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ABSTRACT
Introduction Deep learning techniques are gaining 
momentum in medical research. Evidence shows that 
deep learning has advantages over humans in image 
identification and classification, such as facial image 
analysis in detecting people’s medical conditions. While 
positive findings are available, little is known about the 
state- of- the- art of deep learning- based facial image 
analysis in the medical context. For the consideration of 
patients’ welfare and the development of the practice, a 
timely understanding of the challenges and opportunities 
faced by research on deep- learning- based facial image 
analysis is needed. To address this gap, we aim to conduct 
a systematic review to identify the characteristics and 
effects of deep learning- based facial image analysis in 
medical research. Insights gained from this systematic 
review will provide a much- needed understanding of the 
characteristics, challenges, as well as opportunities in 
deep learning- based facial image analysis applied in the 
contexts of disease detection, diagnosis and prognosis.
Methods Databases including PubMed, PsycINFO, 
CINAHL, IEEEXplore and Scopus will be searched for 
relevant studies published in English in September, 
2021. Titles, abstracts and full- text articles will be 
screened to identify eligible articles. A manual search 
of the reference lists of the included articles will also be 
conducted. The Preferred Reporting Items for Systematic 
Reviews and Meta- Analyses framework was adopted to 
guide the systematic review process. Two reviewers will 
independently examine the citations and select studies 
for inclusion. Discrepancies will be resolved by group 
discussions till a consensus is reached. Data will be 
extracted based on the research objective and selection 
criteria adopted in this study.
Ethics and dissemination As the study is a protocol for 
a systematic review, ethical approval is not required. The 
study findings will be disseminated via peer- reviewed 
publications and conference presentations.
PROSPERO registration number CRD42020196473.

BACKGROUND
As disease manifestations often show in 
various places in the human body, such 
as Down syndromes can change patients’ 
facial features, researchers have been inves-
tigating whether analysing appearance 
features can facilitate early disease detection 

and identification.1–5 One promising field is 
deep learning- based facial analysis.6–8 Deep 
learning represents a powerful range of arti-
ficial intelligence (AI) algorithm that allows 
computers to tackle complex problems via 
capitalising on neural networks, such as 
convolutional neural networks (CNNs), that 
are rich in neurons, layers and interconnec-
tivity (see figure 1).9 Simply put, deep learning 
is a mechanism that allows computers to 
solve complex problems by neural network 
architecture. This ability to develop complex 
network structures gives deep learning a 
distinctive advantage: it can automatically 
transform raw data input into meaningful 
features that enable pattern identification.10 
Deep learning technique has revolutionary 
potential in practical and research fields.11 In 
practice, as deep learning effectively identifies 
objects, traffic signs and faces, its adaptations 
have been widely applied in designing robots 
and self- driving cars.12–15 Deep learning has 
also been widely adopted in biomedical and 
clinical research, particularly in the field of 
medical imaging.16–19

Medical conditions are often diagnosed by 
means of tests, such as biopsy and diagnostic 
imaging. An example list of diseases that have 
been analysed by deep learning technologies 

Strengths and limitations of this study

 ► This systematic review protocol follows the Preferred 
Reporting Items for Systematic Review and Meta- 
Analysis Protocols guidelines.

 ► By examining the characteristics and effects of deep 
learning- based facial image analysis in medical re-
search, this systematic review bridges the gap in the 
literature.

 ► This review is limited to evidence on the use and ap-
plication of deep learning technologies in patients’ 
facial image identification and classification.

 ► Non- English databases will not be searched, which 
might limit the representativeness of the results.
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could be found in table 1. As diagnostic imaging is non- 
invasive and can facilitate personalised medicine, it is a 
preferred test option for patients and healthcare practi-
tioners.20 21 This, in turn, has contributed to the exponen-
tial growth of medical imaging data and the increasing 
need for boosting medical image processing power to 
formulate diagnosis swiftly.21 22 Compared with traditional 
computer aided diagnosis for analysing medical imaging, 
such as hand- crafted radiomics for tumour detection, 
deep learning methods are superior in their ability to 
process large quantities of medical images accurately and 
cost- effectively, without exerting a heavy workload on 
radiologists.23–27 Evidence shows that deep learning- based 
medical image analysis was able to increase accuracy rates 
in various disease contexts, such as the identification of 
spinal disorder1 and lung cancer histology,28 classification 
of skin lesion29 and chronic gastritis,30 and the prediction 
of tumour- related genes31 and vascular diseases.32

