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Simple Summary: Breast cancer is one of the most frequently diagnosed cancers and it is the second
leading cause of cancer-related death in women. Early first full-term pregnancy has been known to
reduce the life-time risk of breast cancer. The actual mechanism by which pregnancy reduces the
life-time risk of breast cancer is not well understood. It is well established that hormones are vital for
a successful full-term pregnancy and they can also influence the risk of breast cancer. The emphasis
has been placed mainly on the ovarian hormones estrogen and progesterone. It is also known that
hypothalamic and pituitary hormones can impact the breast. In this study, we investigated how
pregnancy alters the hypothalamic/pituitary hormones and what effect these hormonal alterations
have on the risk of breast cancer development. Our results demonstrate that pregnancy persistently
alters the hypothalamic–pituitary hormonal axis leading to the reduction of breast cancer risk.

Abstract: Early full-term pregnancy is known to reduce the lifetime risk of breast cancer. Although
the phenomenon of parity-induced protection is well-established, the physiological mechanisms
involved in this protection are not clear. Earlier reports have shown that pregnancy results in
alterations of hormone levels. How pregnancy affects hypothalamic hormones and how the change,
if any, influences breast cancer is not well understood. Seven-week-old female Lewis rats were
given N-methyl-N-nitrosourea. Two weeks post carcinogen exposure, a set of females were housed
with males to generate the parous rats and another set of rats served as the nulliparous controls.
Mammary tumorigenesis was assessed for 9 months. Hypothalamic and pituitary levels of hormones
were measured at various timepoints. Further, animals were also challenged with growth hormone
and prolactin secretagogues to test the effect of pregnancy on the hypothalamic–pituitary hormonal
axis. Persistent alterations in the level of growth hormone-releasing hormone, thyrotropin releasing
hormone, dopamine, and somatostatin in the hypothalamus of parous animals was observed. Further,
we also observed that pregnancy had a significant effect on the pituitary gland and its response
to growth hormone and prolactin secretagogues. Our studies using the rodent model system
demonstrate that pregnancy could be reducing the risk of breast cancer by persistently altering the
hypothalamic–pituitary axis, which could have implications for breast cancers in humans as well.
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1. Introduction

A full-term pregnancy before the age of 20 years is the only known natural phe-
nomenon that can drastically reduce the risk of breast cancer in women of all ethnic
backgrounds worldwide [1–6]. This universal protective effect of early pregnancy is a
major consideration in developing preventive strategies against breast cancer. It has also
long been known that parous rats and mice, in contrast to their nulliparous counterparts,
develop fewer, if any, mammary tumors after the administration of carcinogens [7–9].
Furthermore, the protective effects of pregnancy have been reported in rats undergoing
pregnancy before or after exposure to chemical carcinogens. Commonly used mammary
carcinogens are N-methyl-N-nitrosourea (MNU) and dimethylbenzanthracene. These car-
cinogens cause alterations in DNA structure and lead to the development of mammary
cancers, which are mainly estrogen receptor positive.

It has been suggested that this protective effect is likely due to differentiation of the
target structures during carcinogenesis, involving the terminal end buds and terminal
ducts, by hormones associated with pregnancy [10–12]. Based on comparisons between
parous and nulliparous women, it has also been shown that parous women have reduced
circulatory levels of prolactin and androgens, increased estriol, and elevated levels of sex
hormone binding globulins. These systemic changes are also thought to be associated
with the protective effects of pregnancy. Additionally, there is a significant decrease in the
circulating levels of growth hormone and prolactin, and decreased levels of estrogen and
epidermal growth factor receptors in mammary glands of parous rats, when compared
to age-matched nulliparous (AMNP) rats [7]. Finally, changes in mammary stem cell
characteristics in terms of self-renewal, morphogenesis, and signaling capabilities have also
been suggested as a reason for early parity-induced protection against breast cancer [13–16].

Pregnancy-induced neuroendocrine changes and how they affect breast cancer are not
well understood. Earlier reports have shown that pregnancy results in long-term persistent
alterations in pituitary hormones, many of which are controlled by hypothalamic hormones.
How pregnancy affects hypothalamic hormones and how the change, if any, influences
breast cancer is not well understood. The two main pituitary hormones that are persistently
altered are growth hormone (GH) and prolactin (PRL). These two hormones are directly
under the control of hypothalamic factors. GH is synthesized and secreted in response
to growth hormone-releasing hormone (GHRH) and is inhibited by somatostatin [17–19],
while PRL is synthesized in response to thyrotropin-releasing hormone (TRH) and is
inhibited by dopamine [20–22]. These hypothalamic factors could play crucial roles in
breast cancer prevention.

