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Abstract: In recent years, the increasing incidence of morbidity of brain stroke has made fast and
accurate segmentation of lesion areas from brain MRI images important. With the development
of deep learning, segmentation methods based on the computer have become a solution to assist
clinicians in early diagnosis and treatment planning. Nevertheless, the variety of lesion sizes in brain
MRI images and the roughness of the boundary of the lesion pose challenges to the accuracy of the
segmentation algorithm. Current mainstream medical segmentation models are not able to solve these
challenges due to their insufficient use of image features and context information. This paper proposes
a novel feature enhancement and context capture network (FECC-Net), which is mainly composed
of an atrous spatial pyramid pooling (ASPP) module and an enhanced encoder. In particular, the
ASPP model uses parallel convolution operations with different sampling rates to enrich multi-scale
features and fully capture image context information in order to process lesions of different sizes.
The enhanced encoder obtains deep semantic features and shallow boundary features in the feature
extraction process to achieve image feature enhancement, which is helpful for restoration of the lesion
boundaries. We divide the pathological image into three levels according to the number of pixels in
the real mask area and evaluate FECC-Net on an open dataset called Anatomical Tracings of Lesions
After Stroke (ATLAS). The experimental results show that our FECC-Net outperforms mainstream
methods, such as DoubleU-Net and TransUNet. Especially in small target tasks, FECC-Net is 4.09%
ahead of DoubleU-Net on the main indicator DSC. Therefore, FECC-Net is encouraging and can be
relied upon for brain MRI image applications.

Keywords: medical image segmentation; brain MRI image; deep learning

1. Introduction

Chronic stroke is an acute cerebrovascular disease with a high disability rate and high
mortality rate. At present, chronic stroke is one of the most common diseases, and the
number of deaths due to chronic stroke each year accounts for a large proportion [1,2].
Active prevention and treatment can minimize the mortality rate; thus, clinical intervention
is necessary for the treatment of chronic stroke patients. Clinical treatment of chronic
stroke requires the use of magnetic resonance imaging (MRI) to present the brain struc-
ture to assess brain behavior and formulate corresponding treatment plans. However,
assessing the patient’s condition requires accurate positioning of the lesion area, which
is a time-consuming and labor-intensive process. Therefore, automatically completing
the identification of the diseased area by computer is used to assist the doctors in more
accurately judging the patient’s condition.

With the rapid development of deep learning, convolutional neural networks (CNNs)
have played an indispensable role in the field of medical segmentation. In particular, the
encoder–decoder architecture represented by U-Net is widely used [3–6]. However, the
traditional encoder–decoder framework cannot flexibly balance the precise localization
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of lesions and the sufficient extraction of contextual information, which will lead to an
inaccurate detection of lesions of different sizes and blurred recovery of lesion boundaries.
On the practical application level, the small-parameter medical segmentation model can
effectively speed up the network inference process, realize rapid localization of lesions, and
reduce the time cost of clinical treatment. However, current medical image segmentation
models cannot have the characteristics of small parameter scale and excellent segmentation
performance at the same time.

Combining the two aforementioned reasons, this paper proposes a medical image
segmentation model with small parameters and excellent performance that conforms to
the application scenario. This paper has made the following contributions:

(1) In view of the problem that the current medical image segmentation model parameters
are large and cause the inference speed to be limited, we propose a new encoder–
decoder structure. This work greatly reduces the model parameters and ensures that
both shallow surface features and deep semantic features are fully extracted.

(2) The current mainstream medical image segmentation encoder inevitably produces
loss of the shallow edge features in the process of downsampling. Therefore, we
propose an enhanced encoder composed of depthwise separable convolutions to
enhance the boundary features and effectively restore the lesion boundary.

(3) Medical images usually present imbalanced foreground information and background
information, which causes the network training to fall into a local optimal state. This
paper proposes hybrid loss to effectively solve the aforementioned problems and
accelerate the model’s convergence speed.

(4) The proposed model’s effectiveness was evaluated on an open-source dataset, ATLAS,
based on MRI images, and the results show that our network is superior to state-of-
the-art methods and can be used as a baseline for brain MRI image segmentation.

2. Related Work

Due to the powerful calculations of computers, image segmentation algorithms based
on deep learning have become the most essential tool for automatically locating lesion
information. In 2015, Long J et al. [7] proposed a fully convolutional network (FCN),
which proved that an end-to-end network can be implemented for segmentation problems.
Therefore, the FCN is called the pioneer of segmentation algorithms. The U-Net architec-
ture was designed by Ronneberger et al [8]. The U-Net architecture effectively improves
the segmentation performance of medical datasets and proposes an effective method for
processing large-size images. Chen et al. [9,10] proposed the DeepLab to improve the seg-
mentation network without increasing the amount of parameters. In particular, DeepLab
V3 [11] improves the ASPP in the spatial dimension and improves the performance of
the previous version. Lin et al. [12] proposed that RefineNet optimizes the large number
of calculations generated by dilated convolution and designs all components following
the residual connection method. Jha et al. [13] stacked two U-Net architectures to form a
novel architecture called DoubleU-Net. This method was evaluated on four different medi-
cal datasets, showing its superiority in semantic information extraction. Chen et al. [14]
proposed TransU-Net that combines a transformer [15–17] and U-Net, adopting the trans-
former’s global adaptation to solve the limitations of convolution operations for long-range
modeling. Additionally, the proposed method achieved excellent results in multi-organ
segmentation.

