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Simple Summary: The alternative lengthening of telomeres is a telomere maintenance mechanism
used by some cancer types to elongate their telomeres without the aid of telomerase. This mechanism
contributes to the proliferation and immortality of cancer cells. One of the hallmarks of this mecha-
nism is the interaction with promyelocytic leukemia nuclear bodies, which are suspected to be the
key places where telomere extension occurs. Despite the discovery of some mechanisms, elements,
key genes, and proteins from the pathway, the alternative lengthening of telomeres mechanism is still
poorly understood, and it is highly associated with a poor prognosis. In this study, we combined
multiomics approaches with genomic, transcriptomic, and proteomic analyses of 71 genes/proteins
related to promyelocytic leukemia nuclear bodies in more than 10,000 cancer samples from The
Cancer Genome Atlas Consortium. As a result, 13 key proteins were proposed as candidates for
future experimental studies that will validate these proteins as therapeutic markers, which will
improve the understanding and treatment of these type of cancers.

Abstract: Alternative lengthening of telomeres-associated promyelocytic leukemia nuclear bodies
(APBs) are a hallmark of telomere maintenance. In the last few years, APBs have been described as
the main place where telomeric extension occurs in ALT-positive cancer cell lines. A different set
of proteins have been associated with APBs function, however, the molecular mechanisms behind
their assembly, colocalization, and clustering of telomeres, among others, remain unclear. To improve
the understanding of APBs in the ALT pathway, we integrated multiomics analyses to evaluate
genomic, transcriptomic and proteomic alterations, and functional interactions of 71 APBs-related
genes/proteins in 32 Pan-Cancer Atlas studies from The Cancer Genome Atlas Consortium (TCGA).
As a result, we identified 13 key proteins which showed distinctive mutations, interactions, and
functional enrichment patterns across all the cancer types and proposed this set of proteins as
candidates for future ex vivo and in vivo analyses that will validate these proteins to improve the
understanding of the ALT pathway, fill the current research gap about APBs function and their
role in ALT, and be considered as potential therapeutic targets for the diagnosis and treatment of
ALT-positive cancers in the future.

Keywords: ALT; PML; telomeres; Pan-Cancer; TCGA; omics

1. Introduction

Telomeres are nucleoprotein complexes composed of tandem repeats of TTAGGG,
whose primary function is to protect the ends of chromosomes against end-to-end fusions,

Biology 2022, 11, 185. https://doi.org/10.3390/biology11020185 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology11020185
https://doi.org/10.3390/biology11020185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0003-2636-2707
https://orcid.org/0000-0002-6936-1926
https://orcid.org/0000-0001-9035-7668
https://orcid.org/0000-0003-1503-1929
https://orcid.org/0000-0003-3473-7214
https://doi.org/10.3390/biology11020185
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology11020185?type=check_update&version=3


Biology 2022, 11, 185 2 of 17

chromosomal rearrangements, and genomic instability [1,2]. In somatic cells, due to cell
division, telomeres shorten, causing senescence or apoptosis [3]. To avoid replicative senes-
cence during tumorigenesis, telomerase reactivates in most types of cancer [3]. However,
10% to 15% of cancers use a telomerase-independent mechanism to preserve their telomeres,
called alternative lengthening of telomeres (ALT) [2]. Some pathways and molecular mech-
anisms of ALT are not yet understood, but it has been proposed that it may use dependent
or independent mechanisms of homologous recombination (HR) [4].

A particular hallmark of ALT+ cells is the formation of an interactome with promyelo-
cytic leukemia (PML) nuclear bodies, known as ALT-associated PML bodies (APBs) [5,6].
PML bodies are membrane-less organelles found in the cell nucleus, which contain small
ubiquitin-like modification (SUMO) sites [7] and are formed by PML, Sp100, and SUMO-
1/2/3 proteins. Additionally, they use more than 50 proteins such as RAD52, RAD51,
RAD50, RPA, BLM, and BRCA1, among others, which are involved in different cellular
functions, such as tumoral suppression, DNA replication, gene transcription, DNA damage
response (DDR), senescence, and apoptosis [8,9]. In the course of APBs formation, all of
the six subunits (TRF1, TRF2, POT1, TPP1, TIN2, and Rap1) that constitute the shelterin
complex detach from the telomeric DNA and are incorporated into the APBs (SUMOy-
lation of shelterin), creating a recombigenic microenvironment that contributes to ALT
triggering [8].