Although the phenomenon of parity-induced protection against mammary carcino-
genesis is well established, the physiological mechanisms involved in this protection are
not well understood. The development of novel preventive strategies to reduce the risk of
breast cancer without having to undergo pregnancy early in life is critical in understanding
the underlying mechanism of this protective effect of pregnancy against breast cancer. In
this report, we show that pregnancy reduces the risk of breast cancer by persistently alter-
ing the neuroendocrine regulation of hypothalamic and pituitary factors. These findings in
the rodent model system might further highlight a potential physiological mechanism by
which pregnancy reduces the risk of developing breast cancer in humans.

2. Materials and Methods
2.1. Animals

All animal studies were approved by the Institutional Animal Care and Use Committee
of the Texas Tech University Health Sciences Center (El Paso, TX, USA). We used 7-week-
old female and male Lewis rats purchased from Envigo (Indianapolis, IN, USA). Female
and male rats were housed in breeding cages. The male rats were isolated once the vaginal
plug was observed. All parous rats were uniparous and had undergone 6 weeks of post-
partum regression. We previously observed that by 4–6 weeks of age, the mammary gland
undergoes optimal regression following differentiation induced by pregnancy, resulting
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in a mammary gland composed mainly of ductal structures with very few persisting
lobules. The following line diagram shows the general experimental protocol as well as the
experimental time points at which the samples were collected.

2.2. Experimental Design Line Diagram

The following line diagram is the respresentation of the experimental design that was
used to conduct the experiments. Mammary carcinogenesis was followed upto 36 weeks.
Blood and tissue samples were collected at each time and used for analysis (Figure 1).
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Figure 1. The line diagram of the respresentation of the experimental design.

2.3. Mammary Carcinogenesis

N-methyl-N-nitrosourea (MNU) was dissolved in 0.9% NaCl (pH 4.0–5.0) and injected
intraperitoneally at a dose of 50 mg/kg body weight. All experimental animals were
palpated twice weekly for the presence of mammary tumors. The palpable tumors were
measured in two axes and were surgically removed under isoflurane anesthesia before they
reached a size of 2 cm in any axis. Post-surgery the animals were administered rimadyl
as analgesic for the following five days. The cancerous nature of the palpable tumors was
confirmed by histopathological analyses.

2.4. Immunohistochemistry

Formalin-fixed paraffin-embedded mammary tumor tissues were sectioned using
a microtome at 5 micron thickness. Tissue sections were incubated in an oven at 58 ◦C
for 2 h, and then were deparaffinized using a xylene bath for 20 min. The sections were
rehydrated in serial alcohol baths and were then placed in a distilled water wash for
5 min. Antigen retrieval was conducted using trilogy (Cell Marque, Rocklin, CA, USA)
followed by blocking in tris-buffered saline (TBS) containing 1% fetal calf serum and
1% bovine serum albumin for 15 min. This was followed by the addition of peroxide-
free blocking reagent (Cell Marque) for 10 min. Tissues sections were then incubated
with various primary antibodies (1:50–1:1000 dilution) overnight at 4 ◦C. The slides were
then washed in phosphate-buffered saline (PBS) for 5 min (3×) and incubated with Ultra
Marque polyscan HRP Label (Cell Marque) for 1 h at room temperature. Tissue sections
were then washed in PBS and stained with 3,3’-diaminobenzidine chromogen (Cell Marque)
for 20 min. Counterstaining was conducted with hematoxylin for 40 s. Tissue sections
were then rinsed with distilled water and dehydrated with serial ethanol solutions, and
then placed in a xylene bath. Finally, mounting medium (Surgipath Medical Industries,
Richmond, IL, USA) was used to place a coverslip over the tissue sections. Images of
stained tissues were captured using an Eclipse 50i microscope (Nikon, Tokyo, Japan).
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2.5. Measurement of Static Levels of Hypothalamic and Pituitary Hormones in Response to Pregnancy

