
Citation: Qiu, Z.; Zhao, Y.; Tao, T.;

Guo, W.; Liu, R.; Huang, J.; Xu, G.

Activation of PPARα Ameliorates

Cardiac Fibrosis in Dsg2-Deficient

Arrhythmogenic Cardiomyopathy.

Cells 2022, 11, 3184. https://doi.org/

10.3390/cells11203184

Academic Editors: Kay-Dietrich

Wagner and Nicole Wagner

Received: 16 August 2022

Accepted: 28 September 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Activation of PPARα Ameliorates Cardiac Fibrosis in
Dsg2-Deficient Arrhythmogenic Cardiomyopathy
Zirui Qiu 1,†, Yawen Zhao 1,†, Tian Tao 1, Wenying Guo 1, Ruonan Liu 1, Jingmin Huang 1 and Geyang Xu 1,2,*

1 Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District,
Guangzhou 510632, China

2 Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital,
Guangzhou 510317, China

* Correspondence: xugeyangliang@163.com; Tel.: +86-20-85-22-02-60; Fax: +86-20-85-22-13-43
† These authors contributed equally to this work.

Highlights:

• Cardiac-specific Dsg2 deletion induces excessive cardiac fibrosis in mice.
• Fenofibrate alleviates cardiac fibrosis in CS-Dsg2−/− mice.
• Cardiac-specific activation of PPARα ameliorates cardiac fibrosis in CS-Dsg2−/− mice.
• The inhibitory effect of PPARα on cardiac fibrosis is mediated by STAT3 and TGF-β /SMAD3

signaling.
• PPARα is a promising target for the intervention of ACM by ameliorating cardiac fibrosis.

Abstract: Background: Arrhythmogenic cardiomyopathy (ACM) is a genetic heart muscle disease
characterized by progressive fibro-fatty replacement of cardiac myocytes. Up to now, the existing
therapeutic modalities for ACM are mostly palliative. About 50% of ACM is caused by mutations in
genes encoding desmosomal proteins including Desmoglein-2 (Dsg2). In the current study, the cardiac
fibrosis of ACM and its underlying mechanism were investigated by using a cardiac-specific knockout
of Dsg2 mouse model. Methods: Cardiac-specific Dsg2 knockout (CS-Dsg2−/−) mice and wild-type
(WT) mice were respectively used as the animal model of ACM and controls. The myocardial collagen
volume fraction was determined by histological analysis. The expression levels of fibrotic markers
such as α-SMA and Collagen I as well as signal transducers such as STAT3, SMAD3, and PPARα were
measured by Western blot and quantitative real-time PCR. Results: Increased cardiac fibrosis was
observed in CS-Dsg2−/− mice according to Masson staining. PPARα deficiency and hyperactivation
of STAT3 and SMAD3 were observed in the myocardium of CS-Dsg2−/− mice. The biomarkers of
fibrosis such as α-SMA and Collagen I were upregulated after gene silencing of Dsg2 in HL-1 cells.
Furthermore, STAT3 gene silencing by Stat3 siRNA inhibited the expression of fibrotic markers. The
activation of PPARα by fenofibrate or AAV9-Pparα improved the cardiac fibrosis and decreased
the phosphorylation of STAT3, SMAD3, and AKT in CS-Dsg2−/− mice. Conclusions: Activation of
PPARα alleviates the cardiac fibrosis in ACM.

Keywords: arrhythmogenic cardiomyopathy; desmoglein-2; cardiac fibrosis; PPARα; fenofibrate; STAT3

1. Introduction

Arrhythmogenic cardiomyopathy (ACM) is a fatal heart disease characterized by
cardiac dysfunction, heart failure, and life-threatening ventricular arrhythmias [1,2]. The
population prevalence of ACM has been estimated between 1:1000 and 1:5000 [2]. Studies
have shown that ACM causes 10% to 15% of sudden cardiac death (SCD) cases, especially
among young people and athletes [2]. Pathological features of ACM include loss of my-
ocytes and progressive fibro-fatty replacement. These pathological features tend to occur in
the right ventricle (RV), with left ventricular (LV) or bilateral ventricular involvement [2,3].
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Previous studies found that one or more mutations in genes encoding desmosomal proteins
led to about 50% of ACM cases [4], including desmoglein2 (DSG2) [5], desmocollin2 [6],
plakoglobin [7], desmoplakin [8], and plakophilin-2 [9]. DSG2 is a major cadherin of the
cardiac desmosome; it was reported that mutations in the Dsg2 gene are associated with
severe lethal heart muscle diseases such as ACM [10]. Till now, the main purpose of existing
treatment for ACM is to prevent SCD [11].

