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Background: Postoperative blood coagulation assessment of children with congenital heart disease (CHD) 
has been developed using a conventional statistical approach. In this study, the machine learning (ML) was 
used to predict postoperative blood coagulation function of children with CHD, and assess an array of ML 
models.
Methods: This was a retrospective and data mining study. Based on the samples of 1,690 children with 
CHD, and screening data based on demographic characteristics, conventional coagulation tests (CCTs) and 
complete blood count (CBC), with a precise data selection process, and the support of data mining and ML 
algorithms including Decision tree, Naive Bayes, Support Vector Machine (SVM), Adaptive Boost (AdaBoost) 
and Random Forest model, and explored the best prediction models of postoperative blood coagulation 
function for children with CHD by models performance measured in the area under the receiver operating 
characteristic (ROC) curve (AUC), calibration or Lift curves, and further verified the reliability of the models 
with statistical tests.
Results: In primary objective prediction, as decision tree, Naive Bayes, SVM, the AUC of our prediction 
algorithm was 0.81, 0.82, 0.82, respectively. The accuracy rate of the overall forecast has reached more 
than 75%. Subsequently, we furtherly build improved models. Among them, the true positive rate of the 
AdaBoost, Random Forest and SVM prediction models reached more than 80% in the ROC curve. These 
overall accuracy rate indicated a good classification model. Combined calibration curves and Lift curves, the 
better fit is the SVM model, which predicted postoperative abnormal coagulation, Lift =2.2, postoperative 
normal coagulation, Lift =1.8. The statistical results furtherly proved the reliability of ML models. The age, 
sex, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin 
concentration (MCHC), white blood cell count (WBC) and platelet count (PLT) were the key features for 
predicting the postoperative blood coagulation state of children with CHD.
Conclusions: ML technology and data mining algorithms may be used for outcome prediction in children 
with CHD for postoperative blood coagulation state based on the bulk of clinical data, especially CBC 
indictors from the real world.
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Introduction

In recent years, the ranges of disease entities, biomarkers, 
diagnostic testing, and treatment modalities all have 
become increasingly complex and increased exponentially. 
Subsequently, clinical decision-making has also become 
more complex and demands the synthesis of decisions from 
assessment in the current digital age, while the electronic 
health record represents a massive repository of electronic 
data points representing a diverse array of medical 
information (1-3). Now, artificial intelligence (AI) methods 
have emerged as powerful tools to transform medical care (4)  
and mine medical data to aid in disease diagnosis and 
management and perhaps even augmenting, the clinical 
decision-making of doctors. 

AI involves the development of algorithms to perform 
tasks typically associated with human intelligence (5). 
Machine learning (ML) is a subfield of AI, has rapidly 
developed and likely brought changes to current clinical 
medicine practice (6,7). For cardiology (8) and prostate 
cancer (9,10),  most ML algorithms are viewed as 
mathematical models that map a set of observed variables 
(i.e., features, indicators or predictors) into a set of outcome 
variables (i.e., targets). The outcomes inferred from the 
expansion of the original scope of clinical data for study, 
therefore do not necessarily reveal the optimum pathways 
in terms of efficacy and effectiveness for real-world 
populations (11). The availability of big data of biomedicine 
(12,13) together with improvements in data mining, 
analytics, and ML modeling have sparked an increasing 
number of real-world evidence studies (14) and have 
facilitated personalized and outcome-based health care (15). 
Razavian et al. and colleagues have shown the benefit of using 
clinical data to develop predictive models of diabetes (16),  
which demonstrated a highly prevalent disorder of glucose 
metabolism.

According to Williams et al.’s study, the congenital 
heart disease (CHD) is one of the most common birth  
defects (17) that affects approximately 1% of infants born 
each year (18). In the last few years, the fields of pediatric 
CHD have experienced considerable progress with 
advances in new therapeutic and diagnostic techniques that 
can be applied at all stages of life, which from the fetus 
to the adult. Simultaneously, surgery is also advancing. 
Abnormal coagulation may occur in children with CHD 
after surgery, which often has a serious adverse impact 
on the prognosis and survival rate of children with CHD. 
In the case of limited resources, a fundamental problem 

we must face is how to predict postoperative coagulation 
abnormalities in CHD children more easily and quickly 
before surgery to implement early clinical intervention 
and greatly reduce the risk of postoperative coagulation 
abnormalities in children with CHD.

