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Despite that immune responses play important roles in acute myeloid leukemia (AML),

immunotherapy is still not widely used in AML due to lack of an ideal target. Therefore,

we identified key immune genes and cellular components in AML by an integrated

bioinformatics analysis, trying to find potential targets for AML. Eighty-six differentially

expressed immune genes (DEIGs) were identified from 751 differentially expressed genes

(DEGs) between AML patients with fair prognosis and poor prognosis from the TCGA

database. Among them, nine prognostic immune genes, including NCR2, NPDC1,

KIR2DL4, KLC3, TWIST1, SNORD3B-1, NFATC4, XCR1, and LEFTY1, were identified

by univariate Cox regression analysis. A multivariable prediction model was established

based on prognostic immune genes. Kaplan–Meier survival curve analysis indicated that

patients in the high-risk group had a shorter survival rate and higher mortality than those in

the low-risk group (P < 0.001), indicating good effectiveness of the model. Furthermore,

nuclear factors of activated T cells-4 (NFATC4) was recognized as the key immune gene

identified by co-expression of differentially expressed transcription factors (DETFs) and

prognostic immune genes. ATP-binding cassette transporters (ABC transporters) were

the downstream KEGG pathway of NFATC4, identified by gene set variation analysis

(GSVA) and gene set enrichment analysis (GSEA). To explore the immune responses

NFATC4 was involved in, an immune gene set of T cell co-stimulation was identified

by single-cell GSEA (ssGSEA) and Pearson correlation analysis, positively associated

with NFATC4 in AML (R = 0.323, P < 0.001, positive). In order to find out the immune

cell types affected by NFATC4, the CIBERSORT algorithm and Pearson correlation

analysis were applied, and it was revealed that regulatory T cells (Tregs) have the highest

correlation with NFATC4 (R = 0.526, P < 0.001, positive) in AML from 22 subsets of

tumor-infiltrating immune cells. The results of this study were supported by multi-omics

database validation. In all, our study indicated that NFATC4 was the key immune gene in

AML poor prognosis through recruiting Tregs, suggesting that NFATC4 might serve as a

new therapy target for AML.
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INTRODUCTION

Acute myeloid leukemia (AML) is the most common type of
acute leukemia in adults, which often confronts high recurrence
risk and low 5-years survival after diagnosis (Li et al., 2020). Over
the past decades, therapies targeting mutated or critical proteins
in leukemia have come to the market with some promising
impact on prognosis (Pollyea, 2018; Cerrano and Itzykson, 2019).
However, immune therapy which has gained significant clinical
impact on other neoplastic diseases still faces great challenges
in AML. This indicates us to pay more attention to immune
regulation in AML.

The progression of AML is closely associated with immune
imbalance. As important participants in immune responses,
changes in the type and proportion of immune cells are involved
in cancer progression. The percentage of regulatory T cells
(Tregs) in bonemarrow is higher in AML patients than in healthy
donors (Niedzwiecki et al., 2019; Williams et al., 2019). Increased
Treg phenotype may promote disease progression and lead to
poor prognosis in AML through contributing to immune evasion
(Govindaraj et al., 2014; Arandi et al., 2018). However, how
immune cells involved in immune imbalance are regulated in
AML remains unclear.

Immune genes in tumor cells may promote the secretion of
inflammatory cytokines by activating the downstream signaling
pathway and recruit Tregs, thus avoiding immune damage
(Yue et al., 2020). Therefore, we screened immune genes from
ImmPort to study how immune genes in leukemia cells regulate
immune responses in AML. Limiting the target to immune
genes might help us identify immune factors associated with
AML prognosis more accurately. In this study, we identified key
immune genes correlated with AML prognosis and explored the
associated immune gene set and immune cells by ssGSEA and
CIBERSORT algorithm with the expression profiles from the
TCGA database, trying to find novel targets for immunotherapy.