Parous rats were generated as described above. AMNP rats were used as controls.
The animals were sacrificed at 18, 24, 30, and 36 weeks of age, and the hypothalamus
and pituitary were removed and snap-frozen in liquid nitrogen for later extraction. We
measured the content of GHRH and TRH to assess the effects of parity on GH- and PRL-
stimulating peptides, respectively. GHRH is the main hypothalamic stimulator of GH
secretion and TRH is the main hypothalamic stimulator of PRL from the pituitary gland.
The content of the GH inhibitor, somatostatin (SS), and the PRL inhibitor, dopamine (DA),
were also measured to determine whether parity affected their levels in the hypothalamus.
Pituitary levels of GH, PRL, GHRH, and TRH were also determined. For the measurement
of GHRH, we homogenized tissues in 2 M acetic acid. The homogenate was then boiled
and lyophilized. The lyophilized material was reconstituted, extracted, and assayed using
an enzyme immunoassay (EIA) kit (MyBioSource) following the manufacturer’s protocol.
For measuring TRH, tissues were homogenized in PBS and extracted in methanol. After
centrifugation, the supernatant was air-dried overnight and then reconstituted in PBS
containing 0.25% bovine serum albumin and assayed using an EIA kit. For SS extraction,
tissues were homogenized in PBS and SS was extracted in 0.5% trifluoroacetic acid (TFA).
The supernatant was eluted with 60% acetonitrile and 1% TFA in water. The eluent was
evaporated to dryness and the residual material was reconstituted in assay buffer and
assayed using an EIA kit. DA was extracted and assayed according to the instructions for
an EIA kit. The samples were determined in triplicate in all assays, and the results are
expressed as the concentration per g of wet weight tissue.

2.6. The Hypothalamic–Pituitary Axis Response to GH and PRL Secretagogues

We determined whether an early parity resulted in a persistently altered response
of the hypothalamic–pituitary axis to GH and PRL secretagogues. Perphenazine (PPZ), a
dopamine receptor inhibitor that causes the acute release of PRL from the anterior pituitary
by blocking the inhibitory effect of dopamine from the hypothalamus was used as the PRL
secretagogue, and growth hormone-releasing peptide 6 (GHRP-6), a synthetic hexapeptide
that causes the release of GH, was also used. We used these secretagogues to test the
responsiveness of the hypothalamic–pituitary axis in parous and AMNP rats. The animals
were generated as described in the line diagram shown above. The stage of the estrous
cycle was determined by examination of vaginal cytology in groups of 10 rats at 18, 24, 30,
and 36 weeks of age. The animals were anesthetized with isoflurane on the morning of
diestrus for GH secretion studies. We anesthetized the animals with CO2 inhalation on the
morning of proestrus for the PRL studies because isoflurane is known to significantly alter
the levels of PRL. Three blood samples were drawn 5 min apart prior to the administration
of the secretagogue to determine the basal serum concentrations for GH and PRL, and the
experimental animals were then intravenously administered with three doses of GHRP-6
(100 ng, 500 ng, and 1 µg) or PPZ (10 ng, 100 ng, or 1 µg). Blood samples were then collected
at 5, 10, and 15 min after injection of the secretagogues. In all cases, 0.25 mL of blood was
collected. Serum was harvested and assayed for levels of GH and PRL using EIA kits.

2.7. Measuring the Functional Activity of the Pituitary in Response to GH and PRL Secretagogues

To determine if parity reduced the sensitivity of the pituitary to secretagogues, we
conducted perfusion studies on isolated pituitaries. Experimental groups of rats were
generated as described in the line diagram. The animals were sacrificed at the same states
of the estrous cycle as described above for each test and the pituitaries were removed
and washed in a serum-free medium. The pituitaries were then placed in perfusion mi-
cro chambers (Endotronics, Lisle, IL, USA) for experimentation. This perfusion system
facilitated simultaneous testing of six samples under heat-controlled and CO2-buffering
conditions, as well as with a wide range of flow rate settings. Medium 199 containing
penicillin/streptomycin antibiotics was used for the perfusion. The pituitaries were per-
fused at a flow rate of 10–30 mL/h for 45 min prior to establishing a steady basal release
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of the hormones. Then, 5 min fractions were collected for 30 min and the secretagogues
were administered. The samples were then collected at 5, 10, and 15 min post-secretagogue
treatment and were assayed for GH and PRL using EIA kits.

