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Abstract: Chickpea has been classified as a nutraceutical food due to its phytochemical compounds,
showing antioxidant, anti-inflammatory, and anticancer activity. To investigate this, we evaluated
the effect of cooking on the nutritional and non-nutritional composition and the in vitro and in vivo
antioxidant activity of chickpea seed. The latter was determined by the variation in the concentration
of nitric oxide (NO), oxidized carbonyl groups (CO), malondialdehyde (MDA), and the expression of
4-hydroxy-2-nonenal (4-HNE) in the colon of male BALB/c mice fed with a standard diet with 10 and
20% cooked chickpea (CC). We induced colon cancer in mice by administering azoxymethane/dextran
sulfate sodium (AOM/DSS); for the evaluation, these were sacrificed 1, 7, and 14 weeks after the
induction. Results show that cooking does not significantly modify (p < 0.05) nutritional compounds;
however, it decreases the concentration of non-nutritional ones and, consequently, in vitro antioxidant
activity. The in vivo evaluation showed that animals administered with AOM/DSS presented higher
concentrations of NO, CO, MDA, and 4-HNE than those in animals without AOM/DSS administration.
However, in the three evaluated times, these markers were significantly reduced (p < 0.05) with CC
consumption. The best effect on the oxidation markers was with the 20% CC diet, demonstrating the
antioxidant potential of CC.

Keywords: legumes; cooked chickpea; antioxidant activity; oxidation markers; colon cancer

1. Introduction

Chickpea seed (Cicer arietinum L.) is a legume rich in complex carbohydrates and quality proteins;
therefore, it is a good alternative to consuming animal protein [1]. Since ancient times, man has
processed legumes for consumption intending to generate tasty and nutritious products. Among these
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processes, germination, fermentation, and cooking—either by direct heat or with pressure—stand
out. As a result of these processes, sensory and nutritional characteristics are improved [2] since they
increase the digestibility and bioavailability of macronutrients [3]. Regarding the cooking process,
the method used significantly influences the composition of the macronutrients, micronutrients,
and bioactive compounds, depending on their solubility and thermolability [4]. For example, this
process inactivates or decreases thermolabile non-nutritive compounds such as protease inhibitors,
lectins, and phytic acid [5]. It can also decrease the concentration of vitamins and minerals present in
food. In the case of chickpea seed, cooking modifies the composition and quality of its proteins, fats,
fibers, minerals, B vitamins (B5, B6, and B9), and vitamin E. This process also reduces the concentration
of its phytochemical compounds [4,6–8]. Phytochemicals are non-nutritional bioactive compounds
found in fruits, vegetables, grains, and legumes. They are considered bioactive compounds since they
can reduce the risk of chronic diseases [9] and non-nutritional because they decrease the bioavailability
of nutrients [6]. The phytochemical compounds found in chickpea seeds are saponins, phytic acid,
lectins, protease inhibitors, amylase inhibitors, bioactive peptides, sterols, dietary fiber, resistant starch,
oligosaccharides, unsaturated fatty acids, carotenoids, and isoflavones [10,11].

Due to the phytochemical compounds found in chickpea seeds, these have been used in studies
focused on the prevention and control of different chronic non-transmissible diseases such as obesity,
cardiovascular diseases, diabetes, inflammation, and cancer [11–16]. These diseases are directly related
to oxidative stress (OS) [11,14,17–19]. OS occurs when the body’s antioxidant systems are insufficient to
counteract the activity and quantity of reactive oxygen (ROS) or nitrogen (RNS) species, thus generating
functional alterations in various biomolecules [20]. Both ROS and RNS in high concentrations can
cause cell damage or death by oxidation of proteins, lipids, and nucleic acids [21]. Consequently,
they produce mutations at the DNA level and contribute significantly to the formation and progression
of cancer [22].

Carcinogenesis is a multi-stage process. It consists of DNA modification or the formation of a
mutated cell, followed by uncontrolled selective growth [23]. The ROS and RNS generated during
carcinogenesis modify gene expression, regulate signal transduction pathways, and modulate protein
function. Likewise, they promote the activation of enzymes such as inducible nitric oxide synthase
(iNOS) [14], cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2), as well as the nuclear factor
kappa B (NF-kB). All these compounds are related to the promotion of tumor angiogenesis, an essential
step in the progression and spread of solid tumors [24,25]. Under OS conditions, an unspecific
inflammatory response is generated that promotes the suppression of the immune system, favoring
tumor growth. This is due to the combined action of hormones, cytokines, and low-molecular weight
second messengers that induce the activation of mast cells and leukocytes. The latter massively release
ROS and RNS, including O2•, OH•, H2O2, •NO, and HClO at levels above the toxic threshold [26].

One of the most widely used therapies in carcinogenesis is the treatment with antineoplastic drugs
such as alkylating agents (cyclophosphamide), antibiotics (bleomycin), antimetabolites (5-fluorouracil),
platinum derivatives (cisplatin), and camptothecin derivatives [27]. Additionally, there are plant-based
therapies with purified or synthesized antioxidant compounds such as quercetin, resveratrol,
and vitamin E [28]. These antioxidants are found in some foods of plant origin like fruits, vegetables,
cereals, and legumes [29,30].

