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Abstract

SgrAI is a type IIF restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-
modulation of cleavage activity and sequence specificity. Previous studies have shown that DNA bound dimers of SgrAI
oligomerize into an activated form with higher DNA cleavage rates, although previously determined crystal structures of
SgrAI bound to DNA show only the DNA bound dimer. A new crystal structure of the type II restriction endonuclease SgrAI
bound to DNA and Ca2+ is now presented, which shows the close association of two DNA bound SgrAI dimers. This
tetrameric form is unlike those of the homologous enzymes Cfr10I and NgoMIV and is formed by the swapping of the
amino-terminal 24 amino acid residues. Two mutations predicted to destabilize the swapped form of SgrAI, P27W and P27G,
have been made and shown to eliminate both the oligomerization of the DNA bound SgrAI dimers as well as the allosteric
stimulation of DNA cleavage by SgrAI. A mechanism involving domain swapping is proposed to explain the unusual
allosteric properties of SgrAI via association of the domain swapped tetramer of SgrAI bound to DNA into higher order
oligomers.
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Domain swapping involves the exchange of identical folding

motifs between two copies of the same polypeptide chain [1], and

as a result, a tight oligomer is formed. Such swapping has been

found in many oligomeric proteins, where the swapped form is the

biologically natural form [2] and in some cases where binding to a

receptor brings two copies of a polypeptide together [3]. Domain

swapping can in principle also lead to aggregation, as may occur in

some amyloid diseases [4]. Clear cases of reversible domain

swapping, serving to alter natural functions such as enzyme

activity or specificity, are less well known.

Sequence-specific endonucleases capable of cleaving longer

recognition sequences are highly sought for use in genomic work,

as longer sequences occur less frequently and allow the

manipulation of larger DNA fragments. The type IIF restriction

endonuclease SgrAI cleaves a relatively long cognate, primary site

sequence, CR|CCGGYG (R = A or G, Y = C or T, | denotes cut

site) [5]. However, SgrAI also exhibits unusual biochemical

properties; under certain conditions SgrAI cleaves plasmids

bearing two copies of its recognition sequence faster than those

bearing only a single site [6–8]. Further, SgrAI will also cleave at

secondary sites containing the sequences CR|CCGGY(A,C,T)

and CR|CCGGGG but only appreciably when the plasmid

contains a primary site [9,10]. Secondary sites are distinct from

star sites, in that secondary sites are cleaved under solution

conditions that are also optimal for cognate sequence cleavage. In

contrast, star site sequences are cleaved appreciably only under

special reaction conditions, such as high enzyme concentrations or

the presence of organic solvents or Mn2+, and are discriminated

against under optimal enzyme conditions by 2–4 orders of

magnitude [11].

Type II restriction endonucleases typically bind and recognize

palindromic sequences as dimers [11,12], but the unusual

biochemical properties exhibited by SgrAI suggest the formation

of a higher order oligomer, containing altered enzymatic

properties. For example, at low enzyme concentrations SgrAI

cleaves plasmids bearing one or two sites at equal rates, but higher

concentrations of enzyme result in the faster cleavage of the two

site plasmid [7,8]. This suggests that SgrAI forms a tetramer, or
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higher order species, on the DNA and cleaves two SgrAI sites in a

concerted manner, similarly to that reported for the pseudodimer

Sau3AI [13]. The event or process that leads to stimulation of

DNA cleavage activity must occur through three-dimensional

space, as the accelerated and concerted cleavage also occurs with

plasmids each bearing a single site but connected by catenation

[8]. Cleavage at primary site sequences in plasmids can also be

stimulated by the addition of oligonucleotides containing the

primary site sequence, intact or mimicking the cleavage products

of SgrAI [8–10]. Analytical ultracentrifugation (AUC) shows that

SgrAI exists as a dimer in the absence of DNA but forms both

DNA bound dimers and high molecular mass aggregates in the

presence of a 20 base pair DNA containing its recognition site [7].

The stoichiometry of this mixture of species has been determined

by titration of DNA with SgrAI in AUC sedimentation velocity

experiments showing one dimer of SgrAI per DNA duplex [7].

The DNA cleavage turnover number, kcat, of SgrAI with its

cognate sequence shows a sigmoidal dependence on SgrAI

concentration, consistent with the formation of an activated

oligomer at the higher enzyme concentrations [7,8]. The DNA

cleavage rate also shows a sigmoidal dependence on DNA

concentration, suggesting that DNA binding stimulates the

formation of the activated conformation, which is presumably a

tetramer or higher molecular weight species [10].

In addition to the stimulation of cleavage at cognate sequences,

CR|CCGGYG, cleavage at secondary sites (CR|CCGGY(A,

C,T) and CR|CCGGGG) by SgrAI can also be stimulated using

the appropriate conditions. The cleavage at secondary sites is

200-fold slower relative to cognate [9], but this difference is

reduced to only 10-fold when the secondary sites are adjacent to

DNA ends simulating the products from cognate DNA cleavage

[9]. The stimulation also involves an interaction in three

dimensions, as stimulation of cleavage at secondary sites can be

induced on a plasmid catenated to a plasmid containing the

cognate sequence [8].

The related enzymes, Cfr10I [14,15] and NgoMIV14, which

cleave sequences R|CCGGY and G|CCGGC, respectively, form

stable tetramers in both the presence and absence of DNA. Yet the

crystal structures of SgrAI bound to cognate DNA CACCGGTG

determined previously show only a dimer of SgrAI bound to a

single duplex of DNA [16]. In this structure the central CCGG

sequence is recognized by SgrAI using the same side chain-DNA

contacts found in the structure of NgoMIV bound to DNA. The

degenerate base pairs of the sequence, in the second and seventh

positions (CRCCGGYG), appear to be recognized by indirect

readout, and the outer base pair (CRCCGGYG) is recognized by

a single contact from an arginine side chain to the G. However,

these structures did not shed light on the mechanism of activation

and sequence modulation seen in the SgrAI cleavage studies. We

have recently shown that SgrAI forms oligomers of DNA bound

dimers with primary site DNA at sufficient concentrations of

enzyme and DNA [17]. These high molecular weight species

(HMWS) occur under nearly identical conditions as the stimula-

tion of SgrAI mediated primary and secondary site DNA cleavage.