3. Results
3.1. Parity Inhibits Mammary Carcinogenesis

As expected, parous rats had a significantly lower incidence of palpable mammary
tumors compared to age-matched nulliparous controls at all time points. At 9 months
of age, only 10% of parous rats had mammary tumors (Table 1(A)). These data showed
the protective effect of parity against mammary carcinogenesis. We also observed that
age-matched nulliparous rats developed an average of 5 ± 1 mammary tumors per tumor-
bearing rat. In contrast, parous rats that developed mammary tumors had only one tumor
per rat (Table 1(B)). This further indicated that parity not only decreased the incidence
of mammary tumors, but also inhibited mammary tumor incidence. The mammary tu-
mors were histologically similar between the parous and nulliparous groups (Figure 2A).
Nulliparous animals mainly developed ER+ and PR+ mammary tumors, while the few
mammary tumors that developed in parous rats were ER−, PR−, or weakly positive
(Figure 2B–E). Parous rats did not develop any mammary tumors until 29 weeks of age,
while 30% of age-matched nulliparous rats developed mammary tumors by 18 weeks. By
week 30, all age-matched nulliparous rats developed mammary tumors (Figure 2F). The av-
erage mammary cancer latency was significantly delayed in the parous rats (221 ± 25 day)
compared to the nulliparous group (158 ± 32) (Table 1(C)).

Table 1. (A). Mammary cancer incidence. (B). Mammary cancer multiplicity. (C). Mammary cancer latency.

(A): Mammary cancer incidence

Group/Timepoint 18 weeks 24 weeks 30 weeks 36 weeks

Control 30% 65% 100% 100%

Parous 0% 0% 10% 10%

(B): Mammary cancer multiplicity

Group/Timepoint 18 weeks 24 weeks 30 weeks 36 weeks

Control 1 tumor/tumor-bearing
rat

2.5
tumors/tumor-bearing

rat

3.2
tumors/tumor-bearing

rat

5.9
tumors/tumor-bearing

rat

Parous
0

tumors/tumor-bearing
rat

0
tumors/tumor-bearing

rat

1 tumor/tumor-bearing
rat

1 tumor/tumor-bearing
rat

(C): Mammary cancer latency

Group Days

Control 158 ± 32

Parous 221 ± 25



Cancers 2021, 13, 3207 6 of 14Cancers 2021, 13, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. (A) Histology of mammary tumors from nulliparous control animals and parous animals at 18, 24, 30, and 36 
weeks of age. (B) Representative picture of the estrogen receptor immunohistochemistry from nulliparous and parous 
mammary tumors. (C) Percent positivity for estrogen receptor in mammary tumors from nulliparous and parous animals 
at different timepoints. (D) Representative picture of the progesterone receptor immunohistochemistry from nulliparous 
and parous mammary tumors. (E) Percent positivity for progesterone receptor in mammary tumors from nulliparous and 
parous animals at different timepoints. (F) Mammary carcinogenesis observed over 36 weeks. 

3.2. The Effect of Parity on Tissue Levels of GHRH, TRH, DA, SS, GH, and PRL 
We measured the levels of GHRH, TRH, DA, and SS in hypothalamic tissues of par-

ous and AMNP rats at different time points. The hypothalamic levels of GHRH (Figure 
3A) and TRH (Figure 3B) were significantly decreased in the parous group compared to 
the AMNP group at all time points. In contrast, the hypothalamic levels of DA (Figure 3C) 
and SS (Figure 3D) were increased in parous rats compared to AMNP rats. Our results 
indicated that parity significantly lowered the hypothalamic levels of GHRH and TRH, 
while the levels of DA and SS were higher in the parous hypothalamus group than in the 
AMNP group. We also measured the levels of GHRH and TRH in pituitary tissues. Both 
GHRH (Figure 3E) and TRH (Figure 3F) levels were consistently reduced in the parous 
group at all time points. Because GHRH and TRH are the major hormones responsible for 
the synthesis and secretion of GH and PRL, respectively, we also measured the pituitary 
levels of GH and PRL in AMNP and parous rats. We found that GH levels decreased with 
age in both groups. The levels of GH gradually decreased over time in the AMNP rats, 
while parous rats had a remarkable decrease in GH levels starting at 6 weeks post-wean-
ing, which was also maintained at other time points (Figure 3G). However, prolactin levels 
increased with age in AMNP rats, with the highest levels found in older rats. The levels 
of prolactin in parous rats were not drastically different from the AMNP group at 6 weeks 
post-weaning, but the levels began to significantly decline at all later time points (Figure 
3H). Together, these results showed that parity had a lasting effect on the neuroendocrine 
regulation of the hypothalamus and pituitary axes. 