Normally, the PML bodies are disassembled when cells enter mitosis; however, due
to their hyper-SUMOylated state, APBs have been observed in metaphases of cancer cell
lines [7]. Recent studies have shown that telomere clustering in tumor cells promotes ALT
through mitotic DNA synthesis (MiDAS) [5]. By applying the ATSA (ALT telomere DNA
synthesis in APBs) assay, Zhang et al. 2019, demonstrated that telomeric DNA synthesis
in ALT+ cells takes place exclusively in APBs while in the G2 phase of the cell cycle. In
addition, the knockdown of the PML gene in ALT+ cells resulted in a reduction of telomeres
length and decreased ALT function [10].

Despite having demonstrated that APBs are essential for the ALT pathway, many of
the molecular mechanisms for their assembly and how telomeres cluster inside the PML
bodies are still unknown [3,7]. Furthermore, the molecular mechanisms behind the ALT
pathway are still poorly understood [10]. In a previous research, we identified a group
of 20 genes/proteins that could be used as potential molecular markers for the study of
ALT [11].

Within this context, the aim of this study is to evaluate the genomic, transcriptomic
and proteomic alterations of 71 genes/proteins associated with APBs by using an integrated
TCGA Pan-Cancer Atlas and multi-omics analyses in order to improve the understanding
of the role of APBs in cancer, their correlation with ALT, and their application as potential
molecular markers for the diagnosis and treatment of ALT+ cancers.

2. Materials and Methods
2.1. Gene/Protein Set

TelNet (http://www.cancertelsys.org/telnet/ accessed on 2 July 2021) is a database
that groups more than 2000 human telomere maintenance (TM) genes. All genes are anno-
tated according to their classification of telomere maintenance mechanism, telomere main-
tenance function, and a significance score given by the evidence of gene function in telom-
eres [12]. The database shows the role of each gene in ALT and telomerase-mediated mech-
anisms. Therefore, the TelNet database was downloaded and manually filtered, resulting
in a set of 71 genes that are related to PMLs and APBs (Table S1 in Supplementary File S1).

2.2. TCGA Pan-Cancer Studies Frequencies and OncoPrint of Genomic and Proteomic Alterations

After selecting the set of APBs-related genes/proteins, we analyzed their genomic, tran-
scriptomic, and proteomic alterations in 32 cancer studies from the Pan-Cancer Atlas (PCA)
project which is part of The Cancer Genome Atlas (TCGA) consortium [13,14]. With the aid
of the cBio Portal database (http://www.cbioportal.org/ accessed on 5 July 2021) [15,16],

http://www.cancertelsys.org/telnet/
http://www.cbioportal.org/
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a total of 10,918 samples were selected from the 32 PCA studies: acute myeloid leukemia
(LAML), adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), brain
lower grade glioma (LGG), breast invasive carcinoma (BRCA), cervical squamous cell
carcinoma (CESC), cholangiocarcinoma (CHOL), colorectal adenocarcinoma (COAD), dif-
fuse large B-cell lymphoma (DLBC), esophageal adenocarcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma
(OV), pancreatic adenocarcinoma (PAAD), pheocromocytoma and paraganlioma (PCPG),
prostate adenocarcinoma (PRAD), sarcoma (SARC), skin cutaneous melanoma (SKCM),
stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thymoma (THYM),
thyroid carcinoma (THCA), uterine carcinosarcoma (UCS), uterine corpus endometrial car-
cinoma (UCEC), uveal melanoma (UVM) [13,14,17–24]. The cBioPortal uses data from the
GISTIC2.0 computational approach, which facilitates sensitive and confident localization of
CNV (copy number variation) amplifications and deep deletions in human cancers [25]; ad-
ditionally, it identifies in-frame, truncating, and missense mutations through whole-exome
sequencing; mRNA up and downregulation are analyzed through RNA sequencing V2
RSEM by comparing the expression Z-scores of tumor samples to the logarithmic expres-
sion of mRNA of adjacent normal samples [26] and the up and downexpression of proteins
are measured by reverse-phase protein arrays (RPPA) [27].