We have proposed that the HMWS are the activated form of

SgrAI, or are at least a pre-requisite for the stabilization of the

activated form. Here we present a new structure of SgrAI bound to

DNA showing the close interaction of two DNA bound dimers.

This tetrameric form is completely unlike those of Cfr10I or

NgoMIV, as the tetrameric interface is at the opposite side of the

dimer and is stabilized by swapping of the amino terminal 24

amino acid residues. A mechanism for the modulation of

specificity is postulated and tested by analysis of the effects of

mutations designed to destabilize the domain swapped tetramer.

The mutant enzymes show complete loss of allosteric stimulation,

as well as the inability to form HMWS.

Results

Overall Structure
The structure of SgrAI bound to DNA has been refined to

2.03 Å (Table 1) with Rcryst of 20.3% and Rfree of 25.2% and

deposited in the RCSB Protein Data Bank with id 3MQ6. The

structure shows the same global conformation of the protein as

described previously [16], however the amino terminal 24 residues

of each subunit appear to be swapped with a subunit of a

neighboring dimer (space filling spheres, Figure 1A). The domain

swapping, along with other contacts between the two dimers

(Figure 1B), create a tetramer of SgrAI bound to two DNA

duplexes. The crystallographic asymmetric unit contains two such

tetramers. Residues 25–30 of each subunit comprise a linker, or

hinge loop as it is referred in domain swapped structures, in the

domain swapping, as these residues take on a different conforma-

tion in the swapped structures than in the previously described

unswapped structures [16]. Figure 2 shows electron density in the

vicinity of the swapped domains of subunits B and G, with the

trace following a swapped (Figure 2A) or unswapped route

(Figure 2B). Electron density for the hinge loop residues of subunits

A, D, and E was poor and these residues could not be modeled.

The domain swapped tetramer of SgrAI is completely unlike the

tetramers of NgoMIV or Cfr10I. The SgrAI dimers interact across

the DNA binding face using the swapped amino terminal domains

(Figure 1A shows the unswapped dimer of SgrAI, Figure 1B shows

the domain swapped tetramer of SgrAI). In addition to the

swapping interaction, approximately 400 Å2 is buried between

non-swapping subunits of the tetramer from different dimers (for

example, subunits B, salmon, and H, sand). Figure 1C shows a

tetramer of NgoMIV bound to DNA, with the subunits of the top

dimer (salmon, teal; Figure 1C) oriented as those of the bottom

dimer of SgrAI (salmon, teal; Figure 1B), illustrating the different

interfaces between dimers in the two tetramers. The contacts to

the recognition sequence, CACCGGTG, by SgrAI are identical to

those described previously [16]. The crystals were grown in a

solution containing 50 mM CaCl2, and two Ca2+ are bound in

each active site at positions found previously [16].

Author Summary

Restriction endonucleases protect their bacterial hosts
from viral infection by cleaving any invading viral DNA.
One such enzyme, SgrAI, cleaves DNA very slowly but can
be activated to cleave DNA 200 times more rapidly.
Activation occurs when the enzyme interacts with two or
more copies of DNA containing its recognition sequence.
We have recently discovered that this enzyme forms
polymers when activated. Polymerization may function to
sequester the activated enzyme away from, and thereby
protect, the host DNA. We have determined the three-
dimensional structure of two SgrAI enzymes, each bound
to their recognition sequence, interacting in a way that
may occur in the polymer. The observed interaction
involves a very unusual swapping of parts of each enzyme,
termed domain swapping, which has rarely been found in
enzyme activation. In support of the idea that this
interaction operates during polymer formation and
activation of SgrAI, we have shown that mutations
designed to interfere with the interaction eliminate both
activation and polymerization of the enzyme.

Domain Swapping in SgrAI
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Analysis of the 2-fold axes in the two tetramers of the

asymmetric unit reveals a slight difference, corresponding to a

2.5u rotation of one dimer relative to the other. The symmetry

within each tetramer shows a small deviation from perfect 222

symmetry, where a total of three 2-fold axes occur orthogonal to

one another. The deviation occurs in that the 2-fold axes that

relate the two subunits of each dimer in the same tetramer are not

coincident and instead are 10u apart (Figure 3A–B). This leads to a

slight tilting of one dimer relative to the other in each tetramer

(Figure 3B). A difference also exists in the hinge loops (residues 25–

30) that connect the swapped domain (residues 1–24) with the rest

of each subunit (31–339). In both tetramers, composed of A, B, G,

and H in tetramer 1 and E, F, C, and D in tetramer 2, the hinge

loops are better ordered in one swapped pair than the other. In

tetramer 1 (Figure 3A–B), the hinge loops of swapping pairs B and

G are relatively well ordered, while those of A and H are not, and

residues 25–30 of subunit A could not be modeled. In tetramer 2,

the hinge loops of swapping pairs C and F are well ordered, while

those of D and E are not, and residues 25–30 could not be

modeled in either subunit. In both tetramers, the better ordered

hinge loops occur on the same face of the slightly asymmetric

tetramer (Figure 3B). Although the electron density for the hinge

loop of subunit A could not be modeled, the electron density for

the hinge loop of subunit H allowed modeling in the swapped

conformation, suggesting that swapping does occur between

subunits A and H. In the absence of defined electron density for

the hinge loops of subunits D and E, the possibility exists that these

subunits are not domain swapped, yet it should be noted that the

hinge loops of the unswapped forms do not show the same degree

of disorder [16].