Figure 2. (A) Histology of mammary tumors from nulliparous control animals and parous animals at 18, 24, 30, and
36 weeks of age. (B) Representative picture of the estrogen receptor immunohistochemistry from nulliparous and parous
mammary tumors. (C) Percent positivity for estrogen receptor in mammary tumors from nulliparous and parous animals
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3.2. The Effect of Parity on Tissue Levels of GHRH, TRH, DA, SS, GH, and PRL

We measured the levels of GHRH, TRH, DA, and SS in hypothalamic tissues of parous
and AMNP rats at different time points. The hypothalamic levels of GHRH (Figure 3A) and
TRH (Figure 3B) were significantly decreased in the parous group compared to the AMNP
group at all time points. In contrast, the hypothalamic levels of DA (Figure 3C) and SS
(Figure 3D) were increased in parous rats compared to AMNP rats. Our results indicated
that parity significantly lowered the hypothalamic levels of GHRH and TRH, while the
levels of DA and SS were higher in the parous hypothalamus group than in the AMNP
group. We also measured the levels of GHRH and TRH in pituitary tissues. Both GHRH
(Figure 3E) and TRH (Figure 3F) levels were consistently reduced in the parous group at all
time points. Because GHRH and TRH are the major hormones responsible for the synthesis
and secretion of GH and PRL, respectively, we also measured the pituitary levels of GH
and PRL in AMNP and parous rats. We found that GH levels decreased with age in both
groups. The levels of GH gradually decreased over time in the AMNP rats, while parous
rats had a remarkable decrease in GH levels starting at 6 weeks post-weaning, which was
also maintained at other time points (Figure 3G). However, prolactin levels increased with
age in AMNP rats, with the highest levels found in older rats. The levels of prolactin in
parous rats were not drastically different from the AMNP group at 6 weeks post-weaning,
but the levels began to significantly decline at all later time points (Figure 3H). Together,
these results showed that parity had a lasting effect on the neuroendocrine regulation of
the hypothalamus and pituitary axes.
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Figure 3. Pregnancy induces a persistent and significant change in the level of hormones in the hypothalamus and pituitary
gland. All hormone levels were measured at 18, 24, 30, and 36 weeks old female parous and nulliparous Lewis rats
(n = 10/group/timepoint). Hypothalamic levels of (A) growth hormone-releasing hormone (GHRH). (B) Thyrotropin
releasing hormone (TRH). (C) Dopamine (DA). (D) Somatostatin (SS). Pituitary levels of (E) GHRH, (F) TRH, (G) growth
hormone (GH), and (H) Prolactin (PRL). * represents p < 0.05.

3.3. The Effect of Parity on the Hypothalamic–Pituitary–GH Axis

Because we already estimated the tissue levels of GH and its regulators, we next
determined the levels of circulating GH. The levels of GH (Figure S1) were significantly
reduced in parous rats at all time points when compared to AMNP rats. This finding is
significant because GH is known to promote breast cancer growth, and a lower circulating
level of GH could be one of the reasons for the reduced risk of breast cancer in the parous
group. We then determined if the response to stimuli of the hypothalamic–pituitary axis
in parous rats was altered. This was tested by injection of various intravenous doses of
GHRP-6, a GH secretagogue, to the AMNP and parous groups of animals at different time
points. Administration of GHRP-6 resulted in a significant dose-dependent increase in GH
levels in AMNP rats at all time points (Figure 4A,C,E,G). However, the increase in the levels
of GH in response to GHRP-6 was significantly decreased in parous rats (Figure 4B,D,F,H).
Together, the results indicated that the hypothalamic–pituitary–GH axis in parous animals
had a decreased response to stimuli, when compared to AMNP rats.
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Figure 4. Circulating levels of growth hormone (GH) after administration of growth hormone-releasing peptide 6 (GHRP-6)
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nulliparous rats administered with GHRP6 (100, 500, 1000 ng) at 18, 24, 30, and 36 weeks. (B,D,F,H) GH levels in parous
rats administered with GHRP6 (100, 500, 1000 ng) at 18, 24, 30, and 36 weeks.

