for 5 minutes each, stained 
with PI dye, and placed in the cell culture incubator (Thermo Scientific Forma 
Series 3111, Thermo Fisher Scientific) at room temperature (25°C) for 20 
minutes while being protected from light. After removal of PI dye, R28 cells 
were gently washed with PBS three times for 5 minutes each, fixed with 4% 
paraformaldehyde (Solarbio, Beijing, China, Cat# P1110) at room temperature 
(25°C) for 20 minutes, and washed gently with PBS three times for 5 minutes 
each. In the rat aHIOP groups, 5 μL of PI (100 μg/mL) was injected through 
the anterior chamber angle into the intravitreal space of the OHT eye 30 
minutes before the animals were killed. The R28 cells and sections stained 
with PI were subsequently stained using Hoechst 33258 (MilliporeSigma, Cat# 
94403) in 0.01 M PBS at a final concentration of 0.5 μg/mL for 10 minutes at 
room temperature, and then the cells were washed with PBS three times for 
5 minutes each. 

The cells were covered with a mixture of glycerol and PBS at a ratio of 1:9 and 
observed under a fluorescence microscope (Olympus, Tokyo, Japan) (Wang 
et al., 2018, 2020; Huang et al., 2021). Images were taken at six random 
positions for each sample. The percentage of PI-positive cells was analyzed by 
ImageJ v.1.4.3 software (NIH, Baltimore, MD, USA). 

Terminal deoxynucleotidyl transferase-mediated nick end labeling
Terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) 
Apoptosis Detection Kit combined with Z-VAD was used to detect apoptosis 
of R28 cells (green fluorescent, Meilunbio, Cat# MA0223) and in animal tissue 
(red fluorescent, Meilunbio, Cat# MA0224). Z-VAD is an inhibitor that can 
cross the cell membrane and target cysteine aspartate-specific proteases 
(caspase) to irreversibly inhibit caspase activation and thus block apoptosis 
in cells (Slee et al., 1996; Shimizu and Pommier, 1997; Van Noorden, 2001). 
TUNEL is a common method to detect cell apoptosis; when apoptosis occurs, 
DNA breaks to produce the 3′-OH terminals, and TUNEL labels 3′-OH terminals 
with fluorescein to stain apoptotic cells (Quigley et al., 1995; Saraste and 
Pulkki, 2000). After OGD/R and drug treatment, R28 cells were fixed with 
4% paraformaldehyde at room temperature for 30 minutes, followed by PBS 
containing proteinase K (20 μg/mL; Meilunbio, Cat# MA0224-2) at room 
temperature for 5 minutes. Rat retinal sections were washed with PBS three 
times for 5 minutes each, followed by washes with PBS containing proteinase 
K (20 μg/mL) at 37°C for 20 minutes. After the TdT reaction solution was 
prepared according to the kit protocol, reaction solution was added to the 
washed cells and sections, and the cells were treated at 37°C for 2 hours in 
the dark. Subsequently, the cells and sections were washed with PBS three 
times for 5 minutes each, and then stained with Hoechst 33258 (see Section 
“Propidium iodide staining”). After three washes with PBS for 5 minutes 
each, the cells were observed under a fluorescence microscope (Olympus). 
Images were taken at six random positions for each sample. The percentage 
of TUNEL-positive cells was analyzed by Image J software.