In the case of legumes, Murillo et al. [17] reported that the consumption of chickpea flour decreased
by 64% preneoplastic lesions induced with azoxymethane (AOM) in CF-1 mice. They related this
result to the activity of Bowman–Birk inhibitors, saponins, and phytosterols found in chickpea seeds.
Sánchez-Chino et al. [13] studied the effect of the consumption of cooked chickpea added in 2 and 10%
to the diet of ICR mice, in which colon cancer was generated with AOM + dextran sulfate sodium
(DSS). They reported that the consumption of cooked chickpea reduced preneoplastic and neoplastic
lesions, as well as cell proliferation markers (cell proliferation nuclear antigen (PCNA) and Ki-67).
Faris et al. [31] reported that lentil consumption significantly increased glutathione S-transferase
activity and inhibited cytochrome P450 activity. The latter is responsible for the metabolism of AOM,
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which promotes colon carcinogenesis through base alkylation and is highly oxidizing. Zhang et al. [32]
evaluated the effect of a diet that included 20% beans in a model of DSS-induced colitis. This diet showed
an anti-inflammatory effect correlated with the bean’s fermentable compounds, such as resistant starch,
oligosaccharides, non-starch polysaccharides, and phenolic compounds. These authors also reported a
reduction in the expression of messenger ribonucleic acid (mRNA) and pro-inflammatory cytokines
interleukin 6 (IL-6) and interferon gamma (IFN-γ). Likewise, they reported the overexpression of the
anti-inflammatory cytokine interleukin 10 (IL-10) and apoptosis-mediating genes. They also observed
an increase in the number of cells in the studied colon tissue and a higher content of short-chain
fatty acids, such as butyrate. Moreover, they reported improved integrity of the intestinal barrier,
which exerts direct effects on the colon epithelium by modulating signaling pathways related to
inflammation and inhibition of histone deacetylase activity. Additionally, some reports have indicated
that the consumption of legumes in humans reduces plasma concentrations of inflammatory markers
(which generate an oxidizing environment) in overweight, diabetic patients [33,34]. Therefore, this
work aimed to evaluate the effect of cooking on the nutritional and non-nutritional composition and
the in vitro antioxidant activity of chickpea seed and to evaluate the in vivo antioxidant activity that
the consumption of CC exerts in colon carcinogenesis in experimental animals.

2. Materials and Methods

2.1. Chickpea (Cicer arietinum L.) Seed

Raw chickpea (RC) seeds were purchased from the Central de Abastos of Mexico City. The RC
seeds were manually conditioned; for this, foreign matter and seeds in poor condition were separated
and eliminated [35]. Subsequently, the selected RC seeds were ground and sieved to obtain a fine
flour (50 mesh, 0.297 mm opening). CC was obtained according to the methodology described by
Margier et al. [4] and Sánchez-Chino et al. [13] with modifications. First, the RC seeds were soaked in
water in a 1:4 ratio (seeds/water) for 12 h. Then, the soaking water was removed, and the RC seeds
were placed in a pressure cooker, adding water in a 1:5 ratio. The RC seeds were cooked at 120 ◦C
for 25 min; later, they were allowed to cool, and the cooking water was removed. The seeds were
lyophilized (Labconco, Kansas City, MO, USA) with three cycles of 12/12 h, 0.280 mBar, and −33 ◦C.
Finally, the CC seeds were ground and sieved to obtain a fine flour (Mesh 50, 0.297 mm opening).

2.2. Characterization of Nutritional and Non-Nutritional Compounds of Chickpea Seed

2.2.1. Nutritional Composition

The proximate chemical composition of the RC and CC flour was determined with the following
AOAC methods [36]: moisture (Method 925.10), ash content (Method 923.03), lipids (Method 920.39),
protein (Method 920.87), and total dietary fiber (Methods 985.29, 993.21). Total carbohydrates were
estimated by difference to 100% of the total compounds [36].

2.2.2. Non-Nutritional Composition

The determination of the main non-nutritional compounds of the RC and CC flours was performed
with the following assays: saponins (Luo et al. [37]), phytic acid (Corzo et al. [38]), and trypsin inhibitors
(TI) (Sánchez-Chino et al. [13]).

2.2.3. In Vitro Antioxidant Properties

The in vitro antioxidant properties of the RC and CC flours were evaluated with the determination
of total phenolic compounds (Zhang et al. [39]) and antioxidant activity. Antioxidant activity was
evaluated with the oxygen radical absorbance capacity (ORAC), hydroxyl radical scavenging activity,
and superoxide radical scavenging activity. All the assays were adapted for use in a microplate.



Nutrients 2020, 12, 2572 4 of 22

ORAC was determined according to Ou et al. [40], with some modifications. The ORAC assay
relies on free radical damage caused to a fluorescent probe (fluorescein) by an oxidizing reagent.
The result is a loss of fluorescent intensity over time [41]. The area under the fluorescence decay curve
(AUC) (Equation (1)) of the sample and the blank (PBS pH 7.4) was calculated.

AUC = 1 +
∑
i=80

(
fi
f0

)
(1)

where f0 and fi are the fluorescence readings at time 0 and time i.
The antioxidant effect was determined by calculating the net area under the curve (Net AUC)

(Equation (2)).
Net AUC = AUCsample − AUCblank (2)

This value was interpolated in a Trolox calibration curve and the result was expressed as mg
Trolox eq./g dry base.

Hydroxyl radical (OH−) scavenging activity was estimated according to Avellar et al. [42],
by generating hydroxyl radicals formed from an oxidation reaction with dimethyl sulphoxide
(DMSO) [43]. Results were expressed as percentage of inhibition, which was determined by comparing
the sample with a standard (gallic acid).

Superoxide radical scavenging activity (O2) was determined as the percentage of inhibition of
pyrogallol autoxidation. This was calculated through optical density in the presence or absence of
pyrogallol and the sample [44].

2.3. In Vivo Antioxidant Activity

2.3.1. Ethical Approval

The ethics committee of Escuela Nacional de Ciencias Biológicas/Instituto Politécnico Nacional
(ENCB/IPN) approved the experimental protocol carried out in this research (Approval No.
CEI-ENCB-011-2017) on 14 June 2017.

2.3.2. Animals

The animals used for the experimental protocol were BALB/c male mice (Mus musculus) (Bioterio of
the Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico) with the following characteristics:
6–8 weeks of age and weight in the range of 20–25 g. The conditioning period for all mice was seven
days with 12 h light/darkness cycles at 23 ◦C, free of pathogens. During this period, they were supplied
with standard laboratory animal feed (Rodent Laboratory Chow 5001, LabDiet, St. Louis, MO, USA)
and purified water, both ad libitum.

2.3.3. Cooked Chickpea Diets

CC was used for the in vivo evaluation of antioxidant activity since it is the common form
of consumption. CC flour was added to the standard feed for laboratory animals with 10%
(Murillo et al. [17]; Sánchez-Chino et al. [13]) and 20% substitution (Monk et al. [45]).