Screening, as the primary means of preventing secondary 
coagulopathy, is a regular examination involving specific 
detection methods for children with CHD before an 
operation, to alleviate the disability caused by blood 
coagulation diseases. Our study attempts to use AI 
(ML) to explore and find more sensitive indicators and a 
combination of indicators to distinguish an abnormal blood 
coagulation (configuration) state with CHD children from 
widely used medical laboratory indicators derived from 
examination data, such as conventional coagulation tests 
(CCTs) and complete blood count (CBC) combined with 
demographic characteristics, which provides better support 
for guiding blood transfusion or preventing abnormal blood 
coagulation (configuration) in CHD children. In summary, 
our study provides proof of concept for implementing an 
ML-based system as a means to help doctors in tackling 
large quantities of data, augment diagnostic evaluations, and 
provide clinical decision support.

We present the following article in accordance with 
the TRIPOD Checklist: Prediction Model Development 
(available at http://dx.doi.org/10.21037/tp-20-238).

Methods

Patient selection and characteristics

In our study, the 91,044 pediatric patients in Beijing 
Children’s Hospital, Capital Medical University, National 
Center for Children’s Health, China, from 1/1/2013 to 
9/30/2018 were collected, including multidimensional 
clinical information such as demographic characteristics 
of patients, admission information, CCTs and CBC 
information, and a total of 1,690 patients fulfilled 
the inclusion criteria, having the same normal blood 
coagulation function as CHD children before cardiac 
surgery. Cohort characteristics of children with CHD are 
presented in Table S1. Clinical data were recorded on pre-
specified forms for all patients. Case report form definitions 
and electronic health records were centrally predetermined. 
Admission and discharge diagnoses were determined by the 
attending doctors based on clinical, electrocardiographic, 
hematologic, and biochemical criteria. Patient management 
was at the discretion of the attending doctors.

http://dx.doi.org/10.21037/tp-20-238
https://cdn.amegroups.cn/static/public/TP-20-238-supplementary.pdf
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The mean age of the selected children with CHD was 
1.751±2.731 years, and 55.680% (941/1,690) were males. 
The majority had congenital pulmonary stenosis, congenital 
transposition of great arteries, ventricular septal defect, 
congenital pulmonary stenosis, congenital atrial septal 
defect, tetralogy of Fallot, congenital anomalous origin of 
pulmonary artery, congenital pulmonary atresia, pulmonary 
artery occlusion and residual shunt after repair of atrial 
septal defect. A total of 703 cases showed abnormal blood 
coagulation, and 987 cases were normal after cardiac surgery. 
These data can be used to build the prediction models 
of postoperative abnormal or normal blood coagulation 
(observation or control group) in children with CHD. 

The CCTs and CBC data were collected during the 
preoperative 48 hours to postoperative 24 hours, and the 
indicators without valid data were removed; the list is 
shown as follows. CCTs include prothrombin time (PT), 
activated partial thromboplastin time (APTT), international 
standardized ratio (INR), fibrinogen (FBG), D-dimer, 
anticoagulant enzyme III (ATIII), INR derived from PT 
and the International Sensitivity Index (ISI) (19) of the assay 
reagent. Parameters of CCTs and their reference ranges 
are in Table S2. In the study, if there was one abnormality 
indicator in the CCTs, the blood coagulation of the patient 
was defined as abnormal coagulation. 

Fasted blood was sampled, and CBC, including red 
blood cell (RBC) count, hemoglobin (HB), hematocrit 
(HCT), platelet count (PLT) and white blood cell 
count (WBC), mean corpuscular volume (MCV), mean 
corpuscular hemoglobin concentration (MCHC), and mean 
corpuscular hemoglobin (MCH), etc. was measured by an 
automated hematological analyzer Sysmex Xs-800i (Sysmex 
corporation, Kobe, Japan).