Chronic stroke is a disease in which brain tissue is damaged due to the sudden
rupture of blood vessels in the brain or the obstruction of blood vessels leading to the
inability of blood to flow into the brain. A severe stroke will cause permanent nerve
damage. If not diagnosed and treated in time, it will cause serious complications and even
death. At present, large-scale neuroimaging studies are optimistic about the prospects of
stroke recovery and point out the potential of deep learning. As we know, deep learning
algorithms require large datasets to optimize performance. Therefore, a large number of
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medical datasets [18,19] are open sourced. This paper presents ATLAS [20] based on brain
MRI images with manually segmented lesions and metadata.

From the aforementioned works, we can observe that there have been substantial
efforts to link segmentation algorithms with medical imaging. In recent years, these
works have been widely applied to the processing of brain MRI images. In 2021, Kadry
et al. [21] designed a modified moth–flame optimization algorithm based on Kapur‘s
thresholding and a chosen segmentation technique for further achievement in tumor
extraction. The algorithm is suitable for the segmentation of high-density brain tumor
lesions. Still, when the difference between the pixel grayscale of the foreground and the
image background is slight, the performance of the threshold algorithm will be affected.
For example, the segmentation of low-density brain infarction lesions will have the problem
of missing localization. Kadry et al. [22] solved the problem of localization of brain lesions
through a deep learning algorithm and proved the feasibility of U-Net in brain MRI image
segmentation. Later, Maqsood et al. [23] proposed edge detection based on fuzzy logic
regarding brain MRI images, and then input the pre-processed images into the U-Net
network for detection. By comparing the latest brain MRI lesion segmentation methods,
some advances in the current work can be summarized: (1) Traditional machine learning
methods are suitable for the segmentation of high-density lesions (brain tumors) but not for
low-density lesions (cerebral infarction). (2) The current deep learning-related algorithms
focus on the pre-processing and post-processing of brain MRI images to optimize the
indicators of U-Net, but similar optimization strategies are cumbersome and still retain the
shortcomings of U-Net. This paper proposes a novel medical image segmentation model
that can solve the problem of insufficient U-Net context information, feature information
extraction, and skip the tedious image preprocessing process. It is worth mentioning that
FECC-Net can show better segmentation performance in brain MRI images.

3. Method

The proposed FECC-Net architecture is illustrated in Figure 1. FECC-Net is mainly
composed of an encoder–decoder structure and a skip connection. Considering that
high-quality multi-scale features are the key to improving segmentation performance,
we add an ASPP module at the interface of the encoder and decoder. The ASPP model
integrates the features of different receptive fields through multiple convolutions of diverse
scales to capture more refined context features. In addition, we design an enhanced
encoder composed of depthwise separable convolutions, which is used for secondary
skip connection operations to ensure that the deep semantic information of the network
is extracted and to enhance boundary features, which is beneficial to the detection of
small-scale objects and recovery of lesion boundaries.

ASPP

Enhanced Encoder

Downsample Upsample Skip-ConnectionConv + ReLuConcatenation

Figure 1. The overall structure of the proposed FECC-Net. FECC-Net is mainly composed of an
encoder–decoder structure, an ASPP model, and an enhanced encoder.
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3.1. Encoder–Decoder Architecture

There have been many experiments indicating that deeper neural networks bring
adequate performance for medical image segmentation, but a network with too many
layers may encounter problems, such as huge parameters and gradient explosions, which
are not suitable for practical applications. We propose a new encoder–decoder architecture
that solves the aforementioned problems and obtains better results.

This paper designs an ultra-light encoder in which each encoder block only needs to
perform two 3 × 3 convolution operations, each followed by a batch normalization. The
batch normalization reduces the internal co-variant shift and also regularizes the model. A
rectified linear unit (ReLU) [24–27] activation function is applied. Two advantages accom-
pany the ReLU activation function: (1) It realizes the sparse representation of the network.
The ReLU activation function outputs the true zero value of the negative input, which
effectively prevents the training from overfitting and speeds up the network convergence
speed. (2) The value range of the ReLU activation function is not easily saturated, which
can completely avoid disappearance of the gradient during training. In medical image
segmentation, the sparsity of the ReLU activation function effectively reduces the error
caused by overfitting, and the Relu activation function keeps the gradient proportional
to the node activation, continuously optimizing the model and improving segmentation
accuracy. This is followed by a squeeze-and-excitation block [28], which suppresses the
redundant extraction of features and enhances the quality of the feature maps.

U-Net is the benchmark for medical image segmentation, but its ability to obtain image
context information is limited. In this paper, the output of the high-resolution features by
the encoder is input into atrus spatial pyramid pooling (ASPP). ASPP can integrate semantic
information of different scales and fully capture context information. Finally, the depth
features fused with multi-scale information are upsampled to restore the spatial features.
The experimental results show that the network’s main structure proposed in this paper
greatly reduces the amount of calculation and significantly improves the performance.