2.3.4. Colon Cancer Induction

Colon cancer induction was performed according to the model proposed by Tanaka [46] with
modifications on carcinogenic doses, using AOM (A5486, Sigma-Aldrich, St. Louis, MO, USA) and DSS
(36,000–50,000 M.W., MP Grade, CAS 9011-18-1, MP Biomedicals, Montreal, QC, Canada). The process
started by applying two intraperitoneal injections of AOM at a concentration of 10 mg/kg body weight,
in injectable saline solution, one every five days. The induction continued by administering two cycles
of 1.5% w/v DSS to the mice in the drinking water. Each cycle lasted five days, with three days of rest
between each cycle.
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2.3.5. Experimental Protocol

Figure 1 shows the experimental design [46] for the evaluation of the protective effect of CC on
the oxidation generated in colon cancer. The design consisted of 6 groups of 21 mice each, randomly
selected. Groups 1, 2, and 3 were submitted to the colon cancer induction process previously described.
Group 1 maintained a standard food diet until sacrifice, so it served as a positive control (PC) to
observe the development of cancer and the oxidation generated. After the conditioning week, Group 1
began the induction of colon cancer. After the conditioning week, Groups 2 and 3 began a CC diet,
which they maintained until their sacrifice. Group 2 had a diet with 10% CC in their food [13,17],
while Group 3 had 20% in their food [45]. The induction of colon cancer in these groups began two
weeks after the CC feeding started. Colon cancer was not induced in Groups 4, 5, and 6. Group 4
had a diet with 10% CC in their food, while Group 5 had 20%. Therefore, these groups were used to
determine the possible changes caused by the consumption of CC in the tested doses. Two weeks after
CC feeding started, Groups 4 and 5 received two intraperitoneal injections of saline solution, one every
five days. Group 6, called negative control (NC), had an exclusive standard food diet; therefore, in this
group the basal levels of the markers used for the evaluation of in vivo antioxidant activity are found.
After the conditioning period, Group 6 received two intraperitoneal injections of saline solution, one
every five days. All groups were euthanized by cervical dislocation. The euthanasia of Groups 1, 2,
and 3 began on Weeks 1, 7, and 14 after the completion of DSS administration. The sacrifice of Groups
4, 5, and 6 started on Weeks 1, 7, and 14 after the completion of the saline solution injections application.
Subsequently, the colon was removed from each mouse and washed with phosphate-buffered saline
(PBS) (pH 7.4) at 4 ◦C. From each group, the colon of four animals was used for the determination
of protein, lipid, and nitric oxide oxidation in homogenized tissue and three animals for the analysis
of 4-hydroxy-2-nonenal (4-HNE) by immunohistochemistry. These parameters were used for the
evaluation of the protective effect of CC on the oxidation generated in colon cancer.
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Nutrients 2020, 12, 2572 6 of 22

2.3.6. Determination of Nitric Oxide

Griess reagent was prepared by mixing two solutions, A and B, in a 1:1 ratio. Solution A was
obtained by mixing 0.132 g of sulfanilamide with 6 mL of glacial acetic acid in 10 mL of water. For
Solution B, 0.01 g of N-(1-Naphthyl)ethylenediamine was dissolved in 10 mL of distilled water. Then,
the sample was prepared by weighing 0.2 g of the colon and homogenizing in a 1:4 ratio with PBS
(pH 7.4) at 4 ◦C in an Ultra-Turrax homogenizer (Daigger, T-25, Hamilton, NJ, USA) for 30 s at 5000 rpm.
For the determination of nitric oxide (NO), 100 µL of the homogenized colon was mixed with 300 µL
of the Griess reagent and 600 µL of distilled water. This mixture was homogenized for 30 s in a vortex,
and the absorbance was measured at 540 nm in a spectrophotometer (Thermo Spectronic, 20 Genesys,
Rochester, NY, USA). NO concentration was expressed as µmoles of NO/g of tissue [47].

2.3.7. Determination of Oxidized Proteins

For sample preparation, 0.35–0.4 g of the colon was weighed and homogenized in a 1:10 ratio
with PBS (pH 7.4) at 4 ◦C in an Ultra-Turrax homogenizer for 30 s at 5000 rpm. For the determination,
200 µL of the homogenized colon was mixed with 500 µL of DNFH (0.1 g 2,4-Dinitrophenylhydrazine
in 2 M HCl to a final volume of 100 mL). The mixture was incubated for 1 h at room temperature in the
dark. Subsequently, 500 µL of 20% v/v trichloroacetic acid (TCA, T6399, Sigma Aldrich, St. Louis, MO,
USA) was added and homogenized for 10 s in a vortex. To precipitate the hydrazones generated by
the proteins, the mixture was centrifuged at 12,700× g for 10 min. The precipitate was washed three
times with 1 mL of ethyl acetate-ethanol (1:1). The obtained pellet was re-suspended with 1 mL of 6 M
guanidine hydrochloride (G4505, Sigma Aldrich, St. Louis, MO, USA), in phosphate buffer pH 2.3.
Then, it was incubated at 37 ◦C for 15 min and centrifuged at 12,700× g for 10 min. The absorbance of
the supernatant was measured at 361 nm in a spectrophotometer. The concentration of the oxidized
carbonyl groups (CO) was calculated with a molar extinction coefficient of 21,000 M−1 cm−1 and was
expressed as ng/µg of protein of oxidized carbonyls [13].

2.3.8. Determination of Lipid Peroxidation

For sample preparation, 0.35–0.4 g of the colon was weighed and homogenized in a 1:10 ratio
with PBS (pH 7.4) at 4 ◦C in an Ultra-Turrax homogenizer for 30 s at 5000 rpm. For the determination,
500 µL of the homogenized colon was mixed with 2 mL of TCA-TBA-HCl (15 g TCA + 0.3725 g
TBA + 2.73 mL HCl in a final volume of 100 mL with distilled water). The mixture was boiled for
15 min, then chilled in an ice bath for 10 min and centrifuged at 2509× g for 10 min. The absorbance
of the obtained supernatant was measured in a spectrophotometer at 532 nm. Lipid peroxidation
was calculated with a molar extinction coefficient of 156,000 M−1 cm−1 and was expressed as ng of
malondialdehyde (MDA) per µg of protein [13].