To calculate the frequency means of every genomic, transcriptomic, and proteomic
alteration and construct the OncoPrint we: (1) filtered and calculated the number of
alterations per gene and per PCA type; (2) calculated the frequency of alteration of each
gene through normalization by dividing the number of alterations by the number of
individuals of each cancer study; (3) identified the most altered APBs genes/proteins
with the aid of a boxplot by using Tukey’s test; (4) validated the most significantly altered
genes/proteins with a multiple comparison test by using the original false discovery
rate (FDR) method of Benjamini and Hochberg using GraphPad Prism v9.1.1 software
(p < 0.01) [28]

2.3. Protein–Protein Interaction Network

In order to predict the most essential protein interactions, an APBs protein–protein in-
teraction (PPi) network was constructed with the aid of the STRING database
(https://string-db.org/ accessed on 10 August 2021). An interaction score of 0.9 (highest
confidence) was set according to coexpression, curated from the database, and experimen-
tally determined [29,30]. The most significant signaling pathways (p < 0.001) related to
APBs were selected and classified in the network.

2.4. Functional Enrichment Analysis

An enrichment analysis gives curated signatures of protein sets generated from omics
experiments [31]. Thus, we performed the analysis of the 71 APBs proteins by using
the g:Profiler tool version e104_eg51_p15_3922dba (https://biit.cs.ut.ee/gprofiler/gost
accessed on 12 August 2021) [32]. The most significant annotations were selected after
Benjamini–Hochberg and false discovery rate (FDR) corrections (p < 0.001), based on gene
ontology (GO), molecular function (MF), biological process (BP), the Kyoto Encyclopedia
of Genes and Genomes (KEGG) and REACTOME signaling pathways [32,33].

2.5. Correlation between ALT and APBs in the Pan-Cancer Studies

In our former study [11], ALT tumors were classified as frequent ALT tumors, rare
ALT tumors, and non-ALT tumors. For this study, we wanted to determine whether the key
APBs proteins identified in this study have a correlation with the ALT proteins identified
in our latter study. Under this context we: (1) elaborated a Venn diagram to correlate the
type of ALT tumor with the PCA studies with the most significant patterns of genomic,

https://string-db.org/
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transcriptomic, and proteomic alterations; (2) constructed protein–protein interaction (PPi)
networks to predict the interactions among the APBs proteins with the highest frequencies
of alterations and the most altered proteins from each ALT-frequent and ALT-rare groups
determined in our previous study; and (3) with the aid of a Venn diagram we integrated
four different approaches in order to predict key proteins from the APBs pathway.

3. Results
3.1. Gene Set and Genomic, Transcriptomic, and Proteomic Alterations

To evaluate the genomic, transcriptomic, and proteomic alterations, we selected
71 APBs-related genes/proteins (Table S1); these were analyzed in the cBioPortal [15,16] by
selecting 10,918 samples from 32 studies of the Pan-Cancer Atlas (PCA) [13,14,17–24] from
The Cancer Genome Atlas consortium (TCGA).

A total of 72,492 alterations were identified and a donut chart was elaborated showing
the most frequent alterations after all values were normalized by the number of samples in
each study (Table S2 in Supplementary File S2). Figure 1a, shows that the most frequent
genomic alteration was mRNA high (61%), followed by mRNA low (14.5%), copy number
variation (CNV) amplifications (8.50%), missense (putative passenger) mutations (6.90%),
deep deletions (2.95%), and protein high and low with 1.53% and 1.31%, respectively.
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To understand the implication of APBs genes/proteins alterations in cancer progres-
sion from primary tumors to metastasis (T1 to T4), genomic, transcriptomic, and proteomic
alterations were subgrouped for each cancer and metastasis stage from the PCA studies,
when available. PCA studies with tumor stage data were (n = 7406): ACC, BLCA, BRCA,
CESC, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, MESO,
PAAD, SKCAM, STAD, TGCT, and THCA; while PCA studies with metastasis stage data
were (n = 6697): BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP,
LIHC, LUAD, LUSC, MESO, PAAD, SKCM, STAD, TGCT, and THCA. All alterations
were normalized by the number of samples in each stage for each study. No significant
differences were found between cancer stage alterations (Figure 1b) or metastasis stage
alterations (Figure 1c) after a multiple comparison with the original false discovery rate
(FDR) method of Benjamini and Hochberg (p < 0.001).