ML algorithms 

In the study, five representative supervised classification 
ML algorithms were selected. We used three prediction 
models, Decision tree, Naive Bayes, and Support Vector 
Machine (SVM), to build a prediction model based on the 
different combinations of variables described above. We 
also chose a tree-based ensemble classification algorithm 
(Random Forest) and Adaptive Boost (AdaBoost) to build 
models based on the combination of the aforementioned 
variables. Decision tree and Naive Bayes produce models 
with interpretable structures, whereas Random Forest, 
AdaBoost and SVM are “black box” models, where the 
function connecting the predictor variables with response 

is opaque to the user (20-26). Predictive performance as 
previously described (27), was assessed by the area under the 
receiver operating characteristic (ROC) curve [AUC (28)], 
calibration curve and the Lift curve (30% of the original 
cohort, randomly selected samples). The performance of 
ensemble models was compared.

Feature selection and model construction

Features were selected by applying Minimum Exponential 
Description Length (MEDL) algorithm, which was 
derived from the MEDL principle. Features were also 
selected by recursive feature elimination (RFE) as 
previously described (29). In brief, recursively considering 
increasingly smaller feature sets. In the study, we chose the 
RFE cross-validation algorithm (30), which performed the 
RFE algorithm in the cross-validation cycle, to identify the 
optimal number of important indicators. Then, ML models 
(SVM, random forest classifier, etc.) were trained using 
70% training set and 30% test set (31). The detailed process 
of features and model selection is shown in Figure 1.

A f ter  preopera t i ve  CCTs and  CBC tes t  da ta , 
demographic characteristics data were selected to build the 
Decision tree classifier model, SVM classifier model, Naive 
Bayes model, AdaBoost model or Random Forest classifier. 
The ML algorithms were implemented using Python 3.7.4 
(https://www.python.org) with scikit-learn (https://scikit-
learn.org/stable/). 

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The Ethics 
Committee of Beijing Children’s Hospital, Capital Medical 
University gave expedited approval to review and use the 
medical data, such as electronic health records (ID: 2018-
126). The pediatric patients or their guardians were not 
required to provide written informed consent for our 
study because of the retrospective nature of the study. The 
authors have no other ethical conflicts to disclose.

Statistical analysis

The results were expressed as the mean ± standard deviation 
(SD) for parametric variables and as frequencies/percentages 
for nonparametric and categorical variables. Differences 
between groups were analyzed using the Mann-Whitney 
U test. All analyses were performed using Stata/IC version 

https://cdn.amegroups.cn/static/public/TP-20-238-supplementary.pdf
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Figure 1 Feature selection and model building processes for predicting the postoperative blood coagulation state of children with CHD. 
The original cohorts or data was randomly divided into 70% of training cohort and 30% of test data. Feature selection was performed by 
RFE through 5-fold cross-validation. CHD, congenital heart disease; RFE, recursive feature elimination. 
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16.0 (College Station, TX, Stata Corp. LLC.) or R version 
3.6.1 (R Foundation for Statistical Computing). Statistical 
significance was considered when P values were <0.05.

Results 

Primary objective prediction

Important feature for model building
Based on the analysis, we concluded that the verification 
results of the data mining algorithms were basically 
consistent with the statistical description results. The 
observation group and the control group had certain 
similarities in the distribution. Age and sex play key roles 
in the construction of ML classification models, even after 
the completion of a more accurate data selection process 
for age and sex. Therefore, age and sex would be included 
in subsequent ML classification models as predictors. In 
addition, some important indicators were selected, such as 

MCV, MCH, and MCHC. In summary, five features were 
selected as important predictors on the basis of data-driven 
and medical selection, as shown in Table 1.

Classification modeling evaluation
It can be seen from the statistical data that the AUC values 
obtained by the prediction model are relatively high, 
indicating that the selected indicators are more effective. 
The AUCs of the three models were 0.81, 0.82, and 0.82, 
respectively, which were very close and showed impressive 
performance. Among them, the true positive rates (TPRs) 
of both the Decision tree and the SVM prediction models 
reached more than 80%. For model selection, the AUC was 
a general metric of performance. However, AUC was not 
the unique indicator. Their overall accuracies, which were 
75.95%, 75.63%, and 75.79%, also indicated that the result 
was highly effective. Among them, the Decision Tree model 
was selected to verify the model reliability because it had 
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the best TPR. Further improvements of the classification 
model need to be achieved for a better prediction result. 
The specific results are shown in Table 2 and Figure 2.