2.3.9. Immunohistochemistry of 4-HNE

Immunohistochemical analysis of 4-HNE was performed in the medial and distal portions of
the colon. These were fixed with 4% formaldehyde for 24 h at 4 ◦C. Subsequently, the samples
were dehydrated in ethanol solutions in increasing concentrations (70, 80, and 92% [13]). Then they
were placed in a chloroform/xylol mixture (1:1) for 24 h for embedding in low-melting point paraffin
(Paraplast, Leica, Buffalo Grove, IL, USA) at 55 ◦C [13]. Next, 3 µm cuts were made using a microtome
(Leica RM2125 RTS, US). Samples were placed on a slide with 4% 3-aminopropyl-trimethoxysilane in
acetone for analysis. The slides were placed in a Coplin with citrate buffer (pH 6), and the antigen
retrieval was performed with citrate buffer at 120 ◦C for 20 min in a pressure cooker. Subsequently,
endogenous peroxidase was blocked with H2O2 in 6% methanol for 30 min and the nonspecific sites
with 5% bovine serum albumin (BSA) in PBS (pH 7.4) for 60 min at room temperature. The 4-HNE
rabbit polyclonal antibody (ab46545, ABCAM, Cambridge, MA, USA) (diluted 1:50 in PBS [pH 7.4])
was used for immunostaining; then, the samples were incubated overnight at 4 ◦C. These were washed
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with PBS (pH 7.4), and then goat anti-rabbit IgG antibody [HRP] (656120, Thermo Fisher, Waltham,
MA, USA) diluted (1:200) in 1% BSA in PBS was added. The addition of the chromogen substrate was
carried out with 3,3′-Diaminobenzidine (DAB-PLUS substrate kit 00-2020, Life Technologies, Waltham,
MA, USA) and counterstaining with Harris’s hematoxylin solution (Cat 738, HYCEL, MX). The tissues
were dehydrated at a temperature of approximately 40 ◦C in a Coplin for 3 min and mounted with
resin (Cat 7989, HYCEL, MX,). For analysis, the samples were viewed under a 40X optical microscope.
Finally, for all the studied groups, 10 random fields were quantified in the images obtained with the
Image J 1.52p software from National Institute of Health, USA.

2.4. Statistical Analyses

All results were processed using descriptive statistics like measures of central tendency (mean) ±
standard error. With the Minitab 17.0 statistical software, one-way analysis of variance (ANOVA) and
Tukey’s comparison test were performed to identify significant differences (p ≤ 0.05) between groups.

3. Results

3.1. Nutritional and Non-Nutritional Composition of RC and CC

Table 1 shows the nutritional and non-nutritional analysis of RC and CC seeds. Carbohydrates and
proteins comprise the majority of the components in both cases. After cooking, there was no significant
change in these components. However, in ash content and lipids, there were significant changes
(p < 0.05). Ash content decreased 57%; this effect could be related to the solubility of non-nutritional
compounds [3]. By contrast, lipids increased 36% after cooking. This increase may be due to a decrease
in the fraction of soluble compounds in the CC, which are transferred to the soaking and cooking
water [48]. Corzo et al. [38] reported an increase in lipids in cooked beans, which they attributed to a
lipolysis phenomenon that is occasionally catalyzed by processing some foods in the presence of water
and high temperature.

Table 1. Nutritional and non-nutritional chemical analysis of raw (RC) and cooked chickpea flours (CC).

RC CC

Moisture * 7.8 ± 0.30 a 2.9 ± 0.09 b

Ash * 2.83 ± 0.06 a 1.22 ± 0.28 b

Lipid * 7.11 ± 0.28 b 9.76 ± 0.10 a

Protein (NX5.8) * 25.17 ± 1.65 a 27.32 ± 1.78 a

Fiber * 1.71 ± 0.4 a 1.41 ± 0.5 a

Carbohydrates * 63.07 ± 1.65 a 60.28 ± 1.7 a

Saponins 1 1.78 ± 0.00 a 1.25 ± 0.01 b

Phytates 2 249.33 ± 10.1 a 202.33 ± 6.5 b

Trypsin Inhibitors 3 12.11 ± 0.02 a 1.88 ± 0.03 b

* g/100 g of seed on a dry basis, 1 mg diosgenin eq./g, 2 mg Phytic ac eq./100 g, 3 UIT/mg. Different letters per line
indicate significant difference (p < 0.05) between the compounds by Tukey’s test. Values are presented as the mean
± S.D. from three experimental replicas.

Regarding the effect of cooking on the non-nutritional compounds of chickpea, it was observed
that this process significantly reduces (p < 0.05) its concentration: saponins by 30%, phytates by 19%,
and trypsin inhibitors by 85%, due to its chemical properties.

3.2. In Vitro Antioxidant Properties of RC and CC

Table 2 shows the in vitro antioxidant properties of RC and CC. The cooking process significantly
decreased (p < 0.05) the antioxidant activity of chickpea. Evaluated with ORAC, it decreased 48%,
with the hydroxyl radical 32%, and with the superoxide radical 39%. Total phenolic compounds were
reduced by 25%. This is due to their thermolability, water solubility, and hydrolyzability [49].
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Table 2. Antioxidant properties of raw (RC) and cooked (CC) chickpea.

TPC 1 Antioxidant Activity

ORAC 2 OH− Radical 3 Superoxide Radical 4

RC 60.09 ± 4.17 a 52.73 ± 0.96 a 56.36 ± 1.54 a 57.05 ± 1.92 a

CC 45.44 ± 2.32 b 27.32 ± 1.22 b 38.42 ± 2.01 b 35.03 ± 1.76 b

1 mg gallic acid eq./100 g, 2 mg Trolox eq./g dry base, 3 % OH-scavenging activity, 4 % O2-anion-scavenging activity.
Different letters per column indicate significant difference (p < 0.05) between the compounds by Tukey’s test. Values
are presented as the mean ± S.D. from five experimental replicas.