Applying the deep learning technique to perform facial 
recognition and analysis tasks, researchers found that the 
technique yielded superior results in identifying and clas-
sifying faces of people with cancer from those without.6 
Similarly, examining facial phenotypes of people with 
genetic disorders, findings indicate that the technique 
was effective and was able to yield an optimal 91% top- 10 
accuracy.33 Evidence further indicates that, for some tasks 
involving identifying and classifying facial images, deep 
learning techniques have often performed on par or 
better than human beings.5 7 10 34–36 Comparing clinical 
and deep learning evaluations of microdeletion syndrome 
facial phenotypes, researchers found that deep learning 
outperformed clinical evaluations in terms of sensitivity 
and specificity by 96%.35 These findings combined suggest 
that deep learning- based facial analysis technology has 
great potential to address complex medical challenges 
prevalent in healthcare. However, there has not been any 

Figure 1 Relationship between artificial intelligence, machine learning, deep learning and convolutional neural networks.

Table 1 An example list of diseases that have been analysed by deep learning techniques

Disease context Deep learning technique

Acromegaly Convolutional neural network (along with Generalized Linear Models; 
K- nearest neighbors; Support Vector Machines; forests of randomized 
trees)63

Cancer Convolutional neutral network64

Cornelia de Lange syndrome DeepGestalt technology7

Coronary artery disease Convolutional neural network65

Down syndrome Independent component analysis66

Facial dermatological disorders Convolutional neural network67

Keratinocytic skin cancer Convolutional neutral network68

Inherited retinal degenerations Convolutional neural network69

Noonan syndrome DeepGestalt technology33

Pain intensity Convolutional neutral network70

Neurological disorders Convolutional neutral network71
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systematic review on the state- of- the- art applications of 
deep learning- based facial analysis in non- invasively eval-
uating medical conditions. Therefore, to bridge this gap, 
we aim to systematically review the literature and iden-
tify the characteristics and effects of deep learning- based 
facial analysis techniques applied in medical research.

METHODS AND ANALYSIS
This systematic review was registered with the Interna-
tional Prospective Register of Systematic Reviews database 
or PROSPERO a priori to improve research rigour.37 38 The 
principles of the Preferred Reporting Items for System-
atic Reviews and Meta- Analyses protocol was adopted to 
guide this systematic review.39 Our search strategy incor-
porated medical subject heading (MeSH) and keyword 
terms for the concept of deep learning and facial analysis. 
The search strategy was developed in consultation with an 
academic librarian, and subsequently will be deployed to 
target databases, including PubMed, PsycINFO, CINAHL, 
IEEEXplore and Scopus (table 2). The search will be initi-
ated in September 2021. Studies will be limited to journal 
articles published in English. We will adopt two addi-
tional search mechanisms to locate eligible articles: (1) 
a manual search of the reference list of the included arti-
cles will be performed and (2) a reverse search of papers 
that cited articles included in the final review via Google 
Scholar. An academic librarian will facilitate the search 
process, helping administer the search and download the 
citation records to Rayyan (http://rayyan.qcri.org).

Inclusion and exclusion criteria
The inclusion criteria were developed a priori and listed in 
table 3. Studies will be excluded articles if they (1) did not 
report findings on human beings (eg, studies on mice), (2) 
did not focus on full facial features (eg, research on retina or 
lip- cleft), (3) did not conduct research in a medical context 
(eg, in the context of criminology) and (4) did not report 
empirical findings (eg, editorial or comment papers).

Risk of bias assessment
To ensure the quality of included studies, a risk of bias assess-
ment will be conducted independently by two reviewers, 
using the Cochrane Collaboration evaluation framework.40 
The framework has seven domains: (1) random sequence 

generation, (2) allocation concealment, (3) blinding of 
participants and personnel, (4) blinding of outcome assess-
ment, (5) incomplete outcome data, (6) selective reporting 
and (7) any other source of bias. The risk of bias will be evalu-
ated independently by two reviewers. Potential discrepancies 
regarding the risk of bias will be resolved via group discus-
sions till a consensus is reached.