Ethidium Homodimer III staining
Ethidium Homodimer III (EthD-III; Biotium, Fremont, CA, USA, Cat# 40050) 
staining combined with DSF was used to indicate pyroptosis. DSF inhibits 
GSDMD expression and interferes with pore formation triggered by GSDMD 
in the cell membrane to prevent the release of interleukin and other 
inflammatory factors (Zhang et al., 2021a, b). This special function enables 
DSF to inhibit cell pyroptosis (Hu et al., 2020a). EthD-III is a fluorescent nucleic 
acid dye that cannot pass through normal cell membranes. It selectively 
stains dead cells with damaged cell membranes, and is a useful dye for 
pyroptosis (Pan et al., 2018; Wang et al., 2019b). EthD-III was dissolved in 1 × 
PBS and the solution concentration was adjusted to 1 μg/mL. R28 cells were 
treated with EthD-III solution for 10 minutes at room temperature, followed 
by three PBS washes for 5 minutes each. Subsequently, they were soaked 
with 4% paraformaldehyde for 20 minutes, followed by three PBS washes 
for 5 minutes each. Then, 5 μL of EthD-III (100 μg/mL) was injected into 
the intravitreal space of the eye 30 minutes before the animals were killed. 
Cells and sections stained with EthD-III were stained using Hoechst 33258 
(MilliporeSigma, Cat# 94403) (see Section “Propidium iodide staining”). The 
cells were observed under a fluorescence microscope. Images were taken at 
six random positions for each sample. The percentage of EthD-III-positive cells 
was analyzed by Image J software.

Western blot assay 
R28 cells were lysed in ice-cold RIPA buffer (CWBIO, Beijing, China) with 
1% protease inhibitors (CWBIO) and 1% phosphatase inhibitors (CWBIO). 
Protein concentrations were determined with the BCA protein assay kit 
(CWBIO). Protein samples were separated by 10% or 12% sodium dodecyl 
sulfate polyacrylamide gel and transferred to nitrocellulose membranes 
(Pall, New York, NY, USA, Cat# 66485). The membranes were incubated at 
room temperature for 2 hours in 5% nonfat dry milk, and then incubated 
with primary antibodies overnight at 4°C. The reactions were followed by 
incubation with peroxidase-labeled secondary antibodies. Primary antibodies 
were: anti-BAX (1:1000, Proteintech, Rosemont, IL, USA, Cat# 50599-2-Ig, 
RRID: AB_2061561), anti-BCL-2 (1:2000, Proteintech, Cat# 26593-1-AP, RRID: 
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AB_2818996), anti-caspase 1 (1:500, Proteintech, Cat# 22915-1-AP, RRID: 
AB_2876874), anti-caspase 3 (1:500, Proteintech, Cat# 19677-1-AP, RRID: 
AB_10733244), anti-gasdermin-D (GSDMD; 1:1000, Proteintech, Cat# 20770-
1-AP, RRID: AB_10696319), anti-interleukin-1β (IL-1β; 1:1000, Bioss, Beijing, 
China, Cat# bs-0812R, RRID: AB_10855142), anti-IL-18 (1:1000, Proteintech, 
Cat# 10663-1-AP, RRID: AB_2123636), anti-mixed lineage kinase domain-like 
protein (MLKL; 1:1000, ABclonal, Cat# A13451, RRID: AB_2861686), anti-NOD-
like receptor protein 3 (NLRP3; 1:1000, Abcam, Cambridge, UK, Cat# 263899, 
RRID: AB_2889890), anti-RIPK3 (1:1000, Novus, Shanghai, China, Cat# NBP1-
77299, RRID: AB_11040928), and anti-β-Actin (1:4000, Affinity Biosciences, 
Changzhou, Guangdong Province, China, Cat# AF7018, RRID: AB_2839420). 
The secondary antibodies were peroxidase-conjugated affiniPure donkey 
anti-rabbit IgG (1:5000, Jackson Immuno Research, West Grove, PA, USA, 
Cat# 711-035-152, RRID: AB_10015282) and donkey anti-mouse IgG (H+L, 
1:5000, Jackson Immuno Research, Cat# 715-035-150, RRID: AB_2340770). 
The membranes were developed with electrochemiluminescent reagents 
and the band intensities were quantitated with Image J software. The level of 
expression was normalized to the level of β-actin. All cell experiments were 
performed at least three times independently.

Enzyme-linked immunosorbent assay
The expression levels of IL-1β and IL-18 in R28 cell culture supernatant were 
determined by enzyme-linked immunosorbent assay (ELISA) kits (rat IL-1β, 
F2923-A; rat IL-18, F3070-A; KX-Bio Co., Shanghai, China). Following OGD/R 
treatment, cell culture supernatants were collected and centrifuged at 3000 
r/min for 20 minutes. Then IL-1β and IL-18 concentrations were determined 
according to the manufacturer’s instructions.