3.3. In Vivo Antioxidant Activity of CC

3.3.1. Nitric Oxide (NO) Concentration in Colon Homogenates

NO is related to inflammation in the tissues, which leads to carcinogenic processes; therefore,
the evaluation of NO in the colon was carried out by indirect measurement. Figure 2 shows the NO
concentration as a measure of NO in the colon of the analyzed mice. The positive control (PC) had
higher concentrations of NO than the negative control (NC) due to the administration of AOM/DSS in
the first one.
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Figure 2. Nitric oxide (NO) content as an indirect measure in colon by effect of oxidation caused by
AOM/DSS in BALB/c mice in three periods. Lowercase letters correspond to Week 1, uppercase letters
correspond to Week 7, and raw letters correspond to Week 14. * means significant difference from
the PC in the same evaluation week and N significant difference with respect to the NC in the same
evaluation week. One-factor ANOVA (p ≤ 0.05), Dunnett’s test. Different letters indicate significant
difference (p < 0.05) in the same evaluation week by Tukey’s test. Values are presented as the mean ±
S.D. from four experimental replicas.

NO concentrations in the PC were 80, 118, and 75% higher in Weeks 1, 7, and 14 compared to the
NC. On the other hand, NO concentrations in the AOM/DSS + 10% CC group were 24, 25, and 31%
lower on Weeks 1, 7, and 14 compared to the PC. NO concentrations in the AOM/DSS + 20% CC
group were 28, 25, and 34% lower on Weeks 1, 7, and 14 compared to the PC. Finally, the groups not
treated with carcinogens, which maintained supplemented diets with 10 and 20% CC, showed similar
concentrations to the basal ones, NC, at each studied time.
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3.3.2. Quantification Oxidized Carbonyl Groups (CO) from Proteins in Colon Homogenates

Figure 3 shows the concentration of CO in the colon of the analyzed mice. This parameter is
an indicator of protein oxidation. CO concentrations in the PC were 80, 105, and 86% higher on
Weeks 1, 7, and 14 compared to the NC. On the other hand, there was no significant difference in
CO concentrations between the AOM/DSS + 10% CC group and the PC on Week 1 of the evaluation.
In contrast, in the same evaluation period, CO concentration in the AOM/DSS + 20% CC group was
lower by 14% compared to the PC. However, CO concentrations in the AOM/DSS + 10% CC group
were lower by 21 and 30% on Weeks 7 and 14 compared to the PC. Similarly, CO concentrations in the
AOM/DSS + 20% CC group were lower by 30 and 28% on Weeks 7 and 14 compared to the PC. Finally,
CO concentrations in the groups not treated with carcinogens and who maintained supplemented
diets with 10 and 20% CC showed concentrations similar to the NC in each analyzed time.
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3.3.3. Concentration of MDA from Oxidized Lipids in Colon Homogenates

MDA is a product of lipid oxidation, capable of inactivating many cellular proteins by forming
cross-links. Figure 4 shows MDA concentrations in the colon of the analyzed mice. In Week 1, the MDA
concentration in the PC was seven times higher than in the NC. The concentration of MDA in the PC
increased 7 and 12% on Weeks 7 and 14 with respect to the level found on Week 1. On the other hand,
on Week 1, compared to the PC, the MDA concentration decreased in the AOM/DSS + 10% CC group
by 38% and in the AOM/DSS + 20% CC group by 53%. Then, during Week 7, a beneficial effect on
the animals of those groups was observed, since they presented 26% (AOM/DSS + 10% CC) and 45%
(AOM/DSS + 20% CC) less MDA concentration. By Week 14, a reduction in MDA was proved in the
AOM/DSS + 10% CC group, since it presented 42% less than the PC, while in the case of the AOM/DSS
+ 20% CC group, there was a 48% reduction compared to the PC. Finally, the MDA concentrations in
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the groups not treated with carcinogens and who maintained supplemented diets with 10 and 20% CC
did not show a significant difference (p < 0.05) with respect to the NC at each analyzed time.
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3.3.4. Expression of 4-HNE on Colon

4-HNE is a compound produced by the peroxidation of lipids within cells and is considered
a second messenger of OS [35]. For the evaluation of 4-HNE expression (Figures 5B and 6B),
an immunohistochemical assay was performed in the middle and distal portions of the colon since
reports [50–52] indicated that this is where the highest number of tumors occurs. To assess the effect
of adding CC on the mice’s diet, we analyzed the percentage of expression of the marker (% 4-HNE
expression) on Weeks 1, 7, and 14. Results of the % 4-HNE expression (Figures 5A and 6A) indicated
it was mainly found towards the lumen of the intestine and in the layer known as muscularis. The
% 4-HNE expression in the three groups treated with carcinogens, compared to the NC, was 4, 9,
and 8 times higher in the distal part and 2, 6, and 4 times higher in the middle part of the colon, on
Weeks 1, 7, and 14, respectively. Additionally, in the distal portion of the colon, this marker was higher
during Weeks 7 and 14 of the test. On the other hand, compared to the PC, the % 4-HNE expression in
the middle and distal part of the colon significantly decreased during the three evaluated times in the
AOM/DSS + 10% CC and AOM/DSS + 20% CC groups. Regarding the expression of 4-HNE in the
groups not treated with carcinogens and who maintained diets added with 10 and 20% of CC, these
showed concentrations similar to the NC in each analyzed time. Therefore, we proposed that diets
with 20% CC inhibit the expression of oxidation markers, which could indicate that the compounds
present in the CC exert a chemopreventive action.
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Figure 5. (A) Percentage of 4-hydroxy-2-nonenal (4-HNE) expression in the middle portion of the
colon of BALB/c mice administered with AOM/DSS in three periods. (B) Representative images of
the histology of the colonic mucosa by immunohistochemistry in the middle portion on Weeks 1, 7,
and 14. Magnification 10×. Lowercase letters correspond to Week 1, uppercase letters correspond
to Week 7, and raw letters correspond to Week 14. * means significant difference from the PC in the
same evaluation week and N significant difference with respect to the NC in the same evaluation week.
One-factor ANOVA (p < 0.05), Dunnett’s test. Different letters indicate significant difference (p < 0.05)
in the same evaluation week by Tukey’s test. Values are presented as the means ± S.D. from three
experimental replicas.



Nutrients 2020, 12, 2572 12 of 22Nutrients 2020, 12, x FOR PEER REVIEW 12 of 23 

 

 

Figure 6. (A) Percentage of 4-hydroxy-2-nonenal (4-HNE) expression in the distal portion of the colon 
of BALB/c mice administered with AOM/DSS in three periods. (B) Representative images of the 
histology of the colonic mucosa by immunohistochemistry in the distal portion on Weeks 1, 7, and 14. 
Magnification 10x. Lowercase letters correspond to Week 1, uppercase letters correspond to Week 7, 
and raw letters correspond to Week 14. * means significant difference from the PC in the same 
evaluation week and ▲ significant difference with respect to the NC in the same evaluation week. 
One-factor ANOVA (p < 0.05), Dunnett’s test. Different letters indicate significant difference (p < 0.05) 
in the same evaluation week by Tukey’s test. Values are presented as the means ± S.D. from three 
experimental replicas. 