Necrotic and apoptotic cardiomyocytes are replaced by fibrosis during the ACM
disease’s progress [12]. Although cardiac fibrosis plays a critical role in enhancing cardiac
structural stability, it results in cardiac structural remodeling and impaired cardiac function,
finally increasing the risk of potentially lethal cardiac arrhythmias [13]. Thus, improvement
of cardiac fibrosis might be beneficial to avoid further deterioration of the ACM. The signal
transducer and activator of transcription 3 (STAT3) is hyperactivated in fibrotic diseases
and STAT3 inhibitors are currently used in the treatments of fibrotic diseases, especially
in cardiac fibrosis [14]. Transforming growth factor-β (TGF-β) is a central mediator in
hypertrophic and fibrotic of the heart. Canonical and non-canonical pathways for TGF-β-
induced fibrosis in the heart are known [15]. Furthermore, interaction of Stat3 and TGF-
β/Smad3 signaling is regarded as playing a critical role in cardiac fibrotic processes [16].
Recent studies illustrated the antagonistic effects and bidirectional regulation between
STATs and peroxisome proliferator-activated receptors (PPARs) and suggested a potential
cross-talk between STAT and PPAR pathways [17–19]. PPARs are the nuclear receptor
superfamily of ligand-activated transcription factors. As the predominant PPAR isoform
in the heart, peroxisome proliferator-activated receptor α (PPARα) modulates cardiac
metabolism substrate conversion in cardiac hypertrophy, cardiac hypoxia, and diabetic
heart [20]. PPARα gene deletion contributes to cardiac hypertrophy and deterioration
of cardiac function [21]. Previous studies illustrated that PPARα activation alleviated
cardiac fibrosis and reversed cardiac dysfunction [22] and PPARα could inhibit the TGF-β-
induced profibrotic pathway in cardiac fibrosis [23,24]. Fenofibrate alleviated myocardial
inflammation and collagen deposition in Ang II-infused rats [25]. Recently, we reported that
activation of PPARα reduced the cardiac lipid accumulation and restored cardiac function
in ACM mice [26]. Although PPARα plays a critical role in lipid accumulation in ACM,
the effects of PPARα on cardiac fibrosis in ACM is still unclear. We hypothesized that the
PPARα-STAT3/SMAD pathway is critical to cardiac fibrosis in ACM mice. In our current
study, we found that PPARα was downregulated in the hearts of cardiac-specific Dsg2
knockout mice; restoring the activity of PPARα by using fenofibrate (a PPARα agonist) or
AAV9-Pparα improved cardiac fibrosis via the PPARα-STAT3/SMAD pathway in cardiac-
specific Dsg2 deletion mice. Our findings suggest that PPARα is a potential therapeutic
target of cardiac fibrosis in ACM.

2. Materials and Methods
2.1. Materials

Fenofibrate was purchased from Sigma-Aldrich (St. Louis, MO, USA). Rabbit anti-
Phospho-stat3 (Tyr705), rabbit anti-Phospho-SMAD3 (Ser423/425), rabbit anti-SMAD,
rabbit anti-Phospho-AKT (Ser473), rabbit anti-AKT, rabbit anti-α-SMA, rabbit anti-Collagen
I antibodies, mouse anti-stat3, and mouse monoclonal anti-β-actin were purchased from
Cell Signaling Technology (Beverly, MA, USA). Rabbit anti-DSG2, rabbit anti-PPARα, rabbit
anti-GAPDH antibodies were from Abcam Inc. (Cambridge, MA, USA).