Improved modeling for further prediction

Exploration of important features
The Decision tree-based algorithm was used to explore 
the important features related to postoperative blood 
coagulation of  children with CHD. The variable 
exploration results were as follows (Figure 3). A total of 7 

important features were selected as important predictors 
for modeling on the basis of data-driven and medical 
selection, the same as primary objective prediction, as 
shown in Table 3. The establishment of prediction models 
for predictors can be roughly divided into two aspects: 
patient attribute characteristics: age, sex; patient-specific 
test features: MCV, MCH, MCHC, WBC, and PLT.

ML models building

Based on the data processing in the above section, different 
types of supervised learning algorithms were used to 
explore the prediction model. The seven important 
features were included in the learning first. The target 
variable “postoperative abnormal blood coagulation” was 
the outcome indicator. Therefore, ML was a prediction 
model based on multidimensional features, which has better 
clinical application values. Finally, the three best prediction 
models were selected, and the ROC curve results are shown 
in Figure 4. The AUCs of the AdaBoost model, Random 
Forest model and SVM model are 0.8405, 0.8406 and 
0.8387, respectively.

Evaluation of ML models
For the three prediction models above, the method based on 

Figure 2 ROC curves of machine learning models. Decision tree, Naive Bayes and SVM are shown in A, B and C, respectively, which are 
the ROC curve area charts of the models. ROC, receiver operating characteristic; SVM, Support Vector Machine. 
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Table 1 Exploration of important indexes for the postoperative 
blood coagulation function of children with CHD

Indexes Number Coefficient Non-null/total

Age 1 0.1842 1,737/1,737

MCV 2 0.0318 1,378/1,737

MCH 3 0.0180 1,378/1,737

Sex 4 0.0065 1,737/1,737

MCHC 8 0.0012 1,378/1,737

CHD, congenital heart disease; MCV, mean corpuscular volume; 
MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular 
hemoglobin concentration.

Table 2 Prediction model of the postoperative blood coagulation function for children with CHD

Prediction model AUC True False Accuracy

Decision tree 0.81 84.21% 30.05% 75.95%

Naive Bayes 0.82 73.31% 22.68% 75.63%

Support Vector Machine 0.82 82.71% 29.23% 75.79%

CHD, congenital heart disease; AUC, area under the receiver operating characteristic curve.
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the calibration curve was used for further evaluation. The 
calibration curve is a scatter plot of the actual incidence and 
the predicted incidence. The results are shown in Figure 5.  
The SVM model is black, the Random Forest model is blue, 

and the AdaBoost model is yellow; the SVM model and 
Random Forest model fit better than the others.

Performance evaluation of excellent models with Lift
The Lift curve is one of the most commonly used methods 
for ML classification. Lift reflects how many times the 
accuracy of prediction improves compared to random 
selection or inference (naive prediction) without using a 
prediction model. Lift reveals the effect of the prediction 
model. Unlike the ROC curve, the Lift curve is convex 
toward the [0, 1] point, and we want to obtain the largest 
Lift [>1], that is to say, the right half of this curve should 
be as steep as possible. To obtain a more reliable evaluation 
of the performance of the prediction model, this study will 
comprehensively apply ROC curves and Lift curves to verify 
the performance of the model based on different algorithms. 
The larger the Lift value of the prediction model is for 
the SVM model, the better the model effect. As shown in 
Figure 6, for children with CHD, the SVM model predicted 
postoperative abnormal blood coagulation, Lift =2.2, which 
is 2.2 times more accurate than simple prediction, and 
postoperative normal blood coagulation, Lift =1.8, which 
is 1.8 times more accurate than simple prediction. The Lift 
curve basically shows a downward trend, also suggesting 
that the SVM model has good prediction performance.