MATERIALS AND METHODS

Data Preparation and Analysis of
Differentially Expressed Genes (DEGs)
RNA-seq profiles and clinical information of AML samples
with different risk stratifications were downloaded from The
Cancer Genome Atlas (TCGA) database (https://tcgadata.nci.
nih.gov/tcga/). Primary AML samples with complete clinical
information and not M3 subtype were selected for our following
analysis. Data of 2,498 immune-related genes were retrieved from
the ImmPort database (https://www.import.org/) (Bhattacharya
et al., 2018). Data of 318 cancer-related transcription factors

Abbreviations: AML, Acute myeloid leukemia; ABC transporters, ATP binding

cassette transporters; AUC, Area Under the Curve; DEGs, Differentially expressed

genes; GSEA, Gene set enrichment analysis; GSVA, Gene set variation analysis;

GO, Go Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; KIR2DL4,

Killer cell immunoglobulin-like receptor 2DL4; KLC3, Kinesin light chain 3;

NFATC4, Nuclear factor activated T cells-4; NCR2, Natural cytotoxicity triggering

receptor 2; NPDC1, Neural proliferation, differentiation and control 1; RAG1,

Recombination activating gene-1; Tregs, Regulatory T cells; ssGSEA, Single sample

gene set enrichment analysis.

(TFs) were obtained from the Cistrome Cancer database (http://
cistrome.org/) (Mei et al., 2017). HTseq-count and fragments per
kilobase of exon per million reads mapped (FPKM) profiles of
AML samples, divided into two groups with fair prognosis (risk
stratification: favorable/intermediate) and poor prognosis (risk
stratification: poor), were assembled. To identify significantly
DEGs, the edgeR method was used (Robinson et al., 2010)
while P < 0.05 and the log (fold change) > 1 or < −1 were
set as the cutoffs. The heatmap showed the DEGs with each
row normalized by z-score. The volcano plot was generated to
highlight DEGs. GeneOntology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis of DEGs were
performed to reveal the potential mechanism.

The Identification of Prognostic Immune
Genes
DEIGs were extracted from the previously identifiedDEG list and
immune-related genes. Heatmap and volcano plot were applied
to show the DEIGs. Then, the univariate Cox regression analysis
was performed to identify prognostic immune genes based on
DEIGs and clinical information.

Construction of Prognostic Prediction
Model Based on the Prognostic Immune
Genes
To assess the significance of each prognostic immune gene
with the β-value, the multivariate Cox regression analysis was
carried out. Based on the model, the risk score of each sample
was calculated to evaluate prognostic risk according to the
following formula:

Risk score =

n∑

i=1

βi× xi

In the formula, “n” represents the number of integrated genes
in the model. “β” represents the regression coefficient of each
integrated gene. “χ” represents the expression level of each
integrated gene. Then, based on the median risk score, samples
were medially divided into high- and low-risk groups. The area
under the ROC curve (AUC) was applied to evaluate the accuracy
of the model. Kaplan–Meier survival analysis was performed to
compare the survival between the two groups. Next, based on the
risk score, individuals were reordered. The risk curve, survival
state-related scatterplot, and heatmap of prognostic immune
genes were plotted.

Then, to assess the independent prognostic value of the risk
score, age, gender, morphology code (FAB subtype), and risk
category, the univariate and multivariate Cox regression analyses
modified by baseline information were performed.

The Identification of the Key Immune Gene
Differentially expressed transcription factors (DETFs) were
obtained by intersecting DEGs and all the cancer-related TFs,
shown by the heatmap and volcano plot. Then, Pearson
correlation analysis was conducted to uncover the regulation
and association between DETFs and prognostic immune genes.
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The regulation pair with the highest coefficient and P < 0.05
was selected as the significant regulation pair. The immune gene
in the significant regulation was recognized as the key immune
gene. The expression of the key immune gene in different AML
risk stratifications was shown in the box plot.