Immunofluorescence staining
Frozen sections of rat retinal tissue were placed at room temperature for 30 
minutes, washed three times with PBS for 5 minutes each, sealed with 1 × 
PBS containing 5% bovine serum albumin and 0.3% Triton X-100 for 2 hours, 
and incubated with primary antibodies overnight at 4 °C. Primary antibodies 
were: anti-cleaved caspase 3 (1:50, Cell Signaling Technology, Oslo, Norway, 
Cat# 9664, RRID: AB_2070042), anti-GSDMD (1:50; Proteintech, Cat# 20770-
1-AP, RRID: AB_10696319), anti-MLKL (1:50; ABclonal, Cat# A13451, RRID: 
AB_2861686), and anti-NeuN (1:2000, Millipore, Darmstadt, Germany, Cat# 
MAB377, RRID: AB_2298772). After three PBS washes for 5 minutes each, 
the sections were incubated with fluorescently labeled secondary antibody 
at room temperature for 2 hours in the dark. After three PBS washes for 5 
minutes each, the sections were stained using Hoechst 33258 (Cat# 94403, 
MilliporeSigma) (see Section “Propidium iodide staining”). After three PBS 
washes for 5 minutes each, anti-fluorescence quenching agent was dropped 
on the sections, and the tissues were covered with glycerin and cover glass. 
Finally, images were captured using a fluorescence microscope and analyzed 
by ImageJ software. All animal experiments were performed at least five times 
independently.

Statistical analysis 
Data were summarized as the mean ± standard deviation of independent 
replicates. The significance of differences between two groups was 
determined by two-tailed Student’s t-test using GraphPad Prism 8 software 
(GraphPad Software Inc., San Diego, CA, USA, www.graphpad.com). P < 0.05 
was considered statistically significant.

Results
OGD/R induces morphological changes of PANoptosis-like cell death in R28 
cells
We first investigated whether OGD/R simultaneously induces the 
morphological changes of PANoptosis-like cell death in R28 cells (Figure 1). 
The OGD/R treatment and staining timeline were the same in each group. 
Cell staining results indicated that the OGD/R treatment significantly induced 
apoptosis (TUNEL staining; Figure 2A and D), pyroptosis (EthD-III staining; 
Figure 2B and D), and necroptosis (PI staining; Figure 2C and D). The RCD 
morphology of cells treated with OGD/R after pretreatment with inhibitors of 
apoptosis (Z-VAD; Figure 2A and D), pyroptosis (DSF; Figure 2B and D), and 
necroptosis (Nec-1; Figure 2C and D) was significantly reversed. These results 
indicated that PANoptosis-like cell death occurred in R28 cells following OGD/
R injury, which is similar to those observed in PANoptosis in other models 
(Kuriakose and Kanneganti, 2019; Malireddi et al., 2019; Karki et al., 2021).

OGD/R induces expression changes of key proteins in PANoptosis-like cell 
death in R28 cells
The above results indicated that PANoptosis-like cell death occurred at the 
morphological level, thus it was important to next determine the expression 
changes of hallmark proteins for apoptosis, pyroptosis, and necroptosis in 
R28 cells following OGD/R injury. As shown in Figure 3A, western blot assay 
showed that OGD/R treatment caused a significant increase of cleaved 
caspase-3 compared with the control and caspase inhibitor (Z-VAD) groups. 
The results also showed that compared with the control and Z-VAD groups, 
OGD/R treatment significantly increased the expression of pro-apoptotic 
protein BAX and decreased the expression of anti-apoptotic protein BCL-2. 