Statistical evaluations with test differences
Statistical tests were performed to distinguish the 
differences between the observation group (abnormal 
blood coagulation) and the control group (normal blood 
coagulation) on variables to verify the conclusions from 
the ML algorithms, which showed that all of the important 
variables used for classification modes had significant 
differences between the observation and control groups. 
First, a normality test was carried out, and the results 
showed that all the P values of the five indicators were 
less than 0.001 (data not shown), and none of them had 
passed the normality test, so they did not follow the normal 
distribution. Therefore, a nonparametric test should be 
used for further tests. The P values of the indicators were 
all less than 0.001, expect for PLT (Table 4), which indicated 
that the distributions of the two groups on the important 
indicators were different. The results proved the reliability 
of the classification model built by ML algorithms.

Discussion

ML is classified into three paradigms based on the targets: 

Table 3 Top 7 important indicators for postoperative blood 
coagulation of children with CHD

Importance Feature Rank

0.3853 Age 1

0.1121 MCV 2

0.0998 MCH 3

0.091 MCHC 4

0.0794 WBC 5

0.0772 PLT 6

0.0233 Sex 7

CHD, congenital heart disease; MCV, mean corpuscular volume; 
MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular 
hemoglobin concentration; WBC, white blood cell count; PLT, 
platelet count.

Figure 3 Exploration of the important features related to 
postoperative blood coagulation by the Decision tree-based 
algorithm. MCV, mean corpuscular volume; MCH, mean 
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin 
concentration; WBC, white blood cell count; PLT, platelet count; 
HCT, hematocrit; HB, hemoglobin.
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Figure 4 The ROC curves of three ML models for postoperative blood coagulation prediction. (A) AdaBoost model; (B) Random Forest 
model; (C) Support Vector Machine model. ROC, receiver operating characteristic; ML, machine learning. 
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Figure 6 The Lift curve with Support Vector Machine model. 
“Class 0” indicates postoperative normal blood coagulation 
of children with CHD, and “Class 1” indicates postoperative 
abnormal blood coagulation of children with CHD. CHD, 
congenital heart disease.

Figure 5 The calibration curve and a scatter plot of the actual 
incidence and the predicted incidence. SVM, Support Vector 
Machine. 

supervised, unsupervised, and reinforcement learning (32). 
ML algorithms display improved predictive function and 
low error in certain study fields, allowing the extraction of 
clinically relevant information from test data (33-36). In 
particular, ML classifiers have already demonstrated strong 
performance in image-based diagnoses. However, the 
analysis of diverse and test data remains challenging. Here, 
we show that ML classifiers tackle test data in a manner 
similar to the hypothetic-deductive reasoning used by tests 
and unearth associations that previous statistical methods 
have not found.

In the study, by applying ML approaches, we have 
developed several ML-based prediction models for 
postoperative blood coagulation of children with CHD. 
We chose the algorithms with classical methods and 
excellent application practices to design an analytical 

method. As previously, Decision tree is a regular and useful 
classification method in ML based on a global optimal 
solution. Naive Bayes is an analytical method based on 
conditional probability, which is effective in predicting 
most datasets (37). SVM is an excellent technology with 
independent integrity theory (38). SVM, Random Forest 
and AdaBoost are “black box” models with response is 
opaque to us. Among them, the AUCs ranged from 0.81 to 
0.84 in this study. These results indicate that the ML-driven 
coagulation model is more abundant and more robust than 
the model developed using traditional statistical methods. 

From a classical and methodological perspective, 
we provide proof of concept for clinicians, especially 
cardiologists (CHD), in adopting the use of ML predictive 
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models. With digitalization of electronic medical records, 
especially test data, and higher accessibility to biologic 
and genetic patient data, the data we have on patients is 
exponentially growing. Therefore, it will be necessary for 
techniques similar to the ones described. From a clinical 
perspective, candidate risk factors for postoperative 
abnormal blood coagulation were evaluated and ranked. 
Some factors, such as MCV, MCH, and MCHC, are 
modifiable and could serve as targets for therapeutic 
intervention by blood transfusion, such as plasma or platelet 
transfusion.

In a wide range of medical diagnostic models, age and 
sex are the two most basic variables, which are related to 
most diagnostic predictions and are even closely related. 
Controlled studies based on a large number of retrospective 
clinical data from the real world are different from 
prospective studies in the controllability of all variables 
involved in our study. The differences between the 
observation group and the control group in age and sex are 
general and popular, which has resulted in great difficulties 
in comparative studies. 