2.2. Animals and Treatments

Cardiac-specific dsg2 gene knockout (CS-Dsg2−/−) on C57-based genetic backgrounds
were successfully constructed by mating DSG2 flox with CKMM cre [26]. Mice were housed
in standard plastic rodent cages and maintained in a regulated environment (24 ◦C, 12 h
light and 12 h dark cycles with lights on at 7:00 a.m.). All mice used in this study were
8–12 weeks old.
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In order to activate PPARα in vivo, PPARα agonist fenofibrate (150 mg/kg body
weight) was administrated by daily oral gavage for 28 days. To overexpress PPARα in the
heart, male CS-Dsg2−/− mice were tail-vein infused with adeno-associated virus carrying
PPARα (AAV9-cTnT-Pparα, 5 × 1011 vg per mouse). Adeno-associated virus carrying GFP
(AAV9-cTnT-GFP, 5 × 1011 vg per mouse) was used as control. The mice were sacrificed
28 days after AAV injections [26].

2.3. Histological Analysis

Hearts were harvested from mice, fixed overnight in 4% paraformaldehyde, embedded
in paraffin, and then, sectioned serially. Masson’s trichrome staining was performed to
evaluate collagen deposition using a kit following manufacturer’s instructions (G1006-20
ML, Servicebio, Wuhan, China). The collagen volume fraction (CVF) was determined by
Image J software as an index of cardiac fibrosis. The ratio of myocardial collagen area to
the total myocardial area was used to calculate the collagen volume fraction.

2.4. Cell Culture and Treatment

The murine atrial cardiac myocyte cell line HL-1 was maintained in 10% fetal bovine
serum (FBS) in Dulbecco’s modified Eagle’s medium at 37 ◦C in an atmosphere of 5% CO2.
For transient transfection, cells were plated at optimal densities and grown for 24 h. Cells
were then transfected with Dsg2 siRNA (MBS828119, MyBioSource, San Diego, CA, USA)
or Stat3 siRNA (6354, Cell Signaling Technology) using lipofectamine reagent according to
the manufacturer’s instructions.

2.5. Western Blot Analysis

The tissues and cells were homogenized in the lysis buffer. After protein quantifi-
cation, 40 µg of protein was loaded onto SDS-PAGE gels. Then, protein extracts were
electrophoresed, blotted, and then, incubated with primary antibodies. The antibodies
were detected using 1:10,000 horseradish peroxidase-conjugated donkey anti-rabbit IgG
and donkey anti-mouse IgG (Jackson ImmunoResearch, West Grove, PA, USA). Western
blotting luminol reagent was used to visualize bands. The band intensities were quantitated
by Image J software.

2.6. RNA Extraction, Quantitative Real-Time PCR

For gene expression analysis, RNA was isolated from mouse tissues and cells by using
Trizol (Takara, Kusatsu, Shiga) and reverse-transcribed into cDNAs using the first-strand
synthesis system for RT-PCR kit (Takara). SYBR green-based real-time PCR was performed
using the Bio-Rad IQ5 PCR system (Bio-Rad, Foster City, CA, USA). Sequences for the
primer pairs used in this study are shown in Table 1.

Table 1. List and sequences of primers used in RT-PCR experiments.

Upstream Primer (5′-3′) Downstream Primer (5′-3′) Accession Number(s)

α-SMA CCCTGAAGAGCATCCGACAC TGCTGTTATAGGTGGTTTCGTG NM_007392.3
Collagen I TGTTCAGCTTTGTGGACCTC GGACCCTTAGGCCATTGTGT NM_007742.4

Dsg2 CGCACCAGGAAAGTACCAG CCACAGTGGCATATCAACAGC NM_007883.3
PPARα AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCAAA XM_006520624.3

TGF-β AGCCCTGGATACCAAC-
TATTGCTTCAGCTCCACAG AGGGGCGGGGCGGGGCGGGGCTTCAGCTGC NM_011577.2

β-actin CCACAGCTGAGAGGGAAATC AAGGAAGGCTGGAAAAGAGC NM_007393.5

2.7. Statistical Analysis

Data are expressed as mean ± SEM. Statistical significance was analyzed with a
student’s t-test. Differences were considered statistically significant with p values < 0.05.