DNA Binding Assays
Only the conformations of residues 25–30 differ in the swapped

and unswapped conformations of SgrAI (Figure 4); therefore, to

test the role of the domain swapped form in the allosteric activity

exhibited by SgrAI, two single site substitutions, P27G and P27W,

were designed and prepared. First, as a control, the equilibrium

dissociation binding constants (KD) of purified P27W and of P27G

SgrAI were measured using a fluorescence polarization assay

(FPA) and fluorophore labeled DNA (Table 2). The assays were

performed at 4uC in buffer containing Ca2+ ions (20 mM Tris-

OAc pH 8.0, 50 mM KOAc, 10 mM Ca(OAc)2, 1 mM DTT),

which inhibit DNA cleavage while enhancing DNA binding

affinity. All data fit well to a 1:1 binding model without

cooperativity. Wild type SgrAI binds to an 18 bp DNA containing

a primary site sequence (18-1) with a KD of 0.660.2 nM [17]. The

mutations P27G and P27W SgrAI weaken the affinity of SgrAI for

this DNA, however the affinities are still quite tight

(KD = 1765 nM in the case of P27G, 4.060.8 nM in the case

of P27W). Binding to PCP (precleaved primary site DNA) appears

not to be diminished by any detectable amount by these

mutations, with a KD of 662 nM for the wild type enzyme

[17], compared to 562 nM and 962 nM for the P27G and P27W

SgrAI enzymes, respectively. The binding affinity of the mutant

enzymes to secondary site DNA (18-2) was not measured, since

native PAGE (see below) indicated very weak binding

(KD.1 mM).

Single Turnover DNA Cleavage Assays
Single turnover DNA cleavage rates were measured for P27W

and P27G SgrAI with 18 base pair duplex oligonucleotides

containing a primary site (18-1) sequence (Table 3). The assays

were conducted at 37uC with 1 nM 32P labeled 18-1 DNA and

1 mM enzyme, with varying concentrations of added precleaved

primary site DNA (PCP). They were also performed side-by-side

with those for the wild type enzyme, with careful attention paid to

the possible dissociation of PCP into single stranded DNA from

repeated freeze thawing. The results show rate constants similar to

wild type SgrAI in the absence of PCP (wild type: 0.0946

0.015 min21; P27G: 0.0660.02 min21; P27W: 0.03760.005 min21).

However, while the wild type enzyme is stimulated .200-fold

with 1 mM PCP, the mutant enzymes are hardly stimulated at all,

2–3-fold at best. The cleavage rate constants of secondary site

DNA by the two mutant enzymes was not measured, as cleavage

was undetectable likely due to very weak binding.

Native Gel PAGE Analysis of HMWS Formation
We have used native PAGE to separate different forms of

enzyme bound DNA from free DNA and have found two different

sizes of enzyme/DNA complexes [17]. The assay utilizes Ca2+ in

the place of Mg2+ to facilitate tight DNA binding without cleavage,

just as in the DNA binding affinity measurements, and is also

performed at 4uC. We identify the faster migrating species as DNA

bound dimer (DBD), and the slower as HMWS, composed of

oligomers of DBD [17]. A titration using unlabeled PCP with

1 nM 32P labeled 18-1 or 18-2 and 1 mM wild type SgrAI indicates

that HMWS forms appreciably at and above 100 nM PCP, and all

DBD is shifted to HMWS at 1,000 nM PCP (Figure 5A).

However, no HMWS are detected with either mutant enzyme,

P27G or P27W SgrAI, under the same conditions (Figure 5B–C).

Table 1. Diffraction data and structure refinement statistics.

Code S87

PDB code 3MQ6

Beamline SSRL BL9-2

Processing program HKL2000

DNA 17-2 Cognate

Space group P212121

Cell 130.38 Å, 134.95 Å, 237.49 Å

Resolution 2.03 Å

Total observations 1,625,899

Unique observations 254,711

% complete 99.6%

I/sigma 30 (2.6)

Multiplicity 3.2 (3.0)

Rmerge1 7.1% (69.3%)

Rcryst2 20.3%

Rfree3 25.2%

Overall B factor (Å2, Wilson plot) 37.8

RMSD-bonds 0.023

RMSD-angles 1.07

Asymmetric unit 4 SgrAI dimers/4 DNA duplexes

Numbers of waters 1,296

Number of divalent cations 22 Ca2+

1Rmerge =Shkl(|,Ihkl. 2 Ihkl|)/(Shkl Ihkl), where ,Ihkl. is the average intensity
over symmetry related and equivalent reflections and Ihkl is the observed
intensity for reflection hkl.

2Rcyst =Shkl(||Fobs| 2 |Fcalc||)/(Shkl|Fobs|) where |Fobs| and |Fcalc| are the observed
and calculated structure factor amplitude for reflection hkl. The sum is carried
out over the 98% of the observed reflections which are used in refinement.

3Rfree refers to the R factor for the test reflection set (2% of the total observed),
which was excluded from refinement.

doi:10.1371/journal.pbio.1000554.t001

Domain Swapping in SgrAI
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In addition, the mutants appear to bind only weakly to 18-2. The

lack of HMWS formation cannot be due to weak PCP binding, as

both mutants bind PCP as tightly as wild type (Table 2). With

P27W SgrAI, a slowly migrating band is found in lanes with low

PCP concentration (Figure 5B) that disappears with higher PCP,

hence showing behavior opposite to the HMWS formation by wild

type SgrAI. This band may be a result of aggregation of additional

SgrAI dimers on the 1:1 SgrAI/DNA complex, as it disappears

with additional PCP where more of the enzyme is expected to be

bound to DNA.

Discussion

Several structures of SgrAI bound to cognate (CACCGGTG)

and noncognate (GACCGGTG) DNA, with Ca2+ or Mn2+, have

been determined (Dunten et al. 2008 [16] and current work). In

all, SgrAI forms a dimer very similar to those of Cfr10I and

NgoMIV. Alignments of the structures show that SgrAI is more

similar to Cfr10I, having some small deletions, and several

insertions relative to Cfr10I [16]. NgoMIV and Cfr10I form

tetramers in the crystal structures, with the tetrameric interface on

the side of the dimer opposite to that of the DNA binding site (i.e.

tail-to-tail). The new structure of SgrAI described here shows a

tetramer that is unlike the NgoMIV and Cfr10I structures, with

the tetrameric interface of SgrAI at the DNA binding face of the

dimer (i.e. head-to-head) stabilized by the swapping of the amino-

terminal 24 residues of each subunit (space filling spheres,

Figure 1A). Residues 25–30 comprise the hinge loop that adopts

a different conformation in the swapped form (Figures 2, 4). The

SgrAI ‘‘swapping’’ domain is absent in NgoMIV and Cfr10I.