Identification of Potential Downstream
KEGG Pathways, Immune Gene Sets, and
Immune Cells
To explore the downstreamKEGG pathways of key immune gene
related to AML prognosis, gene set variation analysis (GSVA) was
performed. ssGSEA was applied to identify the immune gene sets
related to AML prognosis from those overexpressed in the tumor
microenvironment (Barbie et al., 2009; Charoentong et al., 2017).
CIBERSORT was used to quantify the proportions of immune
cells related to AML prognosis (Newman et al., 2015). Pearson
correlation analysis was performed to clarify the correlation
relationship between key immune gene and KEGG pathways,
immune gene sets, and immune cells, shown by the co-expression
heatmap. The correlation scores were fitted by linear regression.
Meanwhile, GSEA was also performed to find out the critical
KEGG pathway. The overlap of GSVA and GSEA was shown by
the Venn plot. The KEGG pathways identified by both GSVA and
GSEA were recognized as the key signaling pathway.

Multidimensional Validation and
Construction of the Protein–Protein
Interaction Network
With the aim of decreasing the bias based on different
platforms, multidimensional validation was utilized. Moreover,
genes that represented the KEGG pathway were available from
Pathway Card (https://pathcards.genecards.org/). The databases
of Gene Expression Profiling Interactive Analysis (GEPIA) (Tang
et al., 2017), Oncomine (Rhodes et al., 2004), PROGgeneV2
(Goswami andNakshatri, 2014), UALCAN (Chandrashekar et al.,
2017), Linkedomics (Vasaikar et al., 2018), cBioportal (Cerami
et al., 2012), Genotype-Tissue Expression (GTEx) (Consortium,
2015), UCSC xena (Goldman et al., 2015), Cancer Cell Line
Encyclopedia (CCLE) (Ghandi et al., 2019), Expression atlas
(Papatheodorou et al., 2018), The Human Protein Altas (Uhlen
et al., 2015), and String (Snel et al., 2000) were applied to validate
the scientific hypothesis.

To better reveal the mechanism related to AML prognostic
status, a protein–protein interaction (PPI) network was built to
illustrate the interaction among prognostic TF, immune genes,
KEGG pathways, immune gene sets, and immune cells by
Cytoscape 3.7.1 (Shannon et al., 2003). Accordingly, a signaling
diagram was displayed to show the AML prognostic related
hypothesis based on the bioinformatics.

Statistical Analysis
R version 3.5.1 (Institute for Statistics and Mathematics, Vienna,
Austria; https://www.r-project.org) was used for all the statistical
analyses. For descriptive statistics, mean ± standard deviation
(SD) was used to express the continuous variables in normal
distribution while the median (range) was used in abnormal

TABLE 1 | Baseline information of 134 patients with AML from the TCGA

database.

Variables Total patients (N = 134)

Age, Years

Mean ± SD 55 ± 33

Gender

Female 60 (44.8%)

Male 74 (55.2%)

Risk Stratification

Favorable/intermediate 105 (78.4%)

Poor 29 (21.6%)

Morphology Code

M0 15 (11.2%)

M1 34 (25.4%)

M2 38 (28.3%)

M4 28 (20.9%)

M5 15 (11.2%)

M6 2 (1.5%)

Other 2 (1.5%)

SD, Standard deviation.

distribution. Classified variables were expressed by counts
and percentages. Only two-tailed P < 0.05 was considered
statistically significant.

RESULTS

Nine Prognostic Immune Genes Were
Identified in AML
The analysis procedure is shown in Supplementary Figure 1.
There were 134 AML patients meeting the inclusion criteria that
consisted of 105 with fair prognosis and 29 with poor prognosis.
The baseline information is presented in Table 1. DEGs between
the two groups, including 630 up- and 121 down- genes,
were shown by the heatmap and volcano plot (Figures 1A,B).
Then, GO and KEGG analyses were performed to reveal the
underlying mechanism. As shown in Figures 1C,D, immune-
related pathways such as “MAPK signaling pathway” and “ABC
transporters” were included in the top 10 enrichment items.