4. Discussion 

There were no significant changes in the major components of the CC with respect to the RC. In 
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the cooking process, depends on the type of legume. For example, it has been reported that in some 

Figure 6. (A) Percentage of 4-hydroxy-2-nonenal (4-HNE) expression in the distal portion of the
colon of BALB/c mice administered with AOM/DSS in three periods. (B) Representative images of
the histology of the colonic mucosa by immunohistochemistry in the distal portion on Weeks 1, 7,
and 14. Magnification 10×. Lowercase letters correspond to Week 1, uppercase letters correspond
to Week 7, and raw letters correspond to Week 14. * means significant difference from the PC in the
same evaluation week and N significant difference with respect to the NC in the same evaluation week.
One-factor ANOVA (p < 0.05), Dunnett’s test. Different letters indicate significant difference (p < 0.05)
in the same evaluation week by Tukey’s test. Values are presented as the means ± S.D. from three
experimental replicas.

4. Discussion

There were no significant changes in the major components of the CC with respect to the RC.
In the case of proteins, the increase was similar to the results of Avola et al. [3], who reported a 6%
increase attributed to a loss of soluble solids during cooking, which caused an increase in the protein
concentration [38]. However, it has been observed that the behavior in the protein concentration,
after the cooking process, depends on the type of legume. For example, it has been reported that
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in some varieties of Phaseolus vulgaris, the protein concentration decreased, while in Lens culinaris,
it significantly increased [53]. Another report indicated that in these macro compounds, the main
changes were not in the concentrations but in the digestibility and bioavailability of nutrients [54]. Villa
et al. [55] reported that after heat treatments, allergenicity is decreased, and proteins were denatured,
leaving the peptide bonds and the digestive enzyme recognition sites more exposed, making it easier
to break the bonds. Additionally, there was also a certain degree of hydrolysis favored by heat, which
could increase the antioxidant activity of proteins due to the increased exposure of R groups and
the release of peptides with antioxidant activity [55,56]. A similar effect was seen in carbohydrates;
Chinedum et al. [57] reported that in cooked beans, there was no significant loss in quantity, although
the most soluble ones such as α-galactosides decreased. Additionally, these authors evidenced a
decrease in the glycemic index, as a consequence of chemical modifications in the molecules due to
the effect of heat. The authors also proposed that cooking the seeds softened the cell wall and other
components of the cells, such as vacuoles and apoplast, releasing reserve compounds and causing
them to interact; therefore, food was nutritionally and functionally enriched. For example, starches
were more digestible after cooking [57]. Other reports [58–60] indicated that the bioavailability of
folate in peas and beans increased after certain processes, including cooking and boiling. Folate is
involved in tissue growth and cellular processes and its consumption improves the digestibility and
absorption of iron.

As to non-nutritional compounds, it is necessary to reduce their concentration since they reduce
the digestibility of food and give it an astringent flavor. While cooking for 25 min in a pressure
cooker, a significant decrease in these compounds was observed due to their thermolability or
solubility in water. It has been reported that phenolic compounds decreased up to 50% due to the
effect of cooking, as a consequence of the high temperature and the destruction of the structural
integrity of the plant tissue, in addition to the fact that the glycosylated molecules (for example, rutin,
3-glycosylated delphinidin, and quercetin) are hydrolyzed, favoring the generation of simple phenolic
compounds [8,61]. A reduction of 14–17% in the concentration of saponins in chickpea seeds has also
been reported after a soaking and cooking process. This value is lower than the one shown here and
may be related to its amphiphilic nature, variety, growing conditions, and seed age [62,63]. In the case
of phytates, their loss has been attributed to the formation of insoluble complexes by phytates and
calcium or magnesium during thermic treatments [64]. Further, chemical hydrolysis of phytic acid to
its less phosphorylated forms was observed in processes at 121 ◦C, suggesting instability of phytic acid
at high temperatures [65].

Although it is necessary to decrease non-nutritional compounds’ concentrations, it is desirable to
keep part of them, since their presence in lower concentrations in legumes confers their pharmacological
capacity and reduces their toxicity. Among other relevant biological aspects, non-nutritional compounds
possess antioxidant activity mainly due to phenolic compounds (condensed tannins, flavonoids,
and anthocyanins) [35], saponins [49,66], phytates [67], protease inhibitors [68], peptides [69], as well
as the non-digestible fraction, consisting mainly of carbohydrates [35].

The in vitro evaluation of antioxidant activity showed a significant decrease in each of the tested
assays, which can be correlated with the partial loss of phenolic compounds (Table 1). However, CC still
maintained between 62 and 68% antioxidant activity with respect to the raw seed (RC). Polyphenols
have been reported to have the ability to trap free radicals and chelate metals [70], which is why their
consumption is beneficial in chronic non-transmissible diseases, most of which are closely related to
OS [71,72].

The antioxidant activity of chickpea has been correlated with its proteins, especially with some
His-rich peptides encrypted within them [73]. These peptides have shown the ability to chelate
metals (Cu2+ and Fe2+) and inhibit the oxidation of β-carotene in the presence of copper. Other
peptides with molecular weights between 200 and 3000 Da, rich in Arg, Phe, Lys, Leu, Ala, and Asp,
are capable of inhibiting the hydroxyl (OH−), superoxide (O2), and 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radicals, as well as preventing the oxidation of linoleic acid [44]. Additionally, chickpea
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protein hydrolysates have been reported to increase antioxidant enzyme activity (catalase, glutathione
reductase, and glutathione peroxidase) in CaCo-2 and HT-29 cell lines [74]. Other studies have reported
that saponins and phenolic compounds (shikimic and chlorogenic acids, rutin, daidzein, genistein,
and biochanin A) from chickpea have shown antioxidant activity [75,76].