The biochemical data suggest that SgrAI can exist in at least two

conformations, with one possessing an inherently greater DNA

cleavage activity than the other. The observed stimulation of DNA

cleavage activity could be accomplished by shifting the equilibrium

from the low to the high activity form, possibly stabilized by higher

order oligomers that favor the high activity conformation. The rate

of DNA cleavage could be controlled by the positioning of groups in

the active site, where the optimal alignment results in faster DNA

cleavage kinetics. Analysis of the active sites of all SgrAI structures

solved to date (Dunten et al. 2008 [16] and current work) shows very

similar placement of all groups including the DNA in the various

crystal structures, indicating that only a single conformation of the

enzyme has been determined, which we have argued to be the low

activity conformation [16].

Figure 1. Tetrameric structure of SgrAI. (A) Dimeric structure of SgrAI bound to primary site DNA (PDB code: 3DVO) [16]. Residues of the
swapping domain (1–24) shown in space filling spheres. Residues of the hinge loop (25–30) shown as sticks. Residues 31–339 shown as ribbons, and
the bound DNA (black) shown as cartoon. Bound Ca2+ ions shown as black spheres. (B) Tetrameric structure of SgrAI with subunits A, B, G, and H
labeled and colored in teal, salmon, slate, and sand, respectively. Each subunit swaps the amino-terminal 24 amino acid residues (shown as space
filling spheres) with those of a subunit in an opposing dimer. Residues of the hinge loop (25–30) shown as sticks. Residues 31–339 shown as ribbons,
and the bound DNA (black) shown as cartoon. Bound Ca2+ ions shown as black spheres. (C) Ribbon diagram of NgoMIV (PDB code: 1 FIU) (subunits in
teal, salmon, slate, and sand) bound to DNA (black) and Mg2+ (black spheres).
doi:10.1371/journal.pbio.1000554.g001

Domain Swapping in SgrAI
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To test the relevance of the domain swapped tetramer in the

biochemical activity of SgrAI, two mutants were designed, P27G

and P27W, predicted to destabilize the swapped conformation

(Figure 4B), through introducing either increased flexibility with

the glycine residue or steric conflicts with the large bulky

tryptophan side chain. We found that both mutations disrupted

the allosteric stimulation of DNA cleavage by SgrAI, without

affecting the unstimulated DNA cleavage rate on the primary site

sequence (Table 2), and without appreciably affecting binding

affinity to uncleaved or precleaved primary site (Table 3). In

addition, the activity of P27W SgrAI on plasmids containing either

one or two primary site sequences shows that the presence of a

second primary site does not appreciably accelerate DNA

cleavage, as it does for the wild type enzyme (Text S1, Figures

S1–S2). Further, the cleavage pattern of P27W SgrAI does not

involve concerted cleavage of the two primary site sequences

(Figure S2). Thus the plasmid assays also indicate that P27W

SgrAI does not form the activated oligomer proposed to explain

the fast, concerted cleavage by wild type SgrAI [6–8].

In addition to diminishing the ability of the SgrAI enzyme to be

activated in DNA cleavage, the mutations were also found to

eliminate the formation of HMWS under conditions where

HMWS are formed by wild type enzyme (Figure 5). These results

support our previous hypothesis that the HMWS is the activated

form of SgrAI [17]. They also support a role for the interface

between DBD seen in the structure of the domain swapped

tetramer presented here in forming HMWS. Although species as

small as tetramers are suggested by the accelerated cleavage of

plasmids containing two primary site DNA sequences [6–8], our

measurement of HMWS formed by wild type SgrAI and primary

site containing DNA indicates species much larger than tetramers

are formed [17]. Therefore if the tetramer found in the crystal

structure is a building block of the HMWS, a second interface

between the DNA bound dimers in addition to the domain

swapped interface must exist, in order to form run-on oligomers of

the size and heterogeneity seen in HMWS; an attractive possibility

is the interface used by NgoMIV and Cfr10I (Figure 1B–C).

The effect of the mutations on binding to secondary site DNA

was unexpected. Wild type SgrAI binds to both primary and

secondary site DNA very tightly, with slightly tighter affinity (,4-

fold) for the primary sequence [17]. Therefore wild type SgrAI

seems to discriminate very little between the two sequences at the

binding level. Yet these single site substitutions, P27W and P27G,

Figure 3. Geometry of SgrAI tetramers. (A) Positions of 2-fold
rotational axes of each dimer in tetramer 1, composed of subunits A, B,
G, and H, shown as black lines with a black oval. Subunit colors as in
Figure 1A–B. Swapped domains and ordered hinge loops represented
by circles and lines with the color of their parent subunit. The hinge
loop of subunit A is not ordered. (B) Side view of the tetramer shown in
Figure 3A showing the positions of the 2-fold axes. The 2-fold dimeric
axis of the upper dimer (subunit G, slate; subunit H, sand; Figure 3A) is
9u from that of the lower dimer (subunit A, teal; subunit B, salmon;
Figure 3A) and 10u in tetramer 2.
doi:10.1371/journal.pbio.1000554.g003

Figure 2. Electron density at swapping hinge loops. (A) 2Fo-Fc
SA omit electron density map at 1 s for residues 23–31 of subunits B
(salmon) and G (slate). Ribbon representation of SgrAI subunits shown
in swapped conformation. (B) As in (A) with unswapped conformation.
doi:10.1371/journal.pbio.1000554.g002

Domain Swapping in SgrAI
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affect affinity very strongly for the secondary, but not the primary,

sequence where the KD is shifted from nanomolar to micromolar.