Data extraction
Two reviewers will independently examine the citations and 
select studies for inclusion. Discrepancies will be resolved 
by group discussions till a consensus is reached. Data will 
be extracted based on the research objective and selection 
criteria adopted in this study. For articles that meet the inclu-
sion criteria, the reviewers will extract the following informa-
tion from the included papers: research objective/questions, 
disease context, sample characteristics (eg, characteristics of 
facial records), AI characteristics (eg, algorithm adopted), 
and empirical findings.

Data synthesis and analysis
If eligible studies share enough similarities to be pooled, 
a meta- analysis will be conducted to gain further insights 
into the data. Main clinical, methodological, as well as 
statistical differences will be carefully considered to deter-
mine the heterogeneity of the eligible studies. If eligible 
studies are found heterogeneous, a narrative synthesis will 

Table 2 Example PubMed search strategy

Concept Search string

Deep learning “deep learning”[MeSH] OR “deep learning”[TIAB] OR “artificial intelligence” [MeSH] OR “artificial 
intelligence” [TIAB] OR “machine learning”[MeSH] OR “machine learning”[TIAB] OR “convolutional 
neural network”[MeSH] OR “convolutional neural network”[TIAB] OR “convolutional neural 
networks”[TIAB]

Facial image analysis “face detect*” OR “facial detect*” OR “face recogn*” OR “facial recogn*” OR “face extract*” 
or “facial extract*” OR “face analys*” OR “facial analys*” OR “face dysmorphology” OR “facial 
dysmorphology” OR “face phenotype*” OR “facial phenotype*” OR “face feature*” OR “facial 
feature*” OR “face2gene” OR “gestalt theory” OR “face photograph*” OR “facial photograph*” OR 
“facial expression”

Table 3 Study inclusion criteria

Data type Inclusion criteria

Participants Individuals younger or older than 18 
years old

Research context Medical research or healthcare

Analytical technique Deep learning algorithms- based facial 
image analysis

Language English

Study type Quantitative empirical study

Outcome Report empirical and original findings 
on the application of deep learning- 
based facial image analysis in medical 
context (eg, accuracy of facial image 
analysis in detecting Down syndrome)

http://rayyan.qcri.org
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be conducted to summarise the data. A summary of the 
data extracted will be organised to synthesise key results. 
Both tables and graphs will be used to represent the key 
characteristics of eligible articles. Descriptive analysis will 
be performed on categorical variables. In this review, we 
will undertake a narrative approach to synthesise data. In 
other words, in addition to shedding light on key infor-
mation like the sensitivity, specificity, overall accuracy 
of the deep learning technologies in analysing facial 
images (as opposed to clinicians’ analyses), we will also 
provide detailed analysis of the disease contexts and the 
techniques applied to chart the state- of- the- art of deep 
learning technologies in facial image analyses.

Ethics and dissemination
As the study is a protocol for a systematic review, ethical 
approval is not required. The study findings will be 
disseminated via peer- reviewed publications and confer-
ence presentations.

Patient and public involvement
The nature of the study, which is a review and analysis of 
previously published data, dictates that there is limited to 
no meaningful need for patient and public involvement 
in the design, delivery or dissemination of the research 
findings.

DISCUSSION
Though a growing body of research has applied deep 
learning- based facial image analysis in the medical 

context for disease detection, diagnosis and prognosis, 
to date, no systematic review has investigated the state- 
of- the- art application of deep learning- based facial image 
analysis recognition in addressing medical diagnoses 
and clinical states. Therefore, to bridge this gap, we aim 
to systematically review the literature and present the 
characteristics, challenges, as well as opportunities in 
deep learning- based facial analysis techniques applied in 
medical research. To better organise the research find-
ings, we developed a framework that illustrates the main 
causes for abnormal facial expressions in patients. It is 
important to note that we are identifying medical states 
and conditions and not individuals.