Mecha et al. [77] and Ombra et al. [78] reported that after a soaking and cooking treatment of
different varieties of common beans, there was a reduction of up to 50% in phenolic compounds.
However, they still had ORAC, attributed to the fact that after cooking, there was a higher proportion
of flavanols and flavonoids in the seed, due to the softening caused by hydration.

Ombra et al. [78] reported that despite a loss of total polyphenols, there still was antioxidant activity
after cooking since the quality/quantity ratio of phenolic compounds increased. Xu and Chang [79]
reported that after cooking the chickpea seed, the antioxidant activity (measured by ORAC and DPPH)
decreased. The authors attributed the decrease to the solubility and thermosensitivity of some phenolic
compounds. They also related the drop in this activity to the increase in cooking time. However,
despite the decrease, the cooked seed still presented antioxidant activity. The authors mentioned that
the remaining antioxidant activity might be linked to the formation of aglycones, which are the product
of the degradation of flavonoid glycosides. This behavior was attributed to chemical rearrangements
caused by the release of hydrogen atoms that can be used to stabilize oxidation–reduction reactions.
The reactions involve oxygen atoms or electron transfer mechanisms from the remaining phenolic
compounds. This phenomenon has also been reported in faba beans, whose mechanism is the
elimination of free radicals and polymerization of tannins and proanthocyanidins [80,81].

Phytic acid, like phenolic compounds, has also been reported to have antioxidant activity. It has
been demonstrated to have a chelating effect on pro-oxidant minerals, such as iron, and anticarcinogenic
potential [82]. Kapral et al. [83] reported that phytic acid could regulate proliferation and apoptosis
markers in colon cancer cells by suppressing the expression and activity of key components such
as AKT/mTOR (serine/threonine-protein kinase and mammalian target of rapamycin), AKT1 kinase,
and p70S6K1 (ribosomal protein S6 kinase β-1). Other authors have attributed the antioxidant
activity to the presence of peptides rich in hydrophobic amino acids and acidic and basic amino acid
residues of legumin, a protein found in high concentration in chickpea. These peptides appear when
gastrointestinal enzymes release them [84].

Antioxidant activity has been associated to anticancer therapies because OS is closely linked to the
development of cancer. OS can activate a variety of transcription factors involved in the development
of malignant tumors. In fact, the onset and progression of cancer have been linked to OS by increasing
DNA mutations or damage, genome instability, and cell proliferation [85]. Furthermore, the tumor
microenvironment is also highly oxidizing; therefore, antioxidants are important in anticarcinogenic
therapies [86]. OS increases the production of prostaglandin and interrupts glutathione peroxidase
production, a key enzyme in the endogenous antioxidant system [87]. Therefore, the consumption of
antioxidant foods such as chickpea is important.

For the in vivo antioxidant activity evaluation of CC, a colon cancer model with AOM/DSS that
causes oxidative damage to DNA was used. The evaluation was divided into three periods (1, 7, and
14 weeks after induction) to observe the action of CC during the development of carcinogenesis. AOM
was used as a cancer initiator since it induces O6-methylguanine adducts into DNA during replication,
leading to G→A transitions [88]. The AOM applied together with an agent that produces inflammation
in the colon (DSS) favored the development of neoplastic lesions due to the damage caused in the
colon’s epithelial barrier; besides, an overexpression of oxidative biomarkers has been observed in the
PC of AOM/DSS for 8–12 weeks [89–91]. The results showed that the AOM/DSS group had a higher
concentration of products derived from protein oxidation (CO) and nitrites that indicated oxidative
damage, which peaked on Week 7. By Week 14, these compounds showed decreased production.

Regarding the AOM/DSS + 10% CC and AOM/DSS + 20% CC groups, NO, MDA, and CO
concentrations showed a significant decrease. The NO concentration in the colon of the AOM/DSS +

10% CC and AOM/DSS + 20% CC groups was significantly lower compared to the PC. NO is a molecule
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commonly produced in the body for the regulation of various biological processes. Therefore, excessive
production generates a relaxation of the arteries and a decrease in blood pressure; this is usually
critical in ill people. Furthermore, this excessive production will have a direct action on proteins or
DNA with other radicals, which will generate oxidative chain processes that can be minimized with
antioxidant systems [92]. In the colon, motility regulation depends on NO-mediated enteric inhibitory
neurotransmission, purine neurotransmitters, and neuropeptides [93]. NO is produced in dependent
and independent ways. In the dependent form, three isoenzymes are present, the endothelial
NO synthase [eNOS], neural NOS [nNOS], and iNOS. The latter is related to pro-inflammatory
cytokines such as tumor necrosis factor α [TNF α], interleukin 1 (IL-1), and interferon γ (IFN-γ), so its
overexpression must be regulated [94]. Increased NO synthesis by iNOS is a process that occurs during
intestinal inflammation [95], which occurred in the experimental animals due to the presence of DSS.

Milán-Noris et al. [96] studied the anti-inflammatory effect of CC protein concentrates and
methanolic (phenolic) extracts by accumulating nitrite as an indicator of NO synthesis in the macrophage
cell line RAW264.7 by the Griess reaction. They found that CC methanolic extracts had greater
anti-inflammatory activity than protein concentrates, inhibiting more effectively NO production.
Additionally, Masroor et al. [97] analyzed the anti-inflammatory effect of methanolic extracts of
Cicer arietinum L. in doses of 200 and 400 mg/kg in rats, concluding that the extracts had significant
anti-inflammatory potential. Therefore, the effect shown in the present work may be due to a synergistic
effect between the compounds present in the CC. On the other hand, in the groups that only received
an added diet with 10 and 20% CC, there was no significant difference (p < 0.05) in NO concentrations
compared to that of the negative control. This demonstrated that CC did not cause overexpression of
NO, showing any diarrhea or constipation in the mice.

The consumption of various plant foods is unlikely to result in the production of antioxidant
compounds in toxic amounts to the body. It has been proposed that the high antioxidant and anticancer
activity of phytochemicals is due to the different types and concentrations in which they are found in
plant foods. As a result, synergistic or additive effects are generated in their bioactivity [98]. However,
combining two or more phytochemicals does not always improve the desired effect since antagonistic
effects can be generated. By combining two or more phytochemicals, an effect is obtained that can
be equal (additive effect), greater (synergistic effect), or less (antagonistic effect) than the sum of the
individual effects of each compound in the mixture [29]. The synergistic anticancer effect has been
observed with different bioactive compounds derived from natural plants, such as arctigenin and
quercetin, and also in apple extracts enriched with phytochemicals [99].