DEIGs (75 up- and 11 down- genes) were shown by
the heatmap and volcano plot in Figures 2A,B. To find out
prognostic immune genes, the DEIGs and prognosis data were
sent for univariate Cox regression analysis. Nine prognostic
immune genes, including NCR2, NPDC1, KIR2DL4, KLC3,
TWIST1, SNORD3B-1, NFATC4, XCR1, and LEFTY1, were
identified (Figure 2C).

To make our results more convincing, we also divided
AML patients in three groups including favorable, intermediate,
and poor prognosis for nonparametric tests. As shown in
Supplementary Figure 2, most of the prognostic immune genes
did differ among the three groups (P < 0.05).

Then, the prognostic immune genes and clinical information
were integrated into a multivariate Cox regression analysis to
establish the prognostic prediction model. The Lasso regression
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FIGURE 1 | The DEGs between AML with fair and poor prognosis. (A) The heatmap and (B) volcano plot of 751 DEGs between 105 AML with fair prognosis and 29

AML with poor prognosis. (C) The GO and (D) KEGG analysis of 751 DEGs. Note: Fair prognosis, risk stratification: favorable/intermediate; poor prognosis, risk

stratification: poor. AML, acute myeloid leukemia; DEGs, differentially expressed genes; GO, Go Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 2 | The DEIGs between AML with fair and poor prognosis. (A) The heatmap and (B) volcano plot of 86 DEIGs; (C) forest plot to show the nine prognostic

immune genes. Red: high-risk gene; blue: low-risk gene. DEIGs, differentially expressed immune genes.

was performed to avoid overfitting of the model. The AUC was
0.970 in the ROC curve, indicating that all these nine genes were
essential for modeling (Figure 3A). The risk score of each sample
was calculated accordingly. Individuals were divided into two
groups with high and low risk with the median value of 1.000.
The Kaplan–Meier curve showed that the survival probability of
samples in the high-risk group was significantly lower than in the
low-risk group (P < 0.001), suggesting good effectiveness of the
prediction model (Figure 3B).

Then, the risk curve and scatterplot were generated to show
the risk score and survival status of each individual with
AML. Patients in the high-risk group showed higher mortality
than those in the low-risk group, as shown in Figure 3C.
The expression of prognostic immune genes screened by Lasso
regression were displayed by the heatmap in Figure 3D.

To assess the independent prognostic value of risk score, we
sent age, gender, morphology code, risk category, and risk score
to the univariate and multivariate Cox regression analysis. As
shown in Figures 3E,F, both the univariate (HR= 1.169, 95% CI
(1.111–1.230), P < 0.001) and multivariate (HR= 1.151, 95% CI
(1.091–1.215), P < 0.001) Cox regression analyses indicated that
the risk score was an independent prognostic factor in AML.

NFATC4 Was the Key Immune Gene
Associated With Poor Prognosis of AML
To further find out the critical immune gene related to
poor prognosis of AML, the co-expression analysis of DETFs
and prognostic immune genes was performed. Two up-
DETFs between AML patients with fair prognosis and poor
prognosis were displayed with the heatmap and volcano plot
in Figures 4A,B. Then, Pearson correlation analysis between
DETFs and prognostic immune genes was carried out. As shown
in Table 2, only the pair of recombination activating gene-1
(RAG1) and nuclear factors of activated T cells-4 (NFATC4) was
significant (R = 0.248, P < 0.01, positive), suggesting that RAG1
upregulated NFATC4 in AML. NFATC4 was recognized as the
key immune gene. The expression of NFATC4 in different AML

prognostic statuses is shown in Figure 4C. Patients with poor
prognosis showed higher expression of NFATC4.