3.2. Enhanced Encoder

The encoder–decoder architecture combines the intermediate features of the encoder
with the decoded output via skip connections, allowing the network to obtain high-level
semantics and low-level fine-grained surface features. We inherited this contextual informa-
tion fusion strategy. However, simple feature connections cannot fully recover the loss of
object boundary information during downsampling. Therefore we propose a novel encoder
for boundary feature enhancement. Figure 2 is the overall architecture of the enhanced
encoder. The main components of the encoder are the convolution block and depthwise
convolution block. The convolution block adopts a 3 × 3 convolution, followed by batch
normalization and the ReLu activation function. The depthwise convolution block uses a
3 × 3 depthwise separable convolution and a 1 × 1 convolution operation, and both opera-
tions are followed by batch normalization and the ReLu activation function. Compared
with the shallow encoder, the enhanced encoder adopts successive separable convolutions
for a stacking combination, which increases the depth of the network, preserves the obvious
features that exist in the shallow layers, and helps to better preserve image properties. In
addition, separable convolutions are more sensitive to shallow features and do not interfere
with the deep features extracted by the main encoder.

3.3. Hybrid Loss Function

In MRI images of the brain, the lesion area of stroke disease is usually small. In the
training process, much background information may dominate the direction of model
training and eventually fall into a local optimal state. Therefore, a suitable loss function is
particularly important. For the ATLAS dataset, we propose a hybrid loss function to balance
the influence of the foreground factor and the background factor on the training trend.
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conv_block

depthwise_conv_block (stride=2)

depthwise_conv_block (stride=1)

Figure 2. Architecture of the proposed enhanced encoder for feature enhancement.

3.3.1. Binary Cross Entropy Loss

The binary cross entropy (BCE) loss is often used as a binary classification problem,
which can measure the similarity between the real result and the predicted result. In
particular, the use of the sigmoid function in the gradient descent can avoid the problem of
a reduction in the learning rate of the mean square error loss function, so that the learning
rate can be adjusted reasonably according to the output. In the brain MRI images, BCE
loss makes the model fit correctly and prevents the model from entering the local optimal
state in the initial training stage. As shown in Equation (1), y represents the distribution
of real marks, and ŷ is the predicted mark distribution of the trained model. N represents
the number of images in the training set during the training process and represents the
number of images in the validation set during the validation set process, and i represents
the number of images in the corresponding dataset.

LBCE(y, ŷ) = −
N

∑
i=1

yi ln ŷi + (1 − yi) ln(1 − ŷi) (1)

3.3.2. Dice Coefficient Loss

In the brain MRI images, the number of healthy samples is greater than that of stroke
samples. The unevenness of positive and negative samples causes the model to be more
sensitive to irrelevant information while ignoring the extraction of main features. Therefore,
we introduced dice loss to optimize the sample imbalance. As shown in Equation (2), y
represents the ground truth, and ŷ is the predicted mask of FECC-Net. Among them, N
represents the number of images in the training set or validation set. δ is an adjustable
parameter, which is used to prevent the error of division by zero and to cause negative
samples to have a gradient propagation. Generally, we set the adjustable parameter to a
value close to 0 (from 1 × 10−15 to 1 × 10−13), which will not affect the convergence of the
network but also ensures that information from the negative samples can be harvested in
backpropagation to adjust the network weight for better recall.

LDice (y, ŷ) = 1 − 2 ∑N
t=1 yi ŷi + δ

∑N
i=1 y2

i + ∑N
i=1 ŷ2

t + δ
(2)
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3.3.3. Proposed Hybrid Loss

We propose the hybrid loss (HL) function based on the two loss functions above and
use their L2 paradigm as a new loss function to optimize the gradient change of each
iteration and speed up the convergence time of training. The formula for the hybrid loss
function is shown in Equation (3).

HL(y, ŷ) =
√

LBCE(y, ŷ)2 + LDice(y, ŷ)2 (3)

4. Experiments
4.1. Evaluation Metrics

The most common evaluation methods in the field of deep learning are recall and
precision. Precision evaluates the quality of the segmentation, as the proportion of boundary
pixels in the predicted result that correspond to boundary pixels in the ground truth of
the image. Recall usually reflects the extent of recall in the lesion area, which can evaluate
the ability of the model to detect lesions. To show the performance of FECC-Net more
clearly, we decided to add DSC as the main indicator, which can measure the similarity
between two sets. In medical image segmentation, DSC measures the overlap between
predicted and annotated pixels. In addition, we introduce the mIoU indicator for auxiliary
evaluation, which can effectively reflect the effect of edge segmentation. The current
medical segmentation model pursues fewer parameters, so we emphasize calculation of
the total parameters. In all tables, we indicate the computational metrics of FECC-Net with
bold values.

4.2. Dataset

The Anatomical Tracings of Lesions After Stroke (ATLAS) dataset [20] is a challenging
3D medical image dataset. To verify the excellent performance of our method, we adopted
it as the dataset. A total of 229 patients with chronic stroke were scanned with the MRI
T1 sequence in the ATLAS dataset. The size of each case was 233 × 197 × 189. Sequence
scans were extracted with the help of the ITK Snap tool and used basic axial 2D slices [29]
for a total of 43,281 slices. We divide the dataset into a training set, a validation set, and a
test set in a ratio of 8:1:1. The training sample has 33,264 slices, which can ensure that the
model learns enough information. The test sample has 4158 slices. In order to verify the
effectiveness of FECC-Net under various segmentation tasks, we grouped the test sample
according to the number of pixels of the real mask in the dataset and divided them into
small-sized lesion tasks of 0–100 pixels (excluding the lesion-free slices), 100–1000 pixels
for medium-sized lesions tasks, and 1000-pixel-plus for large-sized lesions tasks. Among
them, there were 142 slices of small-sized lesions, 361 slices of medium-sized lesions, and
418 slices of large-sized lesions.