Cells 2022, 11, 3184 4 of 12

3. Results
3.1. Cardiac-Specific Dsg2 Gene Deletion Provokes Cardiac Fibrosis

The ACM mouse model was generated by crossing Dsg2fl-neo/+ mice with Ckmm-Cre
mice which resulted in cardiac-specific Dsg2 deletion (CS-Dsg2−/−). Increased cardiac
fibrosis was observed in CS-Dsg2−/− mice according to Masson staining (Figure 1A). Sev-
eral studies indicated that the activation of STAT3 contributes to cardiac fibrosis [27–29].
In our study, increased phosphorylation levels of STAT3 at Tyr705, SMAD3 at Ser423/425,
and AKT at Ser473, and decreased expression levels of PPARα were observed in the LV, in-
terventricular septum (IVS), and RV of CS-Dsg2−/− mice (Figure 1B). We next investigated
the expression of TGF-β, α-smooth muscle actin (α-SMA), and collagen type I (Collagen I)
in CS-Dsg2−/− mice. Expression levels of TGF-β, α-SMA, and Collagen I in LV, IVS, and
RV of CS-Dsg2−/− mice were higher than that of littermate controls (Figure 1B,C).
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Figure 1. Cardiac-specific Dsg2 knockout induced cardiac fibrosis. (A) Masson staining of heart 
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pSTAT3, pSMAD3, pAKT, α-SMA, and Collagen I were detected using specific antibodies. STAT3, 
SMAD3, AKT, and GAPDH were used as loading controls. (C) Results of quantitative PCR anal-
ysis of PPARα, TGF-β, α-SMA, and Collagen I mRNA levels in mouse LV and RV are expressed 
as fold change of control using β-actin as loading control. Results are expressed as mean values ± 
SEM. n = 6. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. WT. 

The effects of Dsg2 on STAT3 activity and fibrosis were assessed in the cardiac myo-
cyte cell line HL-1. To silence the expression of Dsg2 and Stat3, HL-1 cells were transfected 
with Dsg2 siRNA and Stat3 siRNA. The knockdown efficiency of Dsg2 siRNA was 66% 
and 51% for Stat3 siRNA. Consistent to the in vivo study, knockdown of Dsg2 in the HL-
1 cells led to an increase in the phosphorylation of STAT3 (Tyr705) and the expression 

Figure 1. Cardiac-specific Dsg2 knockout induced cardiac fibrosis. (A) Masson staining of heart
sections in WT and CS-Dsg2−/− (−/−) mice. Arrow shows cardiac fibrosis. Collagen volume fraction
in the hearts of WT and CS-Dsg2−/− mice was assessed. (B) Representative Western blots from
mouse left ventricular (LV), interventricular septum (IVS), and right ventricle (RV). DSG2, PPARα,
pSTAT3, pSMAD3, pAKT, α-SMA, and Collagen I were detected using specific antibodies. STAT3,
SMAD3, AKT, and GAPDH were used as loading controls. (C) Results of quantitative PCR analysis
of PPARα, TGF-β, α-SMA, and Collagen I mRNA levels in mouse LV and RV are expressed as fold
change of control using β-actin as loading control. Results are expressed as mean values ± SEM.
n = 6. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. WT.
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The effects of Dsg2 on STAT3 activity and fibrosis were assessed in the cardiac myocyte
cell line HL-1. To silence the expression of Dsg2 and Stat3, HL-1 cells were transfected with
Dsg2 siRNA and Stat3 siRNA. The knockdown efficiency of Dsg2 siRNA was 66% and
51% for Stat3 siRNA. Consistent to the in vivo study, knockdown of Dsg2 in the HL-1 cells
led to an increase in the phosphorylation of STAT3 (Tyr705) and the expression levels of
α-SMA and Collagen I (Figure 2A,B). Furthermore, knockdown of Stat3 in the HL-1 cells
decreased the expression levels of α-SMA and Collagen I (Figure 2C,D).
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Fenofibrate, a PPARα agonist, affords myocardial protection apart from its lipid low-

ering effects [30]. We next assessed the effect of fenofibrate on cardiac fibrosis in CS-
Dsg2−/− mice. Interestingly, a significant improvement in cardiac fibrosis was observed in 
CS-Dsg2−/− mice after being treated with fenofibrate (150 mg/kg/day, for 4 weeks) (Figure 
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3B,C). 