The origin of this effect is unknown and requires further

investigation.

The SgrAI biochemical and structural data have some

similarities to those of another type IIF restriction endonuclease,

SfiI [18,19]. SfiI is a tetramer in solution [19] that cleaves two

copies of its recognition sequence in a concerted manner. The

crystal structure of SfiI with its recognition sequence DNA show a

tetrameric arrangement similar to that of NgoMIV, although the

subunit structure is more like the dimeric BglI [18]. The

conformation is identified to be in an inactive state since the

DNA is mispositioned in the active site and only one of the

predicted two divalent cations (Ca2+ or Mg2+ in the crystal

structure) is bound. The low pH of the crystallization conditions

may be responsible for the lack of the second divalent cation

binding [18]. However, DNA cleavage data show that three

recognition sites on the same DNA molecule are cleaved before

enzyme dissociation, rather than the predicted two [20]. These

data were interpreted as dissociation of one of the two sites cleaved

concertedly followed by reassociation and cleavage of the third site

prior to enzyme dissociation. Given the model for SgrAI, it is

tempting to speculate whether SfiI is fully active also only in

oligomers higher order than tetramers, explaining the concerted

cleavage of three sites and the inactive conformation of the

tetrameric species solved in the crystal structure. However, no

direct evidence of oligomerization beyond tetrameric species has

been reported for SfiI.

The allosteric communication network has been investigated in

Bse634I, another type IIF endonuclease that bears very close

structural similarity to SgrAI [21,22]. Bse634I is a tetramer in

solution and cleaves DNA fastest when both DNA binding sites are

occupied with its recognition sequence. However, when only a

single site is occupied, the DNA cleavage rate is reduced. Hence it

possesses both auto-inhibition and stimulation capacities. While

we have shown that DNA cleavage by SgrAI is stimulated (.200-

fold, 4-fold greater than the 50-fold stimulation of Bse634I), it is

not known if auto-inhibition also occurs. For auto-inhibition like

that in Bse634I to occur, SgrAI dimers not bound to DNA would

need to associate with DNA bound SgrAI dimers and decrease the

DNA cleavage rate. Although SgrAI is dimeric in the absence of

DNA binding [7], we have shown by gel shift measurements that

oligomerization of the SgrAI dimers occurs significantly only with

significant concentration of DNA bound dimers (i.e. above

100 nM) and not with excess SgrAI that is not bound to DNA

[17]. However, the measurements of the stoichiometry of DNA

binding by SgrAI performed with fluorescence anisotropy are

suggestive of a second SgrAI dimer binding to the DNA bound

SgrAI dimer. The single turnover DNA cleavage assays reported

for SgrAI [17] have been done with a substantial excess of SgrAI

over the DNA, and if a second SgrAI dimer (without bound DNA)

binds to the DNA bound SgrAI dimer, then all reported rate

constants have been performed with this additional dimer

associated with the enzyme-DNA complex, and with any

Figure 4. Swapping Hinge loops. (A) Close-up of swapped regions
of two subunits in the SgrAI tetramer. Residue Arg 31, responsible for
recognition of the outer base pair of the primary site recognition
sequence, shown as spheres (subunit B, salmon, blue; subunit G, slate,
blue). Active site bound Ca2+ ions shown as black spheres and DNA
shown in cartoon representation in black. (B) Close-up of interactions at
the swapped segments near Pro 27. (C) Same view as in (B) but using
unswapped dimer models.
doi:10.1371/journal.pbio.1000554.g004
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concomitant auto-inhibition. Investigation of auto-inhibition

awaits measurements done with 1:1 ratios of SgrAI and DNA.

To our knowledge, this is the first clear example of reversible

domain swapping functioning to modulate the natural biological

activity and specificity of an enzyme. Among previously reported

examples [2], that of the RNase enzymes is strongest. RNase A,

from bovine pancreas, forms oligomers during lyophilization in

acetic acid [23,24], and the dimers and trimers have been shown

to be domain swapped [25–27]. Although the conditions for

forming the oligomers are artificial, dimerization has been

observed at pH 6.5 and 37uC with an equilibrium dissociation

constant of 2 mM [28]. The enzymatic activities of the oligomers

indicate that hydrolysis of double stranded RNA is faster with the

oligomeric forms than with the monomeric, however virtually no

difference is seen in the activities of the dimeric and monomeric

species [29]. The related bovine seminal RNase, BS-RNase, exists

as two interconverting dimers with only one stabilized by domain

swapping. The enzyme exhibits cooperativity, but only at very

high substrate concentrations (0.3 mM) and the effects are

relatively small (1.2–1.3-fold) [30]. The domain swapped form is

required for immunosuppression activity, but this activity is not a

natural biological function of the enzyme [31]. Therefore, the

potential use of domain swapping by SgrAI in a natural function of

DNA cleavage rate stimulation and DNA sequence modulation

may be the first clear case of a reversible domain swapping used to

alter biological activity. This would also be the first case where

DNA stimulates such domain swapping.

The unusual DNA cleavage activity of SgrAI may be a

consequence of the large genome of Streptomyces griseus, from which

it is derived. Restriction endonucleases are always coexpressed

with a methyltransferase enzyme having the same sequence

specificity, which functions to protect the host genome from the

cleavage activity of the endonuclease. Hence the SgrAI methyl-

transferase must methylate all SgrAI recognition sequences within

the genome before cleavage by the endonuclease can occur, and

this requirement may be difficult due to the large size of the

genome (over 8 million bp). The relatively long sequence

recognized by SgrAI, 8 bp versus the usual 4–6, may have

evolved due to this pressure, since the longer sequence greatly

reduces the number of sites to be methylated in the host DNA. In

addition, the inherently low cleavage activity of SgrAI in the

absence of significant concentrations of unmethylated primary site

DNA also reduces the pressure on host DNA, as well as the

methyltransferase enzyme. However, such a long recognition

sequence will also occur far less frequently in the phage DNA and

hence place selective pressure on the enzyme for increased activity

in order for adequate protection of the host from phage infection.