Western blot showed that OGD/R treatment increased expression of NLRP3 
and cleaved caspase-1 (CASP1 p20) (Figure 3B), key proteins in the pyroptosis 
pathway. Expression of cleaved GSDMD and GSDMD-N (p30), a driver 
of pyroptosis, were also upregulated by the OGD/R treatment. Elevated 
expression of proinflammatory cytokines IL-1β (p17) and IL-18 (p22) were 
also observed in the OGD/R group. These expression changes were reversed 

Figure 1 ｜ Schematic of the experimental timeline of OGD/R and aHIOP modeling.
In the OGD/R model (top panel), R28 cells were pretreated with inhibitors (or DMSO for 
control) for 1 hour before establishing the OGD model. Then, the initial culture medium 
was replaced with glucose-free medium. The cell culture containers were placed in the 
OGD treatment device, which maintained a hypoxic condition (O2 < 1%). OGD treatment 
lasted for 2 hours. After OGD treatment, the cells were returned to the initial culture 
condition for 2 hours. The normal control group was maintained in the normal culture 
condition for the same length of time. In the aHIOP model (bottom panel), inhibitors (or 
DMSO for control) were injected into the vitreous cavity 30 minutes before HIOP/sham 
surgery. To induce ocular hypertension, normal saline was injected into the anterior 
chamber to form artificial intraocular pressure (IOP). IOP was slowly increased to 110 
mmHg and maintained for 60 minutes, then gradually returned to normal level and 
maintained for 48 hours before retinal tissue collection. In the sham group, a sterilized 
needle was inserted into the anterior chamber without elevating the IOP at the same 
time point. aHIOP: Acute high intraocular pressure; DMSO: dimethyl sulphoxide; OGD/R: 
oxygen-glucose deprivation/recovery.
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Figure 2 ｜ OGD/R-induced R28 cells exhibit pyroptosis, apoptosis, and necroptosis.
(A) Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining 
for R28 cells. R28 cells were treated with OGD/R and Z-VAD. (B) Ethidium Homodimer III 
(EthD-III) staining for R28 cells. R28 cells were treated with OGD/R and DSF. (C) Propidium 
iodide (PI) staining for R28 cells. R28 cells were treated with OGD/R and Nec-1. Scale 
bars: 50 μm. (D) Percentage of TUNEL-, EthD-III-, PI-positive cells (mean ± SD, n = 3). **P 
< 0.01, ***P < 0.001, vs. Control; #P < 0.05, ##P < 0.01, vs. OGD/R (Student’s t-test). All 
cell experiments were performed at least three times independently. DSF: Disulfiram; 
Nec-1: necrostatin-1; OGD/R: oxygen-glucose deprivation/recovery; Z-VAD: Z-VAD-FMK.
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by the specific GSDMD inhibitor DSF. Moreover, the ELISA assay indicated that 
expressions of mature IL-1β and IL-18 were significantly increased in the R28 
cell culture supernatant after OGD/R treatment, and these increases were 
reversed by DSF inhibitor (Figure 3D). The above results indicated caspase-1/
NLRP3/GSDMD-mediated pyroptosis in R28 cells following OGD/R treatment. 

Increases in the protein levels of phosphorylated RIPK3 and phosphorylated 
MLKL are hallmarks of necroptosis (Vandenabeele et al., 2010; Pasparakis 
and Vandenabeele, 2015). As depicted in Figure 3C, the OGD/R treatment 
remarkably upregulated the expressions of phosphorylated RIPK3 and 
phosphorylated MLKL, and inhibitors of necroptosis prevented this increase. 
Taken together, these results indicated that OGD/R treatment induced 
pyroptosis, apoptosis and necroptosis in R28 cells at the protein level at the 
same time point, and further suggest the existence of PANoptosis-like cell 
death in R28 cells.
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Figure 3 ｜ Treatment with OGD/R upregulates key proteins of pyroptosis, apoptosis 
and necroptosis in R28 cells.
(A) Western blotting of caspase-3, BAX and Bcl-2 in R28 cells after treatment with OGD/
R and Z-VAD inhibitor. (B) Western blotting of caspase-1, NLRP3, GSDMD, IL-18, IL-
1β in R28 cells after treatment with OGD/R and DSF inhibitor. (C) Western blotting of 
phosphorylated RIPK3 and phosphorylated MLKL in R28 cells after treatment with OGD/
R and Nec-1 inhibitor. Quantifications of protein expression are shown to the right of 
each western blot image. (D) ELISA of the expressions of mature IL-1β and IL-18 in the 
R28 cell culture supernatant after treatment with OGD/R and DSF inhibitor. Data are 
expressed as the mean ± SD (n = 3). *P < 0.05, **P < 0.01 vs. Control; #P < 0.05, ##P < 
0.01, vs. OGD/R (Student’s t-test). All cell experiments were performed at least three 
times independently. BAX: Bcl-2-associated X protein; CASP: caspase; DSF: disulfiram; 
GSDMD: Gasdermin-D; IL: interleukin; MLKL: mixed lineage kinase domain-like; Nec-
1: necrostatin-1; NLRP3: NACHT, LRR, and PYD domains-containing protein 3; OGD/R: 
oxygen-glucose deprivation/recovery; RIPK: receptor-interacting protein kinase; Z-VAD: 
Z-VAD-FMK.