All cases of postoperative abnormal blood coagulation 
with CHD children screened out from 1,690 samples 
were selected as the observation group. According to the 
distribution characteristics of sex and age in the control 
group, CHD children who had normal coagulation and 
similar distribution characteristics of sex and age were 
randomly selected as the control group from test data in 
order to make the statistical analysis of the two groups more 
effective and reliable. However, the age and sex still play 
important roles in feature exploration. The age and sex 
will be included in the subsequent classification model for 

classification prediction performance.
We further explored a new combination of indicators 

that could distinguish between normal and abnormal 
blood coagulation. A series of baseline classification 
models for distinguishing between postoperative normal 
blood coagulation and abnormal blood coagulation in 
children with CHD were established. Through continuous 
improvement and adjustment, optimal prediction models 
for abnormal blood coagulation in children with CHD were 
finally obtained. Data mining and statistical algorithms 
were used to evaluate the effect of the models. The best 
predictive model for abnormal coagulation in CHD 
children was built based on test data. By analyzing 1,690 
cases, we found that the classification models built with 
variables including age and sex had an average classification 
accuracy of 75.79%. The AUCs for those models ranged 
from 0.81 to 0.83. 

In addition, to further explore the better models, 
the Decision tree-based algorithm was used to explore 
the important features related to postoperative blood 
coagulation of children with CHD. WBC and PLT were 
further selected as important predictors and used the seven 
prioritized features for modeling on the basis of data-
driven and medical selection, the same as primary objective 
prediction (Table 3). Among them, the TPR (sensitivity) of 
the AdaBoost, Random Forest and SVM prediction models 
reached more than 80% in the ROC curve. The AUCs of 
three models above also indicated good performance. With 
the combination of calibration curves and Lift curves, the 
better fit is the SVM model, which predicted postoperative 
abnormal coagulation and postoperative normal coagulation 
more accurately than the simple prediction. Further, the 
difficulty of screening for abnormal coagulation in CHD 
children is reduced, that is, the general test indicators can 
achieve a relatively accurate screening result of abnormal 
coagulation in CHD children, further reducing the cost and 
difficulty of screening for abnormal coagulation in CHD 
children. 

The process of data analysis in this study included variable 
exploration, variable verification, model establishment and 
model verification. By applying data mining algorithms such 
as SVM, we obtained an excellent classification model. The 
reliability could then be proven by data mining algorithms 
and statistical tests. These may provide a new angle of 
thought for clinical scientific research. In addition to those 
quantitative indicators mentioned above, which mainly 
refer to numeric biochemical indicators obtained using data 
mining algorithms, there are also many other available data 

Table 4 Statistical verification of the important variables between 
normal and abnormal blood coagulation

Indicator Z P

MCV −10.651 <0.001

MCH −7.329 <0.001

MCHC −5.199 <0.001

WBC −5.990 <0.001

PLT −0.741 0.459

Age −21.207 <0.001

MCV, mean corpuscular volume; MCH, mean corpuscular 
hemoglob in ;  MCHC,  mean corpuscu la r  hemoglob in 
concentration; WBC, white blood cell count; PLT, platelet count.
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types, such as text analysis for imaging reports or other 
analyses for medical images, and so on. With increasing data 
dimensions, a further increase in model accuracy is expected.

Conclusions

The coagulation status of children with CHD may 
change after operation, so it is very important to predict 
coagulation abnormality early. The SVM coagulation 
model exhibited an improved predictive performance (the 
highest sensitivity) for the postoperative blood coagulation 
state of children with CHD, and the age, sex, MCV, 
MCH, MCHC, WBC and PLT may be the key features 
for prediction. Further prospective multicenter studies 
with multiple datasets are needed to confirm our results 
and to reduce the influence of the imbalance in the target 
variables. Moreover, predicting blood product transfusion 
requirements during perioperative period of CHD children 
remains difficult. Further research may help determine 
the role of cardiac function in the treatment strategy of 
coagulation function as guidance, such as plasma or platelet 
transfusion. Based on the application of ML technology and 
data mining algorithms, combined with the large quantities 
of clinical data in the real world, using relevant medical 
knowledge to carry out independent mining exploration 
processes can provide a new reference basis for the early 
diagnosis of coagulation function and a new perspective for 
medical research.
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