Figure 2. Effects of Dsg2 siRNA and Stat3 siRNA on the expression levels of fibrotic markers in
HL-1 cells. (A,B) HL-1 cells were transfected with control siRNA or Dsg2 siRNA. (A) Representative
Western blots for DSG2, pSTAT3, α-SMA, and Collagen I were detected using specific antibodies.
STAT3 and β-actin were used as loading controls. (B) Results of quantitative PCR analysis of Dsg2, α-
SMA, and Collagen I mRNA levels in HL-1 cells treated with control or Dsg2 siRNA are expressed as
fold change of control using β-actin as loading control. Results are expressed as mean values ± SEM.
n = 3. * p < 0.05, ** p < 0.01 vs. control. (C,D) HL-1 cells were transfected with control siRNA or
Stat3 siRNA. (C) Representative Western blots for STAT3 and α-SMA were detected using specific
antibodies. β-actin were used as loading controls. (D) Results of quantitative PCR analysis of α-SMA
and Collagen I mRNA levels in HL-1 cells treated with control or Stat3 siRNA are expressed as fold
change of control using β-actin as loading control. Results are expressed as mean values ± SEM.
n = 3. * p < 0.05, ** p < 0.01, vs. control.
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3.2. Fenofibrate Alleviated Cardiac Fibrosis in CS-Dsg2−/− Mice

Fenofibrate, a PPARα agonist, affords myocardial protection apart from its lipid
lowering effects [30]. We next assessed the effect of fenofibrate on cardiac fibrosis in CS-
Dsg2−/− mice. Interestingly, a significant improvement in cardiac fibrosis was observed
in CS-Dsg2−/− mice after being treated with fenofibrate (150 mg/kg/day, for 4 weeks)
(Figure 3A). Fenofibrate decreased the phosphorylation levels of STAT3, SMAD3, and AKT
as well as the expression levels of TGF-β, α-SMA, and Collagen I in CS-Dsg2−/− mice
(Figure 3B,C).
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of AAV9. AAV9-cTnT promoter-Pparα significantly reduced cardiac fibrosis in CS-Dsg2−/− 
mice (Figure 4A). Simultaneously, the levels of phosphorylated STAT3, phosphorylated 
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I were decreased after cardiac-specific activation of PPARα (Figure 4B,C). 

Figure 3. Fenofibrate alleviated cardiac fibrosis in CS-Dsg2−/− mice. (A) Masson staining of heart
sections in WT, CS-Dsg2−/− mice, and CS-Dsg2−/− mice treated with fenofibrate (Dsg2−/−F).
Collagen volume fraction in the hearts of WT, CS-Dsg2−/−, and Dsg2−/−F mice were assessed.
(B) Representative Western blots from ventricles of WT, CS-Dsg2−/−, and Dsg2−/−F mice. DSG2,
PPARα, pSTAT3, pSMAD3, pAKT, α-SMA, and Collagen I were detected using specific antibodies.
STAT3, SMAD3, AKT, and GAPDH were used as loading controls. (C) Results of quantitative PCR
analysis of PPARα, TGF-β, α-SMA, and Collagen I mRNA levels in mouse ventricles are expressed as
fold change of control using β-actin as loading control. Results are expressed as mean values ± SEM.
n = 6. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control.
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3.3. Cardiac-Specific Activation of PPARα Alleviated Cardiac Fibrosis in CS-Dsg2−/− Mice

To further confirm that PPARα activation in the heart could improve cardiac fibrosis in
Dsg2−/− mice, cardiac-specific activation of PPARα was performed by tail-vein infusion of
AAV9. AAV9-cTnT promoter-Pparα significantly reduced cardiac fibrosis in CS-Dsg2−/−