Combination of three RCD inhibitors significantly protects R28 cells 
following OGD/R
The results above indicated that OGD/R treatment induced PANoptosis-like 
cell death in R28 cells at the same time point. Next, we investigated whether 
the cell loss following OGD/R treatment is mainly dependent on this kind 
of combined cell death. Thus, pretreatment with different combinations of 
inhibitors for apoptosis, pyroptosis, and necroptosis was used to assess the 
protective effects on cell loss against OGD/R treatment. As shown in Figure 4A 
and B, Z-VAD combined with either DSF or Nec-1 had a better protective effect 
than that of Z-VAD alone, as measured by TUNEL-positive cell death, following 
OGD/R treatment. There was no significant difference between the triple 
combination and the double combinations, and the TUNEL-positive cell death 
was largely reversed by the combined pretreatments. The combination of 
DSF with Z-VAD, or with both Z-VAD and Nec-1, had a better protective effect 
on EthD-III-positive cell death than DSF alone (Figure 5A and B). The triple 
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Figure 4 ｜ Combination of RCD inhibitors decreases the OGD/R-induced TUNEL-
positive cells.
(A) TUNEL staining for R28 cells treated with combinations of RCD inhibitors following 
OGD/R treatment. Scale bars: 50 μm. Red: TUNEL-positive cells. (B) Percentage of TUNEL-
positive cells (mean ± SD, n = 3). *P < 0.05, vs. OGD/R + Z-VAD (Student’s t-test). DSF: 
Disulfiram; n.s.: not significant; Nec-1: necrostatin-1; OGD/R: oxygen-glucose deprivation/
recovery; RCD: regulated cell death; TUNEL: terminal-deoxynucleotidyl transferase 
mediated nick end labeling; Z-VAD: Z-VAD-FMK. 

combination of DSF, Z-VAD and Nec-1 had the largest protective effect on 
EthD-III-positive cell death compared with each of the double combinations. 
PI staining also indicated that the combination of Nec-1 with Z-VAD, or with 
both Z-VAD and DSF, had a larger protective effect than Nec-1 alone (Figure 
6A and B). Moreover, the triple combination of Nec-1, Z-VAD and DSF had a 
larger protective effect on PI-positive cell death than the double combination 
of Nec-1 and DSF. Taken together, these results suggested that OGD/R-induced 
R28 cell death is mainly driven by PANoptosis-like cell death.

An aHIOP model induces PANoptosis-like cell death in vivo
The above experiments indicated that OGD/R injury can induce PANoptosis-
like cell death in vitro. Next, we used a rat aHIOP model to investigate whether 
I/R injury can induce PANoptosis-like cell death in vivo (Figure 1). As shown in 
Figure 7A, aHIOP treatment induced apoptotic cell death of retinal neurons 
(indicated by TUNEL staining) in the ganglion cell layer (GCL), inner nuclear 
layer (INL), and outer nuclear layer (ONL). The increased TUNEL staining was 
significantly reduced by Z-VAD pretreatment. Increased caspase-3 expression 
was detected by immunofluorescence staining in retinal neurons, which 
further indicated the occurrence of apoptosis in retinal neurons following 
aHIOP treatment (Figure 8A). Furthermore, the co-immunofluorescence 
staining of caspase-3 and NeuN indicated that caspase-3 was activated in the 
retinal ganglion cells (RGCs) of aHIOP-treated retina. 