It appears that one way in which the SgrAI enzyme activity is

increased is through the stimulation of its cleavage activity with

sufficient concentrations of unmethylated primary site DNA.

Another way is through its secondary site cleavage activity, which

will induce more cleavages in the phage DNA than at the primary

sites alone, and hence could better protect the host. However, to

protect against cleavage of the secondary sites in the host genome,

the oligomerization may function to sequester activated SgrAI

enzymes on the phage DNA and away from the host genome. It

may also have an important role in sequestering the phage DNA

itself or in rapidly communicating positive allosteric signals to

multiple binding sites.

Methods

Mutagenesis
A modified USER-friendly DNA engineering method [32] was

used to introduce P27W/G codon change into the sgrAIR gene.

The original USER-friendly DNA mutagenesis technique employs

two tail-to-tail overlapping primers, which prime template in the

proximity of targeted mutation so that desired nucleotide changes

can be incorporated into the primer sequences. The overlapping

primers contain a single deoxyuracil (dU) residue flanking the

overlap sequence on the 39 side. After amplification, the dU is

excised with the USER enzyme resulting in the PCR product

flanked by complementary 39 single-stranded extensions, which

can reanneal to form a recombinant molecule26. Archaeal

proofreading DNA polymerases are inhibited by dU in the

primers; therefore the USER technique is compatible only with

PfuTurbo Cx Hotstart DNA polymerase (Stratagene), which

possesses a genetically modified uracil-binding pocket to overcome

inhibition by dU [33]. (Taq DNA polymerase is not inhibited by

dU, however it is not a proofreading polymerase.) Based on the

structural organization of the uracil-binding pocket [33], we

rationalized that 5-hydroxymethyluracil (5 hmU) would be

prevented from entering the pocket due to the steric clashes with

the 5-OH group. Therefore, 5 hmU could, in principle, be used in

the primers for DNA amplification with archaeal proofreading

DNA polymerases and afterwards be excised from PCR product

Table 2. Equilibrium dissociation constants (KD (nM)) for wild
type SgrAI dimer (unless otherwise noted) and DNA
sequences at 4uC.

DNA WT (nM) P27W (nM) P27G(nM)

18-1 0.660.21 4.060.8 1765

18-2 2.661.21 .1,000 .1,000

PCP 6621 962 562

1From Park et al. (2010) [17].
doi:10.1371/journal.pbio.1000554.t002

Table 3. Single turnover DNA cleavage rate constants using 1 mM enzyme.

32P Labeled
DNA (1 nM)

Conc. Added
Unlabeled PCP (nM)

WT SgrAI Rate
Constant (min21)

P27W SgrAI Rate
Constant (min21)

P27G SgrAI Rate
Constant (min21)

1u site (18-1, 18 bp) 0 0.09460.0151 0.03760.05 0.0660.02

10 0.1860.061 0.02860.001* ND

100 0.3060.031 0.09060.001* ND

1,000 22671 0.1460.01 0.1260.03

1From Park et al. (2010) [17].
*Only two repetitions.
doi:10.1371/journal.pbio.1000554.t003
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by human SMUG1 DNA glycosylase, which is specific for 5 hmU

[34].

Two overlapping primers, 59ATGCGTGGGXGCGAAATCG-

TTCCAC and 59ACCCACGCAXTTCGAATATCTTGGATGC,

were used to introduce P27W (CCARTGG) codon change into

the sgrAIR gene. Likewise, the overlapping primers 59ATGCGG-

GAGXGCGAAATCGTTCCAC and 59ACTCCCGCAXTTCGA-

ATATCTTGGATGC were used to introduce P27G (CCAR
GGA) codon change. Each primer codes for the targeted codon

change (underlined) and contains a single 5 hmU residue (marked

as ‘‘X’’) flanking the overlap sequence on the 39 side (the overlap is

shown in italic). The entire pET21a_SgrA1R plasmid was

amplified as a 7548 bp linear fragment using Phusion DNA

polymerase and the corresponding pair of overlapping primers. A

50 ml PCR reaction contained 10 ng of pET21a_SgrA1R template

DNA, 0.2 mM dNTPs, 0.2 mM each primer, 3% DMSO, and

0.5 ml of Phusion Hotstart High-fidelity DNA polymerase (New

England Biolabs). The pET21a_SgrAI was amplified for 30 cycles

using cycling protocol as follows: initial denaturation is 30 s at

98uC; denaturation for 10 s at 98uC, annealing for 20 s at 65uC,

polymerization for 4 min at 72uC; and final polymerization is

5 min at 72uC. After completion of the amplification reaction, a

5 ml PCR product aliquot was directly supplemented with 1 ml of

10X NEBuffer 1, 1 ml (20 units) of DpnI restriction endonuclease,

and the reaction volume was adjusted to 10 ml with H2O.

Restriction digestion was carried out for 1 h at 37uC and then

reaction was incubated for 20 min at 80uC to inactivate DpnI.

Ten units (1 ml) of EndoVIII DNA glycosylase and 10 units (2 ml)

of SMUG1 DNA glycosylase (both enzymes from New England

Biolabs) were added to the reaction and incubated for 15 min at

37uC to excise 5 hmU residues from PCR product, and then

incubated an additional 15 min at room temperature to allow

annealing of complementary extensions. Escherichia coli T7 Express

Iq competent cells (New England Biolabs) were transformed with

5 ml of the annealing reaction. Recombinants were selected by

plating 50 ml of transformation reaction on LB plates containing

0.1 mg/ml ampicilin. To confirm nucleotide sequence, plasmid

DNA was purified from four individual recombinant colonies and

sequenced across the sgrAIR gene. No sequence changes, except for

the anticipated codon change, were observed.