The intake of phytochemicals from legumes such as beans, chickpeas, soybeans, and lentils,
can confer beneficial effects on health by protecting against cardiovascular diseases (hypertension) and
inflammatory processes. Its effect will be determined by the synergism or antagonism produced by the
mixtures of phytochemicals present in legumes [100].

Regarding CO, these are the product of the oxidation of proteins. This process alters the
conformation, activity, and function of proteins, making them highly resistant to proteolysis. Therefore,
protein oxidation affects the functional integrity of cells during diseases [101]. In this study,
the AOM/DSS + 10% CC and AOM/DSS + 20% CC groups were found to have significantly (p > 0.05)
less CO concentration compared to PC on Weeks 7 and 14 of the experiment. While in Week 1, only
AOM/DSS + 20% CC presented a lower concentration. It is essential to indicate that the increase
in CO is related to inflammatory processes, since chronic inflammation increases the generation of
ROS [102]. Luna-Vital et al. [103] evaluated the antineoplastic potential of an extract of peptides
from the non-digestible fraction of common bean cv. Azufrado-Higuera tree and its most abundant
peptide (GLSTK) in a colon cancer model with AOM/DSS in BALB/c mice. They observed that
common bean peptides decreased inflammation and neoplasm formation in the colon of mice with
AOM/DSS. Likewise, a study that used extracts of isoflavones (11 extracts) from chickpea sprouts
enriched with selenium (4 days/24 ◦C) showed its capacity to absorb oxygen radicals, which can



Nutrients 2020, 12, 2572 16 of 22

decrease CO generation; therefore, the authors suggested that they could be used in the treatment of
colon cancer [104].

In the same way, the generation of OS will produce peroxidation of polyunsaturated fatty acids
giving as final products MDA and 4-HNE. At the same time, it will worsen free radical chain reactions,
alter the integrity of the intestinal mucosa barrier, and activate inflammatory mediators [105,106].
This was evident in the quantification of MDA concentration and % 4-HNE expression, as both are
lipoperoxidation markers. The results obtained showed that the AOM/DSS + 10% CC and AOM/DSS +

20% CC groups had a significant decrease in MDA concentration versus the PC. Sánchez-Chino et al. [13]
reported that the consumption of 2 and 10% CC diets reduced MDA and CO concentrations in groups
administered AOM/DSS after 20 weeks of experimentation.

On the other hand, antioxidants and anti-inflammatory agents present in ulcerative colitis
have been shown to decrease MDA concentrations and increase superoxide dismutase levels [105].
Rehman et al. [107] found that tannic acid (TA) applied at doses of 50 and 100 mg/kg body weight
in a 1,2-dimethylhydrazine model in the colon of Wistar rats significantly decreased the MDA
concentration. The authors attributed this to the fact that TA can exert antioxidant, anti-inflammatory,
and antiproliferative activity. Larrosa et al. [108] used a mixture of 18 polyphenols in a rat DSS colitis
model and observed that hydrocaffeic acid generated the most significant decrease in the colon MDA
concentration. They related this to the direct antioxidant activity or the ability of this compound to
increase the expression of eNOS. Guan et al. [109] reported a decrease in 4-HNE concentrations after
consumption of δ-tocopherol and γ-tocopherol (0.2%) in a model of colon carcinogenesis in rats. They
reported that the most effective treatment was δ-tocopherol since it presented a reduction in marker
expression of 56.9%, followed by 39.9% with γ-tocopherol.

For their part, Monk et al. [45] evaluated a diet added with 20% CC flour to observe the behavior
of the microbiota in the colon. They found that adding CC to the regular diet for three weeks
improved the intestinal barrier by modulating the function of the colonic microenvironment due
to the content of phenolic compounds and fermentable carbohydrates. Furthermore, the severity
of the inflammatory response was reduced, since the activation of NF-κB in the colon tissue and
the production of pro-inflammatory cytokines (TNF-α and interleukin IL-18) decreased, while the
expression of anti-inflammatory molecules increased (IL-10, IL-22, and IL-27) [110].

5. Conclusions

The consumption of legumes and specifically chickpea represents an alternative for the prevention
of chronic degenerative diseases since it is a source of compounds with antioxidant activity, even after
being minimally processed (cooking). The substitution of 10 or 20% of CC in the diet decreased the
concentration of NO, CO, MDA, and 4-HNE in the groups induced with AOM/DSS compared to the
PC. The best effect was obtained with the diet added with 20% CC. The results obtained confirmed
the antioxidant and anti-inflammatory activity of chickpea. This activity may be due to one or more
compounds in the food or to synergism, for example, phenolic compounds, saponins, bioactive
peptides, soluble, and insoluble fiber, among others. With the results obtained, we proved that chickpea
is a good alternative for chemoprevention. Additionally, we demonstrated the importance of studying
a whole seed since its consumption, use, accessibility, and impact on the nutritional and health status
are promoted.

It is important to mention that in this study, there were certain limitations since an in vivo model
was used, to which whole chickpea seed was administered, whose composition is complex. For this
reason, it is not possible to attribute the observed effect to a specific compound. Therefore, it is advisable
to carry out studies of isolated compounds and mixtures of two or more of them, to observe the effect
obtained and later correlate it with the results obtained in studies like this one. However, it must not be
forgotten that whole foods confer greater benefits than their isolated compounds. In countries whose
diet is mainly based on plant foods, it is essential to understand the bioavailability of micronutrients
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and phytochemicals present in them. Therefore, it is important to study food synergies and the effect
that processes, such as cooking, have on bioavailability.

We have shown that the consumption of chickpea has antioxidant activity on the oxidation of lipids
and proteins. Therefore, within the perspectives of this study, it would be interesting to know what
happens upstream and downstream, for example, when studying the effect of chickpea consumption
on pro- and anti-inflammatory interleukins and on the expression of factors such as TNF-α and VEGF,
as well as to evaluate its effect on other organs, the microbiota, and microenvironment.
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