3.2. TCGA Pan-Cancer Studies Frequencies and OncoPrint of Genomic Transcriptomic and
Proteomic Alterations

With the values of genomic, transcriptomic, and proteomic alterations normalized
by the number of samples in each study, the highest frequency means of alterations were
calculated for the 32 studies and 71 genes/proteins (Table S3 in Supplementary File S3).
UCS was the cancer type with the highest alteration frequency mean (10.456) and GBM
with the lowest alteration frequency mean (2.157) (Figure 2a).

Consequently, to identify highly altered genes/proteins, the first quartile of the PCA
studies with the highest means of alterations were selected to construct a boxplot, and
genes and proteins that showed significantly different patterns of alterations were iden-
tified by using Tukey’s test. Figure 2b shows twelve types of PCA studies in which the
APBs genes/proteins present the highest number of frequency means alterations (Table
S4 in Supplementary File S4). SENP5, 2TRF1, UPF1, NSMCE2, CDKN1A, SUMO2, ACD,
KDM1A, ATM, CBX3, TP53B1, TEP1, NBN, ATR, PIAS4, XRCC6, MRE11, TOP3A, SBTB48,
RAD52, HUS1, and GNL3L genes/proteins showed significantly higher means of genomic,
transcriptomic, and proteomic alterations across the twelve studies, therefore, they can be
considered as targets of interest for the following analyses.

Furthermore, an OncoPrint with the first two quartiles of the genes/proteins with the
highest means of genomic, transcriptomic, and proteomic alterations was constructed by
using the cBioPortal data (https://www.cbioportal.org/ accessed on 5 July 2021) [15,16]
(Figure 3a). The most common alteration type observed was mRNA high, followed by
mRNA low and CNV amplification (Table S5 in Supplementary File S5). In addition,
genes/proteins with the highest alteration frequencies were NSMCE2, SENP5, and TRF1
with mRNA high alterations; TRF2, RAD17, and XRCC6 with mRNA low; NSMCE2, SENP5,
and NBN with CNV amplification; HMBOX1, WRN, and KDM4C with CNV deep deletion;
ATM, TEP1, and ATR with missense mutations; ATM, STC2, and ATR with truncating
mutations; MRE11, PCNA, and RAD50 with protein high; TP53B1, ATM, and CDKN1A
with protein low; NSMCE2, SENP5, and TRF1 in the overall alterations (Figure 3b).

Finally, in order to analyze how the APBs-related genes/proteins behave in tumors
not associated with ALT, we constructed another boxplot with the following PCA studies:
DLBC, CHOL, PAAD, LAML, THYM, and THCA (Figure 4a). As a result, the following
genes/proteins showed abnormal patterns of mutations: ACD, ATM, CBX3, FEN1, GNL3L,
NABP2, NSMCE2, PML, SENP6, and SP100. As a consequence, an OncoPrint showing
the genomic, transcriptomic, and proteomic alterations of these genes/proteins was con-
structed. Figure 4b, shows that mRNA up and downregulation are the dominant mutations
in the non-ALT tumors; the implication of these alterations in these genes/proteins is
discussed later.

https://www.cbioportal.org/
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3.3. Protein–Protein Interaction (PPi) Network and Functional Enrichment Analysis

PPi networks are fundamental resources to understand protein interactions among
diseases [34]. Thus, we analyzed the 71 APBs-related proteins selected for our study by
querying the STRING database [29]. After selecting the interaction score of the highest
confidence (0.900) [35], according to the level of evidence of interactions, we obtained
a network with 31 proteins interacting at the highest level of evidence, of which 23 are
involved in pathways significantly related (p < 0.001) to the molecular functions linked to
the mechanism of formation and function of APBs. Figure 5a shows interactions between
proteins which are differentiated by colored nodes according to the most significant path-
way in which each one is intervening; 70% of these are involved in telomeric DNA binding,
56% are involved in double-strand break repair (DSBR) and in telomere maintenance,
40% in telomere capping and positive and negative regulation of telomere maintenance,
and around 30% in homologous recombination and non-homologous end-joining (NHEJ)
mechanisms.

Additionally, a functional enrichment analysis of the 71 proteins was performed
using the g:profiler software [32] (Table S6 in Supplementary File S6). Figure 5b shows a
Manhattan plot of the most significant GO: molecular functions, GO: biological processes
and KEGG and REACTOME [36] signaling pathways with Benjamini–Hochberg FDR
(p < 0.001), which gives us a clearer idea about the function of the studied proteins and
allows us to understand and discuss the consequences of their genomic alterations in the
different types of cancer.