NFATC4 Was Co-expressed With
ATP-Binding Cassette (ABC) Transporter
Signaling Pathway in AML Poor Prognosis
To explore the potential mechanism of NFATC4 regulating
AML prognosis, GSVA was performed and a total of 21
KEGG signaling pathways related to AML poor prognosis were
identified. Then, Pearson correlation analysis was carried out
to construct the correlation relationship between NFATC4 and
prognosis-related KEGG pathways (Figure 5A). Meanwhile, to
identify the key KEGG pathway mostly correlated with AML
prognosis, GSEA was also conducted. The pathways identified
by GSVA and GSEA were intersected. The overlap in GSVA and
GSEA was shown by the Venn plot. As shown in Figure 5B,
there was only one pathway significant in both GSEA and GSVA.
The GSEA analysis of the ABC transporter pathway is shown
in Figure 5C (P < 0.001). The correlation relationship between
the NFATC4 and ABC transporter pathway was displayed
by linear regression in Figure 5D (R = 0.309, P < 0.001,
positive), suggesting that NFATC4might positively regulate ABC
transporters in AML.

NFATC4 Was Co-expressed With Immune
Gene Set of T Cell Co-stimulation, Tregs in
AML
Immune genes are involved in immune responses via
affecting immune cells; thus, we identified AML prognosis-
related immune gene sets and immune cells by ssGSEA
and CIBERSORT algorithm. As shown in Figures 6A,B, the
correlation relationship between NFATC4 and AML prognosis-
related immune gene sets and immune cells was presented by
the heatmap. Figures 6C–E show the top three immune gene
sets correlated with NFATC4. Among them, the correlation
relationship between immune gene sets of T cell co-stimulation
and NFATC4 was the most significant (R = 0.323, P < 0.001,
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FIGURE 3 | The prognostic prediction model based on prognostic immune genes. (A) ROC curve for (AUC = 0.970) prognostic immune genes. (B) The Kaplan–Meier

curve to identify the efficacy of risk score in OS. (C) The high and low risk score group in scatterplot and risk plot. (D) The heatmap to illustrate each prognostic immune

genes screened by Lasso regression. The forest plot of univariate (E) and multivariate (F) Cox regression analysis. OS, overall survival; AUC, area under the curve.
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FIGURE 4 | The DETFs between AML with fair prognosis and poor prognosis. (A) The heatmap and (B) volcano plot of 2 DETFs. (C) The box plot to show the

expression of NFATC4 in AML with different prognostic statuses. DETFs, differentially expressed transcription factors; RAG1, recombination activating gene-1;

NFATC4, nuclear factor of activated T cells-4.

TABLE 2 | The correlation analysis results of DETFs and prognostic immune

genes.

TF Immune gene Correlation P-value Regulation

RAG1 NFATC4 0.247618294 0.007108929 Positive

TF, transcription factor; RAG1, recombination activating gene-1; NFATC4, nuclear factors

of activated T cells-4.

positive), suggesting that NFATC4 might affect T cell co-
stimulation in AML. The top three immune cells correlated with
NFATC4 were Tregs (R = 0.526, P < 0.001, positive), CD8+ T
cells (R= 0.339, P< 0.001, positive), and plasma cells (R= 0.263,
P < 0.01, positive) (Figures 6F–H). Of them, the correlation
relationship between NFATC4 and Tregs was most significant,
as shown in Figure 6F, indicating that NFATC4 might modulate
the cellular communication between leukemia cells and Tregs in
the progression of AML.

Multidimensional Validation Further
Confirmed Association Between Key
Biomarkers in Our Analysis With AML
Prognosis
Multidimensional validation based on GEPIA (Supplementary

Figure 3), Oncomine (Supplementary Figure 4), PROGgeneV2
(Supplementary Figure 5), UALCAN (Supplementary

Figure 6), Linkedomics (Supplementary Figure 7), cBioportal
(Supplementary Figure 8), GTEx (Supplementary Figure 9),
UCSC xena (Supplementary Figure 10), CCLE (Supplementary

Figure 11), Expression atlas, The Human Protein Altas
(Supplementary Figure 12), and String (Supplementary

Figure 13) was utilized.
The top five genes that represented the critical KEGG

pathway were NSR, INS, PDX1, RBFOX2, and HNF1A.
The genes’ interaction relationship from the cBioportal
database is shown in Supplementary Table 1. The differential
expression of genes is summarized in Supplementary Table 2.