3.4. The Influence of Parity on the Hypothalamic–Pituitary-PRL Axis

The hypothalamic and pituitary levels of PRL and its regulators were determined and
found to be altered in parous rats, so we measured the levels of PRL in the circulation at
different time points. The results showed that PRL levels were not significantly altered
in AMNP versus parous animals at 18 weeks of age, while its levels were significantly
reduced in parous animals at all other time points when compared to AMNP animals
(Figure S2). Like GH, PRL is also a known mammogenic hormone and influences mammary
carcinogenesis. Lower circulating levels of PRL along with reduced GH could contribute
to the reduced risk of breast cancer in parous animals. Similar to GH, we also measured
the responses to stimuli activity of the hypothalamic–pituitary–PRL axis in parous rats
using PPZ, a PRL secretagogue. Different doses of PPZ were intravenously injected into
the AMNP and parous groups of animals at different time points, resulting in a significant
dose-dependent increase in PRL levels in AMNP animals (Figure 5A,C,E,G). The responses
of parous animals to PPZ were significantly decreased when compared to AMNP animals
at all time points, and for all doses of PPZ (Figure 5B,D,F,G). Together, these results further
showed that parity influenced the hypothalamic–pituitary–PRL axis.



Cancers 2021, 13, 3207 9 of 14
Cancers 2021, 13, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 5. Circulating levels of prolactin (PRL) after administration of perphenazine (PPZ) at different doses to age-matched 
nulliparous and parous rats at different timepoints. (A,C,E,G) PRL levels in age-matched nulliparous rats administered 
with PPZ (10, 100, 1000 ng) at 18, 24, 30, and 36 weeks. (B,D,F,H) PRL levels in parous rats administered with GHRP6 (10, 
100, 1000 ng) at 18, 24, 30, and 36 weeks. 

3.5. Parity Induces Dynamic Changes in Pituitary Glands 
To further identify and differentiate the influences of parity on the hypothalamic–pitu-

itary axis, pituitaries were isolated from parous and AMNP rats sacrificed at various time 
points. They were placed in individual temperature-controlled perfusion chambers and in-
itially exposed to regular medium. The medium was collected at 5 min intervals for 15 min 
to assess the baseline values of GH and PRL. The pituitaries were then divided into two 
separate groups; one group received medium containing GHRP-6 and the other group re-
ceived medium containing PPZ. The samples were collected for 15 min at 5 min intervals 
after administration of GHRP-6 or PPZ. The levels of GH and PRL were measured using 
EIA kits. AMNP pituitaries responded positively to different doses of GHRP-6 by secreting 
high levels of GH at all time points (Figure 6A,C,E,G). In contrast, the parous pituitaries 
showed a remarkably reduced response at different times and different doses of GHRP-6 
(Figure 6B,D,F,H). Next, we measured the levels of PRL secreted by pituitaries in response 
to PPZ. Similar to the GH results, the baseline levels of PRL were first determined after sta-
bilizing the flow rate of the medium without the secretagogue, and samples were collected 
at 5 min intervals for 15 min. As expected, different doses of PPZ induced significant re-
sponses to PRL secretion from the pituitaries of AMNP animals (Figure 7A,C,E,G). In con-
trast, the same doses of PPZ were not significantly effective in increasing the secretion of 
PRL in parous pituitaries (Figure 7B,D,F,H). Together, these results showed that parity in-
duced persistent alterations in the neuroendocrine regulation of the hypothalamic–pituitary 
axis, causing mammary glands to be refractory to carcinogenesis. 

Figure 5. Circulating levels of prolactin (PRL) after administration of perphenazine (PPZ) at different doses to age-matched
nulliparous and parous rats at different timepoints. (A,C,E,G) PRL levels in age-matched nulliparous rats administered
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100, 1000 ng) at 18, 24, 30, and 36 weeks.