The existence of pyroptosis in retinal neurons was indicated by EthD-III-
positive staining in GCL and INL of aHIOP-treated retina (Figure 7B). EthD-
III-positive staining in the retina was significantly reduced by pretreatment 
of specific pyroptosis inhibitor DSF. Moreover, as shown in Figure 8B, 
aHIOP treatment significantly increased GSDMD expression (indicated by 
immunofluorescence staining) in the GCL and INL, which was consistent with 
the EthD-III staining. Also, the co-immunofluorescence staining of GSDMD 
and NeuN indicated the activation of GSDMD in RGCs. Thus, these results 
indicated that aHIOP treatment induced pyroptosis in retinal neurons in vivo. 

Similarly, aHIOP treatment increased PI staining, suggesting that aHIOP 
treatment induced necroptotic cell death, in the GCL, INL, and ONL of the 
retina, and Nec-1 pretreatment significantly reduced the PI-positive staining 
(Figure 7C). Furthermore, after aHIOP treatment, immunofluorescence 
staining showed increased expression of MLKL, a key protein of necroptosis 
execution, indicating that aHIOP treatment induced retinal cell necroptosis 
(Figure 8C). The co-immunofluorescence staining of MLKL and NeuN indicated 
the activation of MLKL in RGCs of aHIOP-treated retina. Taken together, the 
results demonstrated that PANoptosis-like cell death occurred in vivo in retinal 
neurons following aHIOP injury.
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Figure 8 ｜ aHIOP induces high expression of pyroptosis, apoptosis, and necroptosis-
related proteins in rat retina.
Immunofluorescence staining of CASP3 (A), GSDMD (B) and MLKL (C) of rat retinal tissue 
sections. NeuN staining was used to indicate ganglion cells in the retina. Scale bars: 50 
μm. Quantification of pyroptosis, apoptosis, and necroptosis-related protein expressions 
shown on the right of images (mean ± SD, n = 5 rats per group). Relative fold intensity of 
immunofluorescence staining was normalized relative to the intensity of the sham group. 
**P < 0.001, vs. Sham; #P < 0.05, ##P < 0.01, vs. OGD/R (Student’s t-test). aHIOP: Acute high 
intraocular pressure; CASP: caspase; Co-IF: co-immunofluorescence; DSF: disulfiram; GCL: 
ganglion cell layer; GSDMD: gasdermin-D; INL: inner nuclear layer; Nec-1: necrostatin-1; 
MLKL: mixed lineage kinase domain-like; ONL: outer nuclear layer; Z-VAD: Z-VAD-FMK.
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Discussion
Recent studies have indicated extensive crosstalk between RCD pathways, and 
PANoptosis is a newly defined phenomenon in which pyroptosis, apoptosis 
and necroptosis simultaneously occur in infectious disease, pathogen-induced 
immune response or inflammation (Malireddi et al., 2019). Furthermore, it 
has been shown that PANoptosis is regulated by the PANoptosome complex, 
which is composed of caspase-1, caspase-8, NLRP3, and other components 
(Christgen et al., 2020; Samir et al., 2020; Briard et al., 2021). Recent studies 
have indicated that the PANoptosome can be regulated by z-DNA binding 
protein 1 and TGF-β-activated kinase 1 to regulate the outcome of pyroptosis, 
apoptosis and necroptosis (Christgen et al., 2020; Samir et al., 2020). Findings 
from these studies suggested that identification and characterization of 
PANoptosis were vital to inform the development of targeted inhibitors for 
microbial infections and regulators of inflammatory cell death for therapeutic 
modulation of inflammation and the immune response. However, the 
existence of PANoptosis in noninfectious injuries and the nervous system 
remains unknown. Previous studies have established a process to investigate 
PANoptosis in disease or injury: the first level is to confirm the existence 
of PANoptosis-like cell death (simultaneous occurrence of pyroptosis, 
apoptosis and necroptosis). The second level is to study the existence of the 
PANoptosome that regulates the three RCDs simultaneously. And the third 
level is to find regulators of the PANoptosome. The main purpose of this study 
was to investigate whether PANoptosis-like cell death exists in nervous system 
I/R injury, and characterize the manifestation of PANoptosis-like cell death.