After reviewing the literature,5 41–55 we identified the 
following four preliminary categories of causes for short- 
term or long- term abnormal facial expressions in people: 
(1) gene- related factors, (2) neurological factors, (3) 
psychiatric conditions and (4) medication- induced trig-
gers. Genetic- related factors, such as the presence or 
mutation of a certain gene, are the most studied cause 
for abnormal facial changes in individuals.5 7 35 Down 
syndrome, which is affected by the presence of a third 
copy of chromosome 21, is an example of genetic- related 
factors that can cause individuals’ abnormal facial 
changes.5 Neurological factors can also cause individuals’ 
facial phenotypes. Stroke or transient ischaemic attack 
is an example of neurological factors, which can occur 
either prior to or after the onset of the disease.56 57 The 
third cause for abnormal facial changes centres on individ-
uals’ psychiatric conditions or mental illnesses, especially 

Table 4 Main causes for abnormal facial expressions

Cause Definition and example

Gene- related factors   Gene- related factors are causes for individuals’ abnormal facial changes that root in the 
presence or mutation of one or a set of genes.

  Examples: Down syndrome (genetic root: presence of a third copy of chromosome 21) or 
Cornelia de Lange syndrome (genetic root: NIPBL or SMC1A, SMC3, RAD21 or HDAC8, 
BRD4 and ANKRD11 genes).5 41 42 55

Neurological factors   Neurological factors are defined as reasons that are associated with individuals’ congenital 
or acquired disorders of nerves and the nervous system. Neurological factors can either be 
related to genetic or non- genetic factors, caused by irregularity in nerves associated with 
the brain or the face.

  Examples: Neurological factors with genetic causes (eg, Rett syndrome, MECP2 gene; 
Cervical or Cranial dystonia, GNAL gene) and without (eg, embouchure dystonia, 
Oromandibular dystonia)46 47; due to nerves associated with the brain (eg, stroke) or the 
face (Bell’s palsy or facial paralysis, Hemifacial Spasm).43–45

Psychiatric conditions   Psychiatric conditions, especially psychotic disorders, have the potential to cause 
abnormal facial expressions among individuals. Psychiatric conditions could be broadly 
defined as mental illnesses, whereas psychotic disorder factors are causes to abnormal 
facial expressions that root in individuals’ impaired sense of reality.

  Examples: Non- drug- related Tourette syndrome (facial tics) or autism (facial expression 
limitation).48–50

Medication- induced triggers   Medication- induced triggers could be understood as causes to individuals’ short- term or 
long- term abnormal facial changes due to their adverse reactions to a certain medication of 
a type of medications.

  Examples: Neuroleptic malignant syndrome (antipsychotic drugs), tardive dyskinesia 
(antipsychotic medications) or drug- related Tourette syndrome.51–54
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psychotic disorders such as the Tourette syndrome (facial 
tics). Last but not the least, medication- induced triggers, 
such as the neuroleptic malignant syndrome (caused 
by antipsychotic medications), can also cause abnormal 
facial changes in people. Details of this framework can 
be found in table 4. This framework will be used in 
the planned systematic review study to guide the data 
extraction process.

Overall, insights gained from this study will be able to 
provide a much- needed understanding of the character-
istics, challenges, as well as opportunities in the context 
of deep learning- based facial image analysis technologies 
applied in disease detection, diagnosis and prognosis. 
In addition to gaining a connected and comprehensive 
understanding of the current application of facial image 
analysis, results of the study will also be able to shed light 
on whether, similar to facial recognition used in non- 
medical58 59 and medical contexts,60 61 whether or to what 
degree is systematic bias is present in the application of 
deep learning technologies for facial image analysis. A 
biased and inaccurate facial image analysis system will not 
only exert unwarranted, though avoidable, disparities on 
patients (eg, gender inequality),60 it will also alienate the 
patients from the much- needed deep- learning- assisted 
medical opportunities their health and well- being can 
benefit from.62 Therefore, for the consideration of 
patients’ welfare and the development of the clinical 
practice, a timely understanding of the scope of the 
research literature as well as the challenges and oppor-
tunities faced by research on deep- learning- based facial 
image analysis is much needed.
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