4.3. Experiment Setup

In our experiments, we used the Keras framework [30] with Tensorflow 2.5.0 [31] as
the backend. Without affecting the spatial information of the original image, we uniformly
adjusted the size of the image to 512 × 512 to balance the training time and complexity. In
the selection of the model optimizers, FECC-Net adopted the Adam optimizer to replace
the traditional SGD optimizer. The most important feature of Adam is that it can adapt the
learning rate and prevent the model from falling into a local optimal solution in the process
of gradient descent. Therefore, we set a large learning rate of 1 × e−4 before training to
make the model have more momentum in the initial stage. After the model has become
gradually stable in the later stage, the adaptive learning rate gradually decreases with
the number of iterations. To speed up the convergence of the model, the batch size of the
network was set to 16. The default model accepts 300 iterations, but different computing
resources have different requirements for the number of iterations. The model can be
set to end the training at the time of automatic convergence. It is worth mentioning that
we randomly sampled the training samples and performed random data enhancement
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operations (elastic transformation, rotation transformation, noise addition, etc.) on the
sampled images. When the number and form of training samples are rich, the model has a
strong generalization ability and can effectively compensate for the overfitting problem.

5. Results

In this section, we will show the segmentation process of FECC-Net and compare our
proposed model with the mainstream medical segmentation model. We also evaluated
three different tasks for the ATLAS dataset and show the qualitative results to prove the
superiority of FECC-Net. To verify the influence of different components of FECC-Net on
segmentation performance, we conducted ablation experiments on enhanced-encoder and
loss function. Considering the real-life application of the model, this paper conducts noise
addition experiments on images, discusses the robustness of our proposed method to noise.

Our quantitative results on the ATLAS dataset are summarized in Table 1. The
experimental results show that the proposed FECC-Net achieved the best performance,
considering the value DSC, Recall, and Precision. It is worth noting that our model
parameters are smaller than other models, which speeds up the convergence of the model.
Regarding the DSC score, FECC-Net ranks first with a score of 0.6789, which is 8.97% higher
than DoubleU-Net.

Table 1. The quantitative comparison of different methods. FECC-Net-lite indicates unused
enhanced encoder.

Method DSC Recall Precision Total Parameters

SegNet [32] 0.2767 0.2532 0.3938 29.5 M
PSPNet [33] 0.3571 0.3335 0.4769 48.1 M

U-Net [8] 0.4606 0.4449 0.5994 15.1 M
Deeplab v3+ [34] 0.4609 0.4491 0.5831 41.3 M

ResUNet [35] 0.4702 0.4537 0.5941 33.2 M
2D Dense-UNet [36] 0.4741 0.4875 0.5613 50.0 M

X-Net [37] 0.4867 0.4752 0.6000 15.1 M
TransUNet [14] 0.5855 0.5796 0.6352 32.3 M

DoubleU-Net [13] 0.5892 0.5878 0.6345 29.2 M
FECC-Net (ours) 0.6789 0.6856 0.6978 7.0 M

FECC-Net-lite (ours) 0.6353 0.6372 0.6677 3.8 M

5.1. The Performance on Different Tasks

In Table 2, we quantitatively compare our model to four currently advanced meth-
ods in the small target task. FECC-Net has the highest scores on the main indicators
(DSC and mIoU). The DSC and mIoU of FECC-Net are 4.09% and 4.45% higher than that
of DoubleU-Net, respectively. This shows that our proposed method could achieve a
promising segmentation performance in the small target task.

Table 2. Quantitatively compare the proposed method to the current best results on small targets.

Method DSC mIoU Recall Precision

ResUNet [35] 0.3464 0.2467 0.2807 0.3051
X-Net [37] 0.4358 0.3581 0.3960 0.4297

TransUNet [14] 0.4590 0.3151 0.5188 0.5328
DoubleU-Net [13] 0.4750 0.3212 0.5246 0.5691
FECC-Net (ours) 0.5159 0.3657 0.5608 0.6010

As shown in Figure 3, small target lesions in brain MRI images are difficult to distin-
guish with the naked eye and are mainly divided into two cases: missed detection and
false detection. The first case in Figure 3 shows that other medical image segmentation
models are prone to mislocalization when encountering dark pixels, and FECC-Net shows
good performance. Hybrid loss plays an important role; it is effective. The training of the
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avoidance model tends to interfere with regions. The last two cases in Figure 3 mainly have
the problem of missed detection. There are two reasons for such a problem: (1) insufficient
extraction of deep features or (2) insufficient extraction of contextual information. FECC-
Net does not experience loss of small target localization because the enhanced encoder
ensures the depth of the network and its ASPP structure effectively capture contextual
information through multi-scale fusion.

          GT             FECC-Net(Ours)    DoubleU-Net        TransUNet                XNet                ResUNet

Figure 3. Qualitative result on small target from ATLAS. Typical small targets of stroke are difficult
to find with the naked eye.

The second case was conducted on the medium target from ATLAS. From Table 3, we
can see that FECC-Net outperforms TransUNet by 2.96% in DSC and 4.02% in mIoU on
the medium target from ATLAS. As can be observed from Figure 4, the medium targets
are mainly divided into two cases: the first case is the scattered lesions, and the second
case is the slender lesions. In scattered lesions, the phenomenon of missed detection occurs
easily when the dispersion distance is long, and it is easy to predict the scattered lesions as
a connected overall lesion when the dispersion distance is short. In slender lesions, loss
of lesion prediction is common. It turns out that both TransUNet and DoubleU-Net have
the aforementioned series of problems. However, FECC-Net extracts context information
while ensuring depth information, so it is more accurate for the localization of lesions.