mice (Figure 4A). Simultaneously, the levels of phosphorylated STAT3, phosphorylated
SMAD3, phosphorylated AKT, and the expression levels of TGF-β, α-SMA, and Collagen I
were decreased after cardiac-specific activation of PPARα (Figure 4B,C).
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Figure 4. AAV9-Pparα alleviated cardiac fibrosis in CS-Dsg2−/− mice. (A) Masson staining of heart
sections in CS-Dsg2−/− mice and CS-Dsg2−/− mice received AAV9-Pparα (Dsg2−/−P). Collagen
volume fraction in the hearts of CS-Dsg2−/− and Dsg2−/−P mice were assessed. (B) Representative
Western blots from ventricles of CS-Dsg2−/− and Dsg2−/−P mice. PPARα, pSTAT3, pSMAD3, pAKT,
α-SMA, and Collagen I were detected using specific antibodies. STAT3, SMAD3, AKT, and GAPDH
were used as loading controls. (C) Results of quantitative PCR analysis of PPARα, TGF-β, α-SMA,
and Collagen I mRNA levels in mouse ventricles are expressed as fold change of control using
β-actin as loading control. Results are expressed as mean values ± SEM. n = 6. * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. CS-Dsg2−/−.
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4. Discussion

ACM is characterized by progressive replacement of cardiomyocytes by fibro-fatty tis-
sue, cardiac dysfunction, ventricular arrhythmias, and heart failure. Mutation of desmoglein-
2 (Dsg2) is one of the major causes of ACM and has been shown to lead to a loss of adhesive
function [31]. Dsg2 mutation carriers display more severe heart muscle disease, which
is associated with biventricular involvement and rapid evolution to end-stage heart fail-
ure [32]. In our previous study, we generated an ACM mouse model by cardiac-specific
knockout of the DSG2 gene and discovered that downregulation of PPARα contributed
to the impairment of fatty acid oxidation and, thus, to lipid accumulation in the DSG2
deletion-induced ACM [26]. However, whether downregulation of PPARα also contributes
to the fibrosis in ACM was unsolved. In the present study, we uncovered a previously un-
recognized role of PPARα in cardiac fibrosis in Dsg2-deficient ACM mice. Cardiac-specific
Dsg2 knockout contributed to a severe cardiac fibrosis. Decreased expression of PPARα
and the increased phosphorylation of STAT3 and SMAD3 were observed in this model.
Moreover, activation of PPARα, either by fenofibrate or AAV9-Pparα, decreased the activity
of STAT3 and SMAD3 and improved cardiac fibrosis in Dsg2 deletion-induced ACM.

Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) pro-
teins by cardiac fibroblasts (CFs). CFs are transformed into myofibroblasts when they
respond to stress and pathological stimuli [33]. Myocardial fibrosis reduces tissue com-
pliance and accelerates the progression to heart failure [34]. In our study, histological
analysis showed excessive deposition of collagen in the hearts of CS-Dsg2−/− mice when
compared to WT mice. Furthermore, fibrotic markers such as TGF-β, α-SMA, and Collagen
I were activated after cardiac-specific Dsg2 deletion. Cardiac fibrosis has been implicated
in the progression of ACM. Increased cardiac fibrosis has been associated with altered
cardiac conduction, resulting in conduction slowing, blockage, and re-entry [35]. Recent
evidence indicates that the fibrosis state preceded the development of cardiac dysfunction
in cardiomyopathies [36]. Thus, identification of druggable targets that can alleviate cardiac
fibrosis might be beneficial to the treatment of ACM.

As a ligand-activated transcription factor which is highly expressed in cardiomyocytes,
the role of PPARα in the heart is complex and vital. PPARα involvement in the regulation
of inflammation [37], hypertrophy [38], energy metabolism [39], ischemia/reperfusion
injury [40], and cardiac fibrosis [25] in hearts has been established in recent studies. Fenofi-
brate is a member of the fibrate family of PPARα receptor agonists and has regulating
efficacy of inflammation and extracellular matrix remodeling of the heart [25,41]. As a
PPARα agonist, fenofibrate has been widely used for hyperlipidemia in clinics and can
also promote fatty acid oxidation in the mitochondria and improve myocardial energy
metabolism [42]. Fenofibrate alleviated myocardial inflammation and fibrosis in diabetic
mice via PPARα receptor [43]. Our previous study showed that PPARα was downregulated
in the heart of the Dsg2 deletion ACM model and reactivation of PPARα significantly
alleviated the lipid accumulation and improved cardiac function in CS-Dsg2−/− mice [26].
In the current study, we demonstrated that downregulation of PPARα also contributed
to the cardiac fibrosis in the Dsg2 deletion-induced ACM model. Moreover, reactivation
of PPARα either by tail-vein injection of AAV9-Pparα or oral treatment of fenofibrate
improved the cardiac fibrosis in CS-Dsg2−/− mice. Our results suggested that PPARα
is a promising therapeutic target for ACM intervention which not only alleviates lipid
accumulation but also improves cardiac fibrosis.