3.5. Parity Induces Dynamic Changes in Pituitary Glands

To further identify and differentiate the influences of parity on the hypothalamic–
pituitary axis, pituitaries were isolated from parous and AMNP rats sacrificed at various
time points. They were placed in individual temperature-controlled perfusion chambers
and initially exposed to regular medium. The medium was collected at 5 min intervals
for 15 min to assess the baseline values of GH and PRL. The pituitaries were then di-
vided into two separate groups; one group received medium containing GHRP-6 and the
other group received medium containing PPZ. The samples were collected for 15 min at
5 min intervals after administration of GHRP-6 or PPZ. The levels of GH and PRL were
measured using EIA kits. AMNP pituitaries responded positively to different doses of
GHRP-6 by secreting high levels of GH at all time points (Figure 6A,C,E,G). In contrast, the
parous pituitaries showed a remarkably reduced response at different times and different
doses of GHRP-6 (Figure 6B,D,F,H). Next, we measured the levels of PRL secreted by
pituitaries in response to PPZ. Similar to the GH results, the baseline levels of PRL were
first determined after stabilizing the flow rate of the medium without the secretagogue,
and samples were collected at 5 min intervals for 15 min. As expected, different doses of
PPZ induced significant responses to PRL secretion from the pituitaries of AMNP animals
(Figure 7A,C,E,G). In contrast, the same doses of PPZ were not significantly effective in in-
creasing the secretion of PRL in parous pituitaries (Figure 7B,D,F,H). Together, these results
showed that parity induced persistent alterations in the neuroendocrine regulation of the
hypothalamic–pituitary axis, causing mammary glands to be refractory to carcinogenesis.
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with PPZ (10, 100, 1000 ng) at 18, 24, 30, and 36 weeks.



Cancers 2021, 13, 3207 11 of 14

4. Discussion

Mammary gland growth in women is influenced by a myriad of hormones throughout
various physiological stages of life. The same hormones responsible for the normal growth
of the mammary gland can also promote the growth of mammary cancers if not appro-
priately regulated at each stage of life. Research has been conducted to understand the
role of estrogens, and to some extent, the role of progesterone during breast carcinogenesis,
which has resulted in current gold standard treatments for estrogen receptor positive breast
cancer. Understanding the role of hormones in mammary carcinogenesis is therefore of
utmost importance.

It is well-known that during pregnancy, there are major alterations in levels of several
hormones. It is also known that pregnancy early in life reduces a woman’s lifetime risk of
breast cancer by almost 50%, when compared to an age-matched nulliparous woman [1–6].
There are several theories that have attempted to explain this phenomenon of parity-
induced protection against breast cancer [10–14,23,24]. We have previously shown that
there is an alteration in systemic levels of hormones in parous animals. In the present study,
we showed that GH and PRL were two major hormones that were persistently altered
due to parity, which could lead to a decreased risk of mammary carcinogenesis. GH and
PRL are known mammogenic hormones that play significant roles in promoting mammary
carcinogenesis [25–27]. Our results showed that there was a persistent decrease in the
tissue and circulating levels of GH and PRL in parous animals, which could play a major
role in reducing the risk of breast cancer.

It is known that circulating levels of GH are higher in about 40% of breast cancer
patients [28]. Acromegalics have an increased risk of cancers including breast and colon
cancers [29]. Furthermore, no incidence of breast cancer has been observed in patients with
Laron syndrome where the GHR is non-functional [30]. GH-deficient and spontaneously
dwarf rats are highly resistant to mammary carcinogenesis [31–33]. Administration of
exogenous GH to dwarf rats exposed to carcinogens results in a high incidence of mammary
cancers [32,34]. Furthermore, the mean serum GH levels are significantly decreased in
parous women and rats, when compared to their nulliparous counterparts [35]. Our data
indicate that parity induces a long-term persistent decline in the levels of GH and also
a decreased response of the hypothalamic–pituitary axis to secretagogues. Based on the
earlier findings and our current data, we suggest that the persistent decrease in GH could
be a reason for parity-induced protection against breast cancer.

Human GH is also able to bind to the prolactin receptor (PRLr), whose signaling
can modulate proliferation, survival, motility, angiogenesis, and differentiation in breast
cancer [19,34,36]. Previous studies have shown that parous BALB/c mice are refractory
to MNU-induced mammary carcinogenesis and that this refractoriness is not permanent,
but can be overcome by hormonal stimulation mediated by pituitary isografts that se-
crete high levels of PRL [37]. In a pooled analysis of approximately 80% of the world’s
prospective data, the relative risk comparing women in the top vs. bottom quartile of
prolactin levels was 1.3 (95% confidence interval, p-trend = 0.002). These results were
similar for premenopausal and postmenopausal women. Importantly, high prolactin levels
were associated with a 60% increased risk of estrogen receptor positive tumor [36]. PRL
confers resistance against cisplatin by activating the