Table 3. Quantitative comparison of the proposed method to the current best results on
medium targets.

Method DSC mIoU Recall Precision

ResUNet [35] 0.6185 0.4563 0.5960 0.6273
X-Net [37] 0.6696 0.5127 0.6924 0.7035

TransUNet [14] 0.6899 0.5567 0.7159 0.7748
DoubleU-Net [13] 0.6890 0.5580 0.7103 0.7611
FECC-Net (ours) 0.7195 0.5969 0.7701 0.7777
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          GT             FECC-Net(Ours)    DoubleU-Net        TransUNet                XNet                ResUNet

Figure 4. Qualitative result on medium target from ATLAS. Typical medium targets of stroke are
often detected abnormally in discrete lesions and elongated lesions.

The third experiment was conducted on the large target task. As indicated in Table 4,
FECC-Net achieves a DSC of 0.9072 and mIoU of 0.8311, which are 1.85% and 1.39% higher
than those of DoubleU-Net, respectively. The large object task is the most common case
in life, which fully reflects the advantages of our proposed method. The three cases in
Figure 5 show three challenges that are prone to large-objective tasks: (1) interference
from redundant information, (2) loss of localization of discrete lesions, and (3) abnormal
recovery of the edge of the lesion. The proposed algorithm solves the problem of low recall
caused by redundant information through hybrid loss, solves the problem of discrete lesion
localization via feature fusion of different scales through the ASPP structure, and solves
the problem of abnormal boundary restoration through the enhanced encoder to enhance
boundary features.

5.2. Enhanced Encoder Validity

The motivation of the enhanced encoder is to compensate for the loss of apparent
information caused by the downsampling process of the image and to achieve the enhance-
ment of boundary features. To verify the effect of different baseline feature enhancements,
we evaluated VGG19 [38], ResNet [39], and DenseNet [40] as the enhanced encoder of
FECC-Net, respectively. From the quantitative analysis of the four enhanced encoders in
Table 5, we can observe that different additional encoders all achieve sufficient performance,
which proves that the enhancement of boundary features is beneficial to the recovery of
lesion information. Two major challenges for medical image segmentation models in the
process of boundary recovery include: (1) The boundary of the lesion is tortuous, resulting
in abnormal recovery, and the lesion is divided into two parts (case 1 and case 2 in Figure 6).
(2) The discrete lesions are close to the large target lesion, and ignoring the discrete edge
details leads to a lack of recovery of the lesions (case 3 in Figure 6). The enhanced encoder
of FECC-Net shows excellent performance under both challenges; the main reason is the
depthwise separable convolution is more sensitive to the extraction of apparent features
and does not destroy the deep features extracted by the main encoder. Boundary informa-
tion is extremely important in the clinical diagnosis of cerebral infarction, and doctors can
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predict the spread of cerebral infarction through the edge of the lesion. Our method can
avoid a doctor’s second opinion on the lesion and reduce the diagnosis time.

Table 4. Quantitative comparison of the proposed method to the current best results on large targets.

Method DSC mIoU Recall Precision

ResUNet [35] 0.7823 0.6464 0.7401 0.8397
X-Net [37] 0.8131 0.7707 0.8127 0.8677

TransUNet [14] 0.8834 0.8084 0.8987 0.8917
DoubleU-Net [13] 0.8887 0.8172 0.8835 0.9159
FECC-Net (ours) 0.9072 0.8311 0.9034 0.9246

          GT             FECC-Net(Ours)    DoubleU-Net        TransUNet                XNet                ResUNet

Figure 5. Qualitative result on large target from ATLAS. Typical large-target tasks in stroke are easily
disturbed by shadowed areas, resulting in abnormal recovery at the edge of the lesion.

Table 5. Quantitative analysis of the four enhanced encoders.

Enhanced Encoder DSC mIoU Recall Precision

VGG19 [38] 0.6620 0.5836 0.6674 0.6958
ResNet [39] 0.6627 0.5898 0.6640 0.6942

DenseNet [40] 0.6632 0.5782 0.6701 0.6791
Ours 0.6789 0.6107 0.6856 0.6978

5.3. Loss Validity

We compared our proposed hybrid loss with several common loss functions in seg-
mentation tasks and quantified these four kinds of losses in Table 6. The results show that
the performance of the hybrid loss function is competitive because the hybrid loss, which
combines binary cross entropy (BCE) loss and dice coefficient loss (DL), is suitable for brain
MRI image segmentation tasks with imbalanced positive and negative samples.
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GT Ours ResNet DenseNet VGG19

Figure 6. Qualitative result of four enhanced encoders.

Table 6. Quantitative analysis of the four loss functions.