Although cardiac fibrosis is one of the pathological characteristics of ACM, the mecha-
nism of how mutations of desmosomal proteins lead to fibrosis is elusive. TGF-β is a core
mediator in cardiac fibrosis. Canonical (SMAD-dependent) and non-canonical (SMAD-
independent) pathways for TGF-β-induced fibrosis in the heart are documented [44]. In the
canonical pathway, TGF-β activates SMAD2/3 signaling, which in turn regulates the ex-
pressions of collagen and α-SMA in myofibroblasts [45]. Non-canonical pathways involve
STAT, MAPK, and PI3K pathways [46–48]. Our study showed that cardiac-specific Dsg2
deletion led to enhanced phosphorylation of SMAD3, STAT3, and AKT, suggesting that
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both canonical and non-canonical TGF-β pathways are activated in Dsg2 deletion-induced
ACM. Among these pathways, STAT3 is reported to be critical to cardiac fibrosis and
hypertrophy and activated in the hearts of mouse models of cardiac hypertrophy and heart
failure [49]. Several studies have demonstrated that STAT3 maintains ECM homeostasis
by regulating collagen synthesis and secretion in CFs [50]. Continuous STAT3 activation
(tyrosine 705 residue phosphorylation) was regarded as a poor indicator in cardiac hyper-
trophy and heart failure [51]. Our study showed that knockdown of Dsg2 by Dsg2 siRNA
induced the activation of fibrotic markers and STAT3 in HL-1 cells, while Stat3 siRNA
did the reverse. These results suggested that activation of STAT3 contributes to cardiac
fibrosis in cardiac-specific Dsg2 deletion mice. Furthermore, reactivation of PPARα either
by AAV9-PPARα or fenofibrate decreased the phosphorylation of SMAD3, STAT3, and
AKT in the Dsg2 deletion-induced ACM model, implying that PPARα modulated these
pathways and deficiency in PPARα contributed to the activation of them and, thus, to
cardiac fibrosis. Although the mechanistic link between PPARα and the STAT3 and TGF-β
/SMAD3 pathways remains unclear, potential cross-talk between PPARα and STAT3 and
TGF-β /SMAD3 pathways were reported in recent studies [17]. Chang H et al. reported
that activation of PPARα ameliorates autoimmune myocarditis by suppressing Th17 cell
differentiation through reducing phosphorylated STAT3 [52]. Gervois et al. demonstrated
that fenofibrate treatment decreased the phosphorylation of STAT3 in livers [53]. Bansal
T et al. reported that activation of PPARα improves cardiac fibrosis by inhibiting non-
canonical TGF-β signaling [24]. Sekiguchi K et al. demonstrated that TGF-β signaling
pathways directly inhibit PPARα activity in cardiac myocytes [54]. These studies suggest a
role of PPARα in modulating STAT3 and TGF-β /SMAD3 pathways.

Current treatments for ACM lack effective treatment to improve or reverse cardiac
fibrosis. In the present study, we established that activation of PPARα by fenofibrate
or AAV9-Pparα improved the cardiac fibrosis in Dsg2 deletion-induced ACM. At the
same time, activation of PPARα provided a cardioprotective effect through reducing the
phosphorylation of STAT3 and SMAD3. These results indicated that the inhibitory effect of
PPARα on cardiac fibrosis is mediated by a downregulation of STAT3 and TGF-β /SMAD3,
and PPARα may be a significant target of ACM treatment. PPARα agonist fenofibrate may
be a potential drug against cardiac fibrosis in ACM. In conclusion, our study generated an
ACM model by cardiac-specific Dsg2 knockout and suggested that activation of PPARα
ameliorates the excessive cardiac fibrosis in ACM.
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