To investigate whether PANoptosis-like cell death plays a role in retinal I/R 
injury, R28 cells were selected for in vitro experimental study, and an OGD/
R model was used to simulate I/R injury in vitro. Additionally, we selected 
Sprague Dawley rats for in vivo experiments, and used an aHIOP model to 
simulate in vivo I/R injury of retinal neurons. R28 cells are immortal retinal 
progenitor cells that are widely used to study retinal diseases and injuries 
(Huang et al., 2021). It is a classic cell line that simulates retinal neurons 
(Mathew et al., 2019, 2021). OGD/R and aHIOP models simulate I/R injury 
of retinal neurons (Osborne et al., 1995; Rosenbaum et al., 1998, 2001; 
Dvoriantchikova et al., 2010, 2014). They are widely used and generally 
accepted models at present (Rosenbaum et al., 1998, 2001; Dvoriantchikova 
et al., 2010). 

Our experimental data showed that under the same model conditions and 
the same treatment time, pyroptosis, apoptosis and necroptosis occurred 
simultaneously after retinal I/R injury induced by OGD/R in R28 cells and 
aHIOP in rat retina. These data support the first level of the definition of 
PANoptosis, that is, PANoptosis-like cell death exists in retinal neuronal I/
R injury. Previous studies on PANoptosis suggest that immune response and 
inflammatory response are closely related to the occurrence of PANoptosis 
(Kuriakose and Kanneganti, 2019; Banoth et al., 2020; Malireddi et al., 2020; 
Place et al., 2021). Similarly, studies on RCD of retinal neurons and other 
neurons have reported that the occurrence of pyroptosis is closely related 
to inflammatory factors (Homme et al., 2018; Zheng et al., 2019; Chen et al., 
2020), and that key molecules of apoptosis can be regulated by inflammatory 
reactions (Toda and Nakanishi-Toda, 2007; Zheng et al., 2007; Cuenca et al., 
2014). Necroptosis can also be initiated by inflammatory factors (Duprez 
et al., 2011; Kaczmarek et al., 2013; Liu et al., 2019a; Lin et al., 2020). The 
present study also showed that the protective effects of a combination of two 
inhibitors were not always better than those of a single inhibitor, indicating a 
potential crosstalk between those RCDs. Moreover, our results showed that 
pretreatment with three RCD inhibitors not only inhibited the kinase activity 
of death-signaling proteins to reduce the cell loss caused by I/R injury, but also 
significantly decreased the expression of those proteins in R28 cell clusters 
and rat retinal tissues. Without any intervention, expression of these proteins 
would increase in a signaling cascade affected by the release of inflammatory 
factors from surrounding cell death. Taken together, these findings suggest 
that the phenotypes and pathological mechanisms of cell death in retinal I/R 
injury have morphological features and pathological mechanisms in common 
with PANoptosis in infectious diseases.

This study preliminarily indicated the existence of PANoptosis-like cell death 
in I/R injury of retinal neurons, as observed by morphological features, 
protein levels, and the induction of important members of the PANoptosome 
(caspase-1, NLRP3, and RIPK3) under experimental conditions. Our previous 
literature mining research suggested that PANoptosis is likely to exist in 
nervous system diseases or injuries other than infectious diseases (Yan et al., 
2022). The present study is only a beginning of PANoptosis-related research 
in retinal neurons, and does not address the wide range of the nervous 
system. Retinal precursor cells R28 do not fully represent brain tissue and 
the whole nervous system, although the retina is an important part of the 
central nervous system. Our results showed that the combination of all 
three inhibitors did not fully eliminate the cell loss induced by I/R injury, 
which suggests the existence of other signaling cascades or other types of 
RCD that could be involved in PANoptosis in this model. This study mainly 
focused on the first level study of PANoptosis to characterize the existence of 
PANoptosis-like cell death. In future experimental studies, it will be necessary 
to characterize the PANoptosome in I/R injury of retinal neurons, and to look 
for key molecules that regulate PANoptosis.
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