Protein Purification
Wild type and mutant SgrAI enzymes were prepared as

described [16]. Briefly, the enzymes were expressed in E. coli

strain ER2566 in the presence of the MspI methyltransferase (New

England Biolabs). The enzymes were purified using FPLC

(Pharmacia) chromatography and the following chromatographic

resins: Heparin FF Sepharose (Pharmacia), SP FF Sepharose

(Pharmacia), Q FF Sepharose (Pharmacia), and then a second

Heparin FF Sepharose (Pharmacia) chromatographic step.

Enzymes were dialyzed into storage buffer (20 mM Tris-OAc,

pH 8.0, 50 mM KOAc, 0.1 mM EDTA, 1 mM DTT, 50%

glycerol), aliquoted into small single use quantities, flash frozen in

liquid nitrogen, and stored at 280uC until used.

DNA Preparation
The oligonucleotides (Figure 6) were made synthetically and

purified using C18 reverse phase HPLC [35]. The concentration

was measured spectrophotometrically, with an extinction coeffi-

cient calculated from standard values for the nucleotides [36], and

fluorophore where appropriate. Fluorophore labeled DNA

included with FLO (6-(39,69-dipivaloylfluoresceinyl-6-carboxa-

mido)-hexyl group attached to the 59 phosphate of the top strand

only of PCP) or HEX (6-(4,7,29,49,59,79-hexachloro-(39,69-dipiva-

loylfluoresceinyl)-6-carboxamido)-hexyl group attached to the 59

phosphate of both strands of 18-1) were obtained from a

commercial synthetic source (Sigma Genosys) and contain a six

carbon spacer between the fluorophore and the 59 phosphate. The

Figure 5. Stimulation of HMWS formation by PCP. Native PAGE
of 1 mM wild type or mutant SgrAI with 1 nM 32P labeled primary or
secondary site (18-1 or 18-2), and increasing concentrations of
unlabeled precleaved primary site (PCP, 10, 30, 60, 100, 200, 300, 400,
500, 600, 1,000 nM). (A) wild type SgrAI, (B) P27W SgrAI, (C) P27G SgrAI.
doi:10.1371/journal.pbio.1000554.g005
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self-complementary DNA, or equimolar quantities of complemen-

tary DNA, were annealed by heating to 90uC for 10 min at a

concentration of 1 mM, followed by slow-cooling to 4uC over 4–

5 h in a thermocycler.

DNA used in the crystals have the self-complementary sequence

59-AAGTCCACCGGTGGACT-39, identical to 18-1 but one

nucleotide shorter on the 39 side leaving a 59A overhang. Because

freeze-thawing altered the concentration of double stranded DNA

used in the assays, DNA used for stimulation of HMWS formation

or in single turnover assays was treated very carefully to minimize

this problem. Such DNA samples were either reannealed

immediately prior to the assay or carefully annealed, assessed for

concentration, aliquoted into small amounts, flash frozen in liquid

nitrogen, stored at 220uC in water, and used only once after

removing from the freezer. DNA was 59 end labeled with 32P using

T4 polynucleotide kinase (New England Biolabs) and [c-32P]-

ATP (Perlin-Elmer, Inc.), and excess ATP removed using G-30

spin columns (Biorad Laboratories, Inc.).

Crystallization, Data Collection, Structure Solution,
Refinement, and Analysis

Crystals were prepared with SgrAI and DNA using 1.5 to 3.0 ml

of the protein:DNA mixture with 1.0 to 1.5 ml of the precipitating

solution (14% PEG 4K, 0.1 M Imidazole (pH 6.5), 0.15 M NaCl,

0.01 M NaNO3, 0.05 M CaCl2) per drop and placed over 1 ml of

the precipitating solution. The SgrAI concentration varied

between 10 and 30 mg/ml and was mixed with DNA to give a

1:2 molar ratio of SgrAI dimer:DNA duplex. Crystals grow

overnight to 1 wk at 17uC. The crystals were then exchanged

into a cryoprotection solution (25% PEG 4K, 0.1 M Imidazole

(pH 6.5), 0.3 M NaCl, and 30% glycerol) and flash-frozen in

liquid nitrogen. X-ray diffraction was measured using synchrotron

radiation at the Stanford Synchrotron Light Source (SSRL) BL9-

2. Data collection was performed while maintaining the crystal at

100K. Image processing and data reduction were performed with

HKL2000 (HKL Research, Inc.). The structure was solved by

molecular replacement using PHASER [37,38] and refined using

CNS [39], PHENIX [40], REFMAC [41], and the model building

program XtalView [42]. Symmetry relations between subunits

were determined using LSQKAB [43] as found in CCP4 [44], and

the alpha carbon atoms of residues 31–339 of each subunit. The

2Fo-Fc SA omit electron density map was calculated by first

deletion of residues 23–31 from each subunit, then performing

simulated annealing with a starting temperature of 2,000K in

PHENIX [40]. All structure figures were prepared using PYMOL

[45].

Binding Assays
The equilibrium dissociation constant KD of SgrAI-DNA

complexes was measured using a fluorescence polarization

anisotropy technique [46]. DNA oligonucleotides (1 nM in 2 mL

binding buffer: 20 mM Tris-OAc pH 8.0, 50 mM KOAc, 10 mM

Ca(OAc)2, 1 mM DTT, 10% glycerol) containing a fluorophore

(HEX or FLO) ligated to the 59 end were titrated with increasing

amounts of SgrAI enzyme (1 nM–1 mM), and the polarization

recorded. Excitation occurred at 537 nm (HEX) or 495 nm (FLO)

in a PC1 (ISS instrument) fluorimeter with T format, automatic

polarizers, and temperature control. The emitted intensities were

measured using a 50.8 mm diameter 570 nm cut-on filter with

580–2,750 nm transmittance range (ThermoOriel Inc.,

no. 59510) and 1 mm slit widths. The polarization of the emitted

light as a function of added enzyme was fit to 1:1 binding using

Kaleidagraph software (Synergy Software) and the following [46]:

A~Aminz Amax{Aminð Þ PTzOTzKDð Þ½

{ PTzOTzKDð Þ2{ 4PTOTð Þ
h i1=2

�
= 2OTð Þ

where A is the polarization at a given protein concentration, Amax

is the predicted polarization of fully bound DNA, Amin is the

polarization with no protein binding, PT is the total concentration

of protein, OT is the total concentration of the DNA, and KD is the

dissociation constant to be determined.