3.4. Correlation between ALT and APBs in TCGA PCA Studies

In our previous study [11], we classified the PCA tumors based on literature reports
and in silico analyses as: frequent, rare, and non-ALT tumors. With the help of a Venn
diagram (Figure 6a), a correlation was made among the ALT-related tumors from our
previous study and the most altered tumors across the 32 PCA types of the present study
with APBs. Consequently, it was observed that SARC, SKCM, UCS, ACC, and STAD
(ALT frequent tumors) and BLCA, UCEC, ESCA, COAD, LUSC, and BRCA (ALT rare
tumors) show a high frequency of genomic, transcriptomic, and proteomic alterations of
APBs-related genes/proteins.

As a result, the most altered proteins from the ALT frequent and rare tumors men-
tioned above were selected and a protein–protein interaction was performed with the most
altered APBs proteins from the same PCA studies by using the same criteria of evidence
and interactions used in the construction of the previous network. Figure 6b shows the
interactions between the APBs-related and ALT-related proteins from the frequent ALT
tumors, and Figure 6c shows the interactions between the same groups of proteins but from
the rare ALT tumors. Thus, the interaction of ALT and APBs proteins and their genomic,
transcriptomic, and proteomic alterations can be correlated to improve the understanding
of their association in the activation of telomerase-independent telomere maintenance
mechanisms in cancer.

Then, to prioritize and identify a set of key proteins from the APBs, we integrated
the most significant proteins from the networks in Figures 5a and 6b,c and the OncoPrint
analysis in Figure 3a,b. As a result, Figure 6d shows a Venn diagram with the integrated
analysis of the most significant APBs proteins from the different in silico approaches
applied, resulting in 13 key proteins.

Finally, Figure 7 shows a heatmap with the most significant (p < 0.001) GO processes,
functions, and signaling pathways where these 13 APBs proteins are interacting according
to the protein–protein interaction network and functional enrichment analysis performed
in previous steps. A total of 21 pathways related to TM mechanisms were selected and all
of them are related to telomere maintenance mechanisms.
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tumors proteins and APBs proteins. (c) PPi network showing the interaction among ALT-rare tumors
proteins and APBs proteins. (d) Venn diagram showing an integrative analysis of different in silico
approaches that resulted in the obtention of the 13 most relevant proteins of the study.
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4. Discussion

The alternative lengthening of telomeres mechanism is a break-induced replication
(BIR)-based process, through which some cancer cells elongate their telomeres without the
need of telomerase [37]. Although ALT has been widely studied and described in recent
years, the mechanism through which it is activated and most of its pathways are still poorly
understood [6]. One of the hallmarks of ALT is its association with promyelocytic leukemia
nuclear bodies, better known as APBs [38]. APBs formation is driven by liquid–liquid
phase separation with an environment marked by high levels of SUMOylated proteins,
that bring telomeres together allowing ALT to occur; however, the way APBs assemble or
how they promote ALT remains unclear [39]. As a consequence, for this study we used a
multiomics approach to identify the genomic, transcriptomic, and proteomic mutations
of 71 APBs-related genes in 32 cancer types from TCGA Pan-Cancer Atlas; as a result,
we proposed 13 key proteins, which, in addition to the 20 ALT-related proteins proposed
in a past study [11], represent the best in silico evidence so far for the study of the ALT
mechanism in cancer.

A total of 72,492 alterations were identified (Figure 1), the mRNA alterations and
copy number variation (CNV) amplifications being the predominant mutations. mRNA
up and downregulation is a measure to quantify the expression level of a certain gene
and how it will correlate or affect protein expression as a post-transcriptional level, while
CNV describes how the number of copies of a gene can be higher or lower from one
individual to another, which can result in a loss or gain of functions [40]; in cancer, there is
a close correlation between CNV and differential gene expression at a transcriptional level,
therefore, the correlation of these alterations in the APBs-related genes may help to explain
its function in the ALT pathway. ALT is known to commonly occur in only 10% to 15% of
cancers, most of them from mesenchymal origin [41]; however, in recent years, ALT+ cells
have been observed in a wide variety of epithelial tumors, and there is strong evidence
of switching from a telomerase-mediated telomeric extension to ALT, as a consequence of
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anti-telomerase and radiation-based therapies, which can trigger the accumulation of DNA
damage response (DDR) factors in telomeres that can lead to ALT activation [42,43].

With the first quartile of PCA studies exhibiting the highest frequencies of alterations,
we constructed a boxplot applying the Tukey´s test and as a result, the genes/proteins with
different patterns of genomic, proteomic, and transcriptomic alterations were determined.
Figure 2b showed genes/proteins SENP5, TRF1, UPF1, NSMCE2, CDKN1A, SUMO2,
ACD, KDM1A, ATM, CBX3, TP53B1, TEP1, NBN, ATR, PIAS4, XRCC6, MRE11, TOP3A,
SBTB48, RAD52, HUS1, and GNL3L to have the highest frequencies of alterations among
the different PCA studies. Then, we wanted to observe the predominant mutations of each
gene/protein, therefore, an OncoPrint with the first quartile of genes/proteins with the
highest frequencies of alteration was constructed with the aid of alterations data from the
cBioPortal [15,16]; Figure 3a showed the predominant alterations of each gene/protein,
where mRNA high had the highest percentage of alterations; nevertheless, XRCC6, TRF2,
ATM, TP53B1, MRE11, RAD50, CDKN1A, TINF2, WRN, and RPA1 are genes/proteins
with a different pattern of alterations, hence, we decided to rank each gene/protein per
alteration; Figure 3b showed each genomic, transcriptomic or proteomic alteration with a
ranking of the most altered gene/protein for each one. This ranking allowed us to elucidate
the role of each gene/protein in APBs. For instance, NSMCE2 was highly amplified and
overexpressed across the PCA studies (Figure 3b); this gene encodes a protein of the
small ubiquitin-related modifier (SUMO) and it is part of the SMC5/6 complex, which is
crucial for the SUMOylation of proteins [44] that is a hallmark of the APBs environment.
Additionally, the knockdown of NSMCE2 in ALT+ cell lines had led to a reduction of
telomere length [45].

In order to observe how the dataset behaves in tumors not associated with ALT,
we constructed a boxplot with these PCA studies and observed 10 genes/proteins with
abnormal alterations frequencies in these cancers (Figure 4a). Furthermore, with the
aid of an OncoPrint (Figure 4b), we identified mRNA up and downregulation to be the
predominant alterations. SP100, PML, FEN1, and CBX3 have been identified as ALT
enhancers [46–48]; SP100 is known to induce APBs formation [46] and is downregulated
in non-ALT tumors (Figure 4b) while PML, FEN1 and CBX3 are overexpressed. SENP6
and GNL3L are ALT repressors [49,50], the latter is known to bind to TRF1 preventing
PMLs formation [50] and is commonly upregulated in non-ALT tumors (Figure 4b). NABP2
and ACD association with ALT is ambiguous [46,51]; ACD, also known as TPP1 is a main
component of the shelterin complex, which is important to maintain telomere stability in
normal cells; it has been reported that ACD repression promotes ALT in cancer cells [51];
Figure 4b showed ACD to be highly overexpressed in non-ALT tumors. ATM and NSMCE2
showed abnormal alteration frequencies in ALT tumors (Figure 2b); both genes are known
enhancers of the ALT pathway and displayed similar alteration frequencies in the non-ALT
tumors; therefore, these genes should be considered for future in vivo studies as potential
targets in the study of the switching from a telomerase-mediated telomere maintenance
mechanism to ALT.

To further understand the role of the proteins analyzed in this study, we constructed a
protein interactome among the 71 APBs-related proteins by using the highest confidence
score of 0.9 according to coexpression, curated from the STRING database, and experimen-
tally determined parameters. As a result, in Figure 5a, a protein–protein interaction (PPi)
network with 31 proteins was observed; the most significant (p < 0.001) pathways were
DNA double-strand breaks (DDSB), telomere maintenance (TM), negative and positive
regulation of telomere maintenance, non-homologous end joining (NHEJ) and homologous
recombination (HR). ALT is a BIR-related process, triggered by oxidative stress due to
cancer treatment; all NHEJ and HR are BIR-related pathways that are proposed as the
main way by which ALT+ cells extend their telomeres [52]. In fact, BIR-induced replication
stress with the SUMOylation of key proteins initiates the recruitment of DNA damage
response (DDR) factors in APBs of ALT+ cell lines [53]. Moreover, a functional enrichment
analysis showed that Fanconi anemia pathway proteins like FANCD2, which is correlated
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with APBs formation [47], was highly enriched in our protein set; one report suggests that
FANCD2 depletion can lead to a high telomeric extension in APBs and positively regulate
H2AX and TP53B1 proteins in ALT cells [53]; Figure 3b showed FANCD2 truncation, which
is favorable for ALT activation.