RAG1 (Supplementary Figures 4B, 8B, 10A), NFATC4
(Supplementary Figure 8A), RBFOX2 (Supplementary

Figure 8) and HNF1A (Supplementary Figures 8E, 10A),
and INSR (Supplementary Figures 3C, 4C, 6C, 8C, 10A, 11B)
were highly expressed in AML. PDX1 (Supplementary

Figures 4C, 10A, 11C) was lowly expressed in AML. The
validation of association between these genes and prognosis is
summarized in Supplementary Table 3. The integrated genes
(P < 0.05, PROGgeneV2, Supplementary Figure 5K), ISNR (P
< 0.05, PROGgeneV2, Supplementary Figure 5J; P < 0.001,
Linkedomics, Supplementary Figure 7C), and RBFOX2 (P
< 0.05, GEPIA, Supplementary Figure 3) were significantly
related to overall survival, and INSR (P < 0.05, cBioportal,
Supplementary Figure 8C) was also significantly related to
disease/progression-free survival.

To better show our findings, we constructed a schematic
diagram of this scientific hypothesis (Supplementary

Figure 14C). The crucial TF, immune gene, downstream
pathway, and associated immune gene set and immune cells
were RAG1, NFATC4, ABC transporter signaling pathway and T
cell co-stimulation and Tregs, respectively.

DISCUSSION

Immune imbalance plays important roles in the progression
of AML. However, the crosstalk between leukemia cells and
immune cells, the critical participant of immune responses,
remains elusive. Previous studies of immune responses have a
limited view to a specific subset of immune cells to explore
how they were regulated by leukemia cells. This may be
misleading and are not comprehensive as various immune cells
surrounding cancer cells are important. In the current study,
we focused on expression of immune genes in leukemia cells
and applied the CIBERSORT tool to explore the communication
between leukemia cells and immune cells. Finally, NFATC4
was the key immune gene in poor prognosis of AML through
recruiting Tregs.
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FIGURE 5 | The downstream KEGG pathways of NFATC4 related to AML prognosis. (A) The co-expression heatmap of NFATC4 with KEGG pathways selected by

GSVA. (B) The Venn plot to show overlap KEGG pathways in both GSVA and GSEA. (C) The GSEA analysis of ABC transporter pathway. (D) The linear regression to

show the correlation between NFATC4 and ABC transporters pathway. GSVA, gene set variation analysis; GSEA, gene set enrichment analysis; ABC transporters,

ATP-binding cassette transporters.

In this study, RAG1 was found to be positively correlated
with NFATC4 in the process of searching for key immune genes
through co-expression analysis. Thus, we concluded that RAG1
transcriptionally regulated the expression of NFATC4. RAG1
is a key component of the RAG complex which is the main
driving factor of oncogenic genome deletion and translocation
(Han et al., 2019). High expression of RAG1 was associated with
high proliferation markers in adult ALL and poor prognosis in
gastric cancer (Han et al., 2019; Kang et al., 2019), which revealed
the role of RAG1 in cancer progression. The transcriptional
function of RAG1 for NFATC4 has not been described previously.

However, the list of cancer-related TFs in our analysis was
from Cistrome Cancer, a comprehensive resource for predicted
TF targets in cancer. The prediction was based on TCGA
expression profiles and public Chip-seq profiles. Therefore, we
speculated that RAG1 was a transcription factor of NFATC4 in
AML, while its transcriptional regulatory function needs further
experimental verification.