Single Turnover DNA Cleavage Assays
Single turnover measurements of DNA cleavage were per-

formed using chemical rapid quench techniques and 59-end 32P

labeled oligonucleotide substrates (typically 1 nM), under condi-

tions of enzyme excess (1 mM), with and without the addition of

unlabeled DNA. All reactions were performed at 37uC. For

sampling by hand, 5 ml aliquots were withdrawn at specific time

intervals after mixing the enzyme and labeled DNA (50 ml each),

quenched by addition to 5 ul of quench (80% formamide, 50 mM

EDTA), and electrophoresed on 20% denaturing polyacrylamide

(19:1 acrylamide:bisacrylamide, 4 M urea, 89 mM Tris, 89 mM

boric acid, 2 mM EDTA) gels. Autoradiography of gels was

performed without drying using a phosphor image plate, and

exposing at 4uC for 12–17 h. Densitometry of phosphor image

plate was performed with a Typhoon Scanner (GE Healthcare

Life Sciences) and integration using ImageQuant (GE Healthcare

Life Sciences) or ImageJ [47]. The percent of product formed as a

function of time was determined by integrating both cleaved and

uncleaved DNA bands. The single turnover DNA cleavage rate

constant was determined from the data using a single exponential

function:

%product~C1zC2 � 1{e{kt
� �

where C1 is a constant fitting the baseline, C2 is the total percent of

DNA predicted to be cleaved by SgrAI, k is the rate constant, and t

is the length of incubation in minutes.

Native Gel Analysis of HMWS Formation
Formation of HMWS was monitored in native gels (8% 29:1

acrylamide:bisacrylamide in 89 mM Tris base, 89 mM boric acid,

and 10 mM Ca2+). The electrophoresis running buffer was

89 mM Tris base, 89 mM boric acid, and 10 mM Ca2+ and was

recirculated during electrophoresis. Gels were electrophoresed in a

cold room (4uC) using 190 V. Gels were loaded while undergoing

electrophoresis at 400 V, and the voltage returned to 190 V 5 min

after the loading of the last sample. Electrophoresis was continued

for an additional 2 h. Samples were prepared with 1 mM SgrAI,

1 nM 32P labeled DNA, and varied concentrations of unlabeled

Figure 6. Sequences of DNA constructs. Red, SgrAI primary site
recognition sequence; blue, deviation from primary site recognition
sequence; arrows, sites of cleavage by SgrAI.
doi:10.1371/journal.pbio.1000554.g006
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DNA in binding buffer (20 mM Tris-OAcpH 8.0, 50 mM KOAc,

10 mM Ca(OAc)2, 1 mM DTT, 10% glycerol) and incubated for

30 min at 4uC prior to electrophoresis. Autoradiography of gels

was performed without drying using a phosphor image plate and

exposing at 4uC for 12–17 h. Densitometry of phosphor image

plate was performed with a Typhoon Scanner (GE Healthcare

Life Sciences) and integration using ImageQuant (GE Healthcare

Life Sciences) or ImageJ [47]. Integrated band intensities were

normalized using the sum of the DNA bound species (DBD and

HMWS) to determine the percent HMWS and then plotted versus

PCP concentration using Kaleidagraph (Synergy Software).

Supporting Information

Figure S1 Cleavage of single primary site containing
plasmid DNA (pMLE2) with wild type or P27W SgrAI. (A)

Image of ethidium bromide stained agarose gel from electropho-

resis of reaction products. Lane 1: Molecular weight standard;

Lane 2: pMLE2 DNA; Lanes 3–8: 20 nM pMLE2 DNA

incubated with 1 mM wild type enzyme at 37uC at 1, 5, 10, 20,

30, 40, 50, and 60 min; Lanes 9–18: 20 nM pMLE2 DNA

incubated with 1 mM P27W enzyme at 37uC at 1, 5, 10, 20, 30,

40, 50, and 60 min. Positions of nicked or open circle DNA (OC),

linear DNA (L), and supercoiled (SC) marked as indicated. (B) Plot

of reaction products as defined in (A) in terms of the percent of the

total DNA per lane with wild type SgrAI as a function of length of

incubation. (C) Plot of reaction products as defined in (A) in terms

of the percent of the total DNA per lane with P27W SgrAI as a

function of length of incubation.

Found at: doi:10.1371/journal.pbio.1000554.s001 (4.48 MB

DOC)

Figure S2 Cleavage of plasmid DNA containing two
primary site sequences (pMLE3) with wild type or P27W
SgrAI. (A) Image of ethidium bromide stained agarose gel from

electrophoresis of reaction products. Lane 1: Molecular weight

standard; Lane 2: pMLE3 DNA; Lanes 3–8: 20 nM pMLE3 DNA

incubated with 1 mM wild type enzyme at 37uC at 1, 5, 10, 20, 30,

40, 50, and 60 min; Lanes 9–18: 20 nM pMLE3 DNA incubated

with 1 mM P27W enzyme at 37uC at 1, 5, 10, 20, 30, 40, 50, and

60 min. Positions of nicked or open circle DNA (OC), linear DNA

(L), supercoiled (SC), and the two products following double

cleavage of the plasmid (P1, P2) marked as indicated. (B) Plot of

reaction products as defined in (A) in terms of the percent of the

total DNA per lane with wild type SgrAI as a function of length of

incubation. (C) Plot of reaction products as defined in (A) in terms

of the percent of the total DNA per lane with P27W SgrAI as a

function of length of incubation.

Found at: doi:10.1371/journal.pbio.1000554.s002 (4.86 MB

DOC)

Text S1 Cleavage of plasmids with one or two primary site

sequences by wild type and P27W SgrAI.

Found at: doi:10.1371/journal.pbio.1000554.s003 (0.04 MB

DOC)
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