In our last study, we classified the PCA studies according to literature reports and alter-
ation frequencies as ALT-frequent tumors, ALT-rare tumors, and not reported [11]. With the
aim to observe in which category the PCA studies with the highest frequencies of genomic,
transcriptomic, and proteomic alterations of this study are, we grouped them in a Venn
diagram which can be observed in Figure 6a, showing that SARC, SKCM, UCS, ACC, and
STAD are ALT-frequent tumors and BLCA, UCEC, ESCA, OV, HNSC, BRCA, LUSC, LUAD,
and COAD are ALT-rare tumors. Then, we constructed two protein interactomes applying
the same criteria used for the previous protein–protein interaction network; Figure 6b
showed an interactome of ALT-related proteins and APBs-related proteins that have high
alteration frequencies in ALT-frequent tumors, while Figure 6c showed the interactions
of ALT-related proteins and APBs-related proteins with the highest alteration frequencies
in ALT-rare tumors. These interactomes can improve the understanding of how PMLs
associate with ALT+ cell lines for the assembling of APBs; for instance, HDAC7 is believed
to promote PML protein SUMOylation [4], however, how the HDAC family interacts with
PMLs is still unclear. In the interactome of Figure 6c, HDAC7 is interacting directly with
UBE2I, which is a highly expressed protein in ALT+ cancers such as osteosarcoma [54,55].

Moreover, we integrated all the multiomics approaches used in the study: PCA
genomic, transcriptomic and proteomic alterations, protein interactomes, enrichment func-
tional analysis, and gene ontology in a single Venn diagram (Figure 6d) and identified
13 proteins that have significative alterations and interactions: MRE11 and NBN, which
are part of the MRN complex (MRE11/RAD50/NBN), predicted to be a key step in APBs
formation [56]; TRF1 and TRF2, components of the shelterin complex, believed to be re-
cruited by APBs with the aid of the MRN complex and PML protein and predicted to be
SUMOylated by NSMCE2 in ALT+ cell lines [57–59]. Furthermore, TRF1 inhibition has
been associated with the disassembly of APBs and the TRF1 fusion with the FokI nuclease,
which have been observed to induce DSBs that can enhance APBS formation through HDR
mechanisms [60–63]. However, the mechanism behind TRF1/2 interaction with the PML
protein in the assembling of APBs remains unclear [58]. CDKN1A protein knockdown is
associated with activation of ALT [64]; Figure 3b showed CDKN1A to have lower protein
expression in about 20% of the PCA studies and truncating mutations in 10% of cancers.
HUS1 is part of the 911 (RAD9-RAD1-HUS1) checkpoint that activates ATR and protects
telomere integrity during DNA damage response and oxidative stress [47,65]. SENP5
is a key protein in the SUMOylation pathway [54,66], UBE2I is a positive regulator of
APBs [54,55], DNMT1 depletion is related to ALT activation [47] and ATM and PCNA have
been observed to colocalize with APBs during HR and HDR [67,68]. Finally, to summarize
the role of the 13 key APBs-related proteins, a heatmap was elaborated showing the 21 most
significant pathways in which they are interacting (Figure 7).

5. Conclusions

This work identified 13 key APBs-related proteins, which, after a series of integrated in
silico and multiomics analyses, showed distinctive genomic, transcriptomic, and proteomic
alterations, significant protein–protein interaction patterns and appeared to be involved
in significant pathways related to telomere maintenance through APBs. This protein set,
in addition to 20 ALT-related proteins identified in a previous study [11], represents, so
far, the most complete in silico evidence of potential molecular targets for the study of
the ALT pathway. Although this statistically supported prioritization is based on more
than 10,000 tumor samples, further ex and in vivo experiments are needed to validate our
findings and fill the knowledge gap that currently exists in the ALT pathway molecular
research. This should be considered as a limitation of our study. Bioinformatics techniques
through the aid of computational biology models have proven to be valuable tools to
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prioritize proteins that could improve future in vivo research in different hallmarks of
cancer progression such as the APBs-mediated telomere maintenance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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