The NFAT proteins were widely concerned in the immune
system, while recent studies indicated that they are functionally
active in several nonimmune cells and participate in tumor
progression (Baksh et al., 2002; Graef et al., 2003; Neal and
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FIGURE 6 | The immune gene sets and immune cells related to NFATC4 in AML. The co-expression heatmap of NFATC4 with (A) immune gene sets and (B) immune

cells. The linear regression to show the correlation between NFATC4 and (C) T cell co-stimulation, (D) check-point, and (E) inflammation promoting. The linear

regression to show the correlation between NFATC4 and (F) Tregs, (G) CD8+ T cells, and (H) plasma cells. Tregs, Regulatory T cells.
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Clipstone, 2003). Our study discovered that high expression of
NFATC4 was associated with poor prognosis of AML, which
was consistent with reports in pancreatic cancer and ovarian
cancer (Hessmann et al., 2016; Cole et al., 2020). In these tumors,
NFATC4 participates in cancer progression through promoting
tumor cell proliferation or chemotherapy resistance, while we
inferred that it regulates immune responses in the progression
of AML. Another isotype of NFATs, NFAT1, increases neutrophil
infiltration through promoting the transcriptional induction of
IL8 in breast cancer (Kaunisto et al., 2015). This indicates
the role of NFAT family to regulate immune cells in cancer
development. Besides, NFATC4 is reported to induce TNF-α
expression in lung cells apart from involving in transcription
of TNF-α in immune cells (Ke et al., 2006; Falvo et al., 2008).
The repressed NFATC4 transcription activity in adipocytes also
inhibited the secretion of inflammatory factors (Kim et al., 2010).
Moreover, it is worth noting that NFATC4 signaling mediates the
expression of chemokines CCL2 and CXCL10 in rat fibroblasts
(Kuwata et al., 2018). Also, CCL2 was reported to recruit Tregs
in the progression of esophageal squamous cell carcinoma (Yue
et al., 2020). In this study, we found that Tregs were positively
associated with NFATC4 in AML by CIBERSORT and Pearson
correlation analysis, indicating that NFATC4might involve in the
progression of AML through recruiting Tregs.

As a nuclear factor, NFATC4 needs to activate downstream
pathways to mediate the crosstalk between leukemia cells
and Tregs. Pearson correlation analysis showed that NFATC4
was positively associated with ABC transporters, identified by
GSVA and GSEA. In a previous study, NFATC2 promoted the
downregulation of ABCA1 in an innate immunity signaling
process, proving that NFATs could regulate ABC transporters
(Maitra et al., 2009). Thus, we inferred that NFATC4 could
enhance the expression of ABC transporters in AML. ABC
transporters represent one of the largest transmembrane protein
families, consisting of seven gene subfamilies (Begicevic and
Falasca, 2017). Some ABC transporters participate in metabolite
transportation, drug efflux, antigen processing, and immunity
(Fukuda et al., 2015; Liu, 2019). So they may mediate the
excretion of inflammatory factors to assist leukemia cells in
recruiting Tregs. Furthermore, we found that the immune
gene set of T cell co-stimulation was positively associated
with NFATC4 in AML by ssGSEA and Pearson correlation
analysis. One member in this immune gene set, TNFSF14,
was known as a costimulatory factor for the activation of
lymphoid cells and stimulation of the proliferation of T cells.
The expression of TNFSF14 in melanoma cells contributes
to regulate T-cell responses to tumor cells (Mortarini et al.,
2005). Thus, we speculated that NFATC4 might affect the
activation of Tregs throughmodulating the immune gene set of T
cell co-stimulation.

To be honest, there are some limitations in our study. Firstly,
the expression profiles and clinical information of samples
in public database are limited. Besides, all the data for our
speculation was from public databases, which lacked validation
experiments. However, our study is a correlation analysis,
aiming to provide reliable guidance for fundamental research
of AML. Moreover, we also performed multidimensional online
validation to support our results. All in all, our study indicated
that increased NFATC4 might recruit Tregs in the progression
of AML through affecting ABC transporters and T cell co-
stimulation (Supplementary Figure 13). Further experiments
will be carried out to verify our hypothesis.

CONCLUSIONS

Our study, firstly, inferred that NFATC4 was key immune gene
associated with poor prognosis of AML through recruiting
Tregs. Our findings further uncover the mechanism of AML
progression and might provide guidance for its treatment.
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