Method DSC Recall Precision

Focal Loss [41] 0.6460 0.7818 0.5772
Binary Cross Entropy Loss 0.6412 0.6782 0.6391

Dice Coefficient Loss 0.6355 0.6751 0.6302
Hybrid Loss (ours) 0.6789 0.6856 0.6978

5.4. Analyze the Robustness of the Proposed Method to Noise

The noise in real-world biomedical images is a well-known problem that reduces the
accuracy of diagnostics. In order to verify the robustness of our proposed model to noise,
we processed images of large, medium, and small tasks with Gaussian noise, and we set
the σ of Gaussian noise to 40 to make the noised image more realistic. Table 7 shows the
performance changes of the model in the main indicator DSC before and after adding
noise. We can observe that the segmentation performance of each task drops after noise
addition, especially the small object task, which drops by 23.25%. This is because, after
noise enhancement, the context information of each pixel is mixed with noise information,
leading to deviations in the high-level semantic information encoded by the model. Context
information plays an important role in small target localization tasks. As shown in Figure 7,
the model is prone to the problem of missing localization in noisy small target tasks, but it
is undeniable that FECC-Net still shows excellent performance in the task of dealing with
noisy large objects; this is because the squeeze-and-excitation blocks in the encoder play a
role in suppressing the noise.

Table 7. Comparison of the main indicators’ DSC before and after adding noise.

Indicator Small Target Task Medium Target Task Large Target Task

DSC (before adding noise) 0.5159 0.7195 0.9072
DSC (after adding noise) 0.3188 0.6176 0.8607
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（a） （b） （c） （d）

Figure 7. Qualitative analysis of the degradation of the model’s performance after adding noise:
(a) original image; (b) Gaussian noise-processed image; (c) segmentation result of noisy image;
(d) ground truth.

5.5. Analyze the Segmentation Process of the Proposed Method

Figure 8 shows the process of FECC-Net segmentation, where Figure 8b is the output
of the first encoder block. From the figure, it can be observed that the ability of our designed
encoder block to extract shallow apparent features is outstanding. The figure even depicts
boundary features not visible to the naked eye. Figure 8c is the convolutional output of
the last decoder block; we can observe that this feature map concentrates more weight on
the lesion location, proving the gain effect of hybrid loss during the backpropagation of
the network. Figure 8d is the segmentation result; we hoped to locate the lesion area in
the segmentation task, so we set the lesion as the foreground (binary 1) and other parts
as the background (binary 0) by a sigmoid function [42,43]. Finally, the binary image
was evaluated and confirmed according to the GT image. To be more in line with the
visualization effect of practical applications, we mapped the segmentation results back to
the original image for comparison, as shown in Figure 8e.

(a) （b） （c） （d） （e）

Figure 8. Segmentation processed attained with FECC-Net for a sample test image: (a) original
image; (b) output of the first encoder block; (c) convolution output of the last decoder block;
(d) segmented result; (e) segmentation result mapped back to the original image.

6. Discussion

In this section, based on the experimental results above, we discuss the effectiveness
and researchability of segmentation in brain MRI images through deep learning models:

Effectiveness of deep learning models for segmentation of brain MRI images. In
the Introduction section of this paper, we listed and analyzed the current brain MRI
segmentation methods, which are mainly divided into threshold methods based on image
processing and methods based on deep learning. It is well known that threshold methods
cannot effectively segment the results under conditions of large amounts of noise. Therefore,
more and more scholars have recently adopted U-Net for segmentation in brain MRI images
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and proved the effectiveness of deep learning models in brain MRI images. However,
the current deep learning model relies too much on the ontology structure of U-Net,
and there are problems, such as insufficient context information extraction and large
model parameters. Our research proposes a light encoder–decoder framework and feature
enhancement module, which reduces the parameters while improving the model’s accuracy,
proving that the medical image segmentation model can achieve the requirements of high
precision and small parameters. Such a baseline is more realistic for application to life.

Researchability of deep learning models in brain MRI segmentation. In the Experimen-
tal section, we conducted a comparison experiment on the test samples before and after
adding noise. It can be observed that the noise still interferes with the deep learning model,
especially for targets that are difficult to focus on with the naked eye. Therefore, some
works combine semantic segmentation and image denoising to achieve high-precision
semantic information classification [44]. We plan to apply related ideas to brain MRI seg-
mentation in future work. In the analysis of the model segmentation process in Section 5.5,
the research content of this paper is the precise localization of lesions. Our next effort will
be to analyze the uncertainty based on the location of brain MRI lesions, which will help
doctors to judge the prediction results. In recent years, uncertainty analysis methods have
emerged in the field of medical imaging [45–47], but how to implement an uncertainty
analysis in lightweight models still needs further exploration, and we are also conducting
research related to this.

7. Conclusions

This paper proposes a novel feature enhancement and context capture network (FECC-
Net) based on brain MRI images. We achieved low-density cerebral infarct lesion lo-
calization on the ATLAS dataset and compared FECC-Net with current medical image
segmentation models. FECC-Net reached the leading position for all indicators and, most
especially, is 8.97% higher than DoubleU-Net (the second-ranked method) in DSC and
9.78% higher in mIoU. FECC-Net is currently the medical image segmentation model
with the smallest total network parameters, only 7.0M, which is half of U-Net. It is worth
mentioning that our proposed FECC-Net-lite achieves as high as 0.6353 on DSC, which
leads DoubleU-Net by 4.61%. The experimental results of FECC-Net-lite show that: (1) The
lightweight encoder–decoder architecture can be used as a baseline for medical image
segmentation, and (2) feature enhancement plays an indispensable role in the performance
optimization of medical image segmentation. We believe that these encouraging results
from FECC-Net will become the baseline for brain MRI image segmentation.
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Abbreviations
The following abbreviations are used in this manuscript:

FECC-Net Feature Enhancement and Context Capture Network
ASPP Atrous Spatial Pyramid Pooling
ATLAS Anatomical Tracings of Lesions After Stroke
MRI Magnetic Resonance Imaging
CNNs Convolutional Neural Networks
FCN Fully Convolutional Network
BCE Binary Cross Entropy
HL Hybrid Loss

References
1. Donkor, E.S. Stroke in the century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat. 2018, 2018,

3238165. [PubMed]
2. Redon, J.; Olsen, M.H.; Cooper, R.S.; Zurriaga, O.; Martinez-Beneito, M.A.; Laurent, S.; Cifkova, R.; Coca, A.; Mancia, G. Stroke

mortality and trends from 1990 to 2006 in 39 countries from Europe and Central Asia: Implications for control of high blood
pressure. Eur. Heart J. 2011, 32, 1424–1431. [CrossRef] [PubMed]

3. Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.W.; Wu, J. Unet 3+: A full-scale connected unet for
medical image segmentation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1055–1059.

4. Mehta, S.; Mercan, E.; Bartlett, J.; Weaver, D.; Elmore, J.G.; Shapiro, L. Y-Net: Joint segmentation and classification for diagnosis
of breast biopsy images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Granada, Spain, 16–20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 893–901.

5. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from
sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Athens, Greece, 17–21 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 424–432.

6. Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation.
In Proceedings of the 2016 fourth international conference on 3D vision (3DV), Stanford, CA, USA, 25–28 October 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 565–571.

7. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

8. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015: Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

9. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

10. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

11. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

12. Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 1925–1934.

13. Jha, D.; Riegler, M.A.; Johansen, D.; Halvorsen, P.; Johansen, H.D. Doubleu-net: A deep convolutional neural network for medical
image segmentation. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems
(CBMS), Rochester, MN, USA, 28–30 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 558–564.

14. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders
for medical image segmentation. arXiv 2021, arXiv:2102.04306.

15. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 28–23 June 2018; pp. 7794–7803.

16. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]

17. Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention gated networks: Learning to
leverage salient regions in medical images. Med. Image Anal. 2019, 53, 197–207. [CrossRef]

18. Bernal, J.; Tajkbaksh, N.; Sanchez, F.J.; Matuszewski, B.J.; Chen, H.; Yu, L.; Angermann, Q.; Romain, O.; Rustad, B.; Balasingham,
I.; et al. Comparative validation of polyp detection methods in video colonoscopy: Results from the MICCAI 2015 endoscopic
vision challenge. IEEE Trans. Med. Imaging 2017, 36, 1231–1249. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/30598741
http://doi.org/10.1093/eurheartj/ehr045
http://www.ncbi.nlm.nih.gov/pubmed/21487117
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.1016/j.media.2019.01.012
http://dx.doi.org/10.1109/TMI.2017.2664042


Brain Sci. 2022, 12, 765 15 of 16

19. Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp
highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111.
[CrossRef]

20. Liew, S.L.; Anglin, J.M.; Banks, N.W.; Sondag, M.; Ito, K.L.; Kim, H.; Chan, J.; Ito, J.; Jung, C.; Lefebvre, S.; et al. The Anatomical
Tracings of Lesions After Stroke (ATLAS) Dataset-Release 1.1. bioRxiv 2017, 179614. [CrossRef]

21. Kadry, S.; Rajinikanth, V.; Raja, N.; Jude Hemanth, D.; Hannon, N.; Raj, A.N.J. Evaluation of brain tumor using brain MRI with
modified-moth-flame algorithm and Kapur’s thresholding: A study. Evol. Intell. 2021, 14, 1053–1063. [CrossRef]

22. Kadry, S.; Damaševičius, R.; Taniar, D.; Rajinikanth, V.; Lawal, I.A. U-net supported segmentation of ischemic-stroke-lesion from
brain MRI slices. In Proceedings of the 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation
(ICBSII), Chennai, India, 25–27 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.

23. Maqsood, S.; Damasevicius, R.; Shah, F.M. An efficient approach for the detection of brain tumor using fuzzy logic and U-NET
CNN classification. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy,
13–16 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 105–118.

24. Varshney, M.; Singh, P. Optimizing nonlinear activation function for convolutional neural networks. Signal Image Video Process.
2021, 15, 1323–1330. [CrossRef]

25. Jahan, I.; Ahmed, M.F.; Ali, M.O.; Jang, Y.M. Self-gated rectified linear unit for performance improvement of deep neural
networks. ICT Express 2022, in press. [CrossRef]

26. Sarkar, S.; Agrawal, S.; Baker, T.; Maddikunta, P.K.R.; Gadekallu, T.R. Catalysis of neural activation functions: Adaptive
feed-forward training for big data applications. Appl. Intell. 2022, 1–20. doi: 10.1007/s10489-021-03082-y. [CrossRef]

27. Olimov, B.; Karshiev, S.; Jang, E.; Din, S.; Paul, A.; Kim, J. Weight initialization based-rectified linear unit activation function to
improve the performance of a convolutional neural network model. Concurr. Comput. Pract. Exp. 2021, 33, e6143. [CrossRef]

28. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 28–23 June 2018; pp. 7132–7141.

29. Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of
anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [CrossRef]

30. Chollet, F. Keras: The Python Deep Learning library. In Astrophysics Source Code Library; 2018. Available online: https:
//ui.adsabs.harvard.edu/abs/2018ascl.soft06022C/abstract (accessed on 24 May 2022).

31. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Zhang, X. TensorFlow: A System for Large-Scale Machine Learning; USENIX Association:
Berkeley, CA, USA, 2016.

32. Badrinarayanan, V.; Handa, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic
Pixel-Wise Labelling. Comput. Sci. 2015. [CrossRef]

33. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Computer Society, Honolulu,
HI, USA, 21–26 July 2017.

34. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation; Springer: Cham, Switzerland, 2018.

35. Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2017, 15, 749–753. [CrossRef]
36. Xiaomeng, L.; Hao, C.; Xiaojuan, Q.; Qi, D.; Chi-Wing, F.; Pheng-Ann, H. H-DenseUNet: Hybrid Densely Connected UNet for

Liver and Liver Tumor Segmentation from CT Volumes. IEEE Trans. Med. Imaging 2017, 37, 2663–2674.
37. Qi, K.; Yang, H.; Li, C.; Liu, Z.; Wang, M.; Liu, Q.; Wang, S. X-Net: Brain Stroke Lesion Segmentation Based on Depthwise

Separable Convolution and Long-range Dependencies. arXiv 2019, arXiv:1907.07000v2.
38. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Comput. Sci. 2014.

[CrossRef]
39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition; IEEE: Piscataway, NJ, USA, 2016.
40. Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Keutzer, K. DenseNet: Implementing Efficient ConvNet Descriptor Pyramids.

arXiv 2014, arXiv:1404.1869.
41. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE

International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.
42. Bogveradze, N.; Lambregts, D.M.; El Khababi, N.; Dresen, R.C.; Maas, M.; Kusters, M.; Tanis, P.J.; Beets-Tan, R.G.; Alberts, F.;

Bakers, F.C.; et al. The sigmoid take-off as a landmark to distinguish rectal from sigmoid tumours on MRI: Reproducibility,
pitfalls and potential impact on treatment stratification. Eur. J. Surg. Oncol. 2022, 48, 237–244. [CrossRef] [PubMed]

43. Humbert, C.; Grillet, F.; Malakhia, A.; Meuriot, F.; Lakkis, Z.; Piton, G.; Vuitton, L.; Loffroy, R.; Calame, P.; Delabrousse, E.
Stratification of sigmoid volvulus early recurrence risk using a combination of CT features. Diagn. Interv. Imaging 2022, 103,
79–85. [CrossRef] [PubMed]

44. Xu, S.; Sun, K.; Liu, D.; Xiong, Z.; Zha, Z.J. Synergy Between Semantic Segmentation and Image Denoising via Alternate Boosting.
arXiv 2021, arXiv:2102.12095.

45. Xia, Y.; Yang, D.; Yu, Z.; Liu, F.; Cai, J.; Yu, L.; Zhu, Z.; Xu, D.; Yuille, A.; Roth, H. Uncertainty-aware multi-view co-training for
semi-supervised medical image segmentation and domain adaptation. Med. Image Anal. 2020, 65, 101766. [CrossRef]

http://dx.doi.org/10.1016/j.compmedimag.2015.02.007
http://dx.doi.org/10.1101/179614
http://dx.doi.org/10.1007/s12065-020-00539-w
http://dx.doi.org/10.1007/s11760-021-01863-z
http://dx.doi.org/10.1016/j.icte.2021.12.012
http://dx.doi.org/10.1007/s10489-021-03082-y
http://dx.doi.org/10.1002/cpe.6143
http://dx.doi.org/10.1016/j.neuroimage.2006.01.015
https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C/abstract
https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C/abstract
http://dx.doi.org/10.48550/arXiv.1505.07293
http://dx.doi.org/10.1109/LGRS.2018.2802944
http://dx.doi.org/10.48550/arXiv.1409.1556
http://dx.doi.org/10.1016/j.ejso.2021.09.009
http://www.ncbi.nlm.nih.gov/pubmed/34583878
http://dx.doi.org/10.1016/j.diii.2022.01.005
http://www.ncbi.nlm.nih.gov/pubmed/35086786
http://dx.doi.org/10.1016/j.media.2020.101766


Brain Sci. 2022, 12, 765 16 of 16

46. Karimi, D.; Zeng, Q.; Mathur, P.; Avinash, A.; Mahdavi, S.; Spadinger, I.; Abolmaesumi, P.; Salcudean, S.E. Accurate and robust
deep learning-based segmentation of the prostate clinical target volume in ultrasound images. Med. Image Anal. 2019, 57, 186–196.
[CrossRef]

47. Kwon, Y.; Won, J.H.; Kim, B.J.; Paik, M.C. Uncertainty quantification using Bayesian neural networks in classification: Application
to biomedical image segmentation. Comput. Stat. Data Anal. 2020, 142, 106816. [CrossRef]

http://dx.doi.org/10.1016/j.media.2019.07.005
http://dx.doi.org/10.1016/j.csda.2019.106816

	Introduction
	Related Work
	Method
	Encoder–Decoder Architecture
	Enhanced Encoder
	Hybrid Loss Function
	Binary Cross Entropy Loss
	Dice Coefficient Loss
	Proposed Hybrid Loss


	Experiments
	Evaluation Metrics
	Dataset
	Experiment Setup

	Results
	The Performance on Different Tasks
	Enhanced Encoder Validity
	Loss Validity
	Analyze the Robustness of the Proposed Method to Noise
	Analyze the Segmentation Process of the Proposed Method

	Discussion
	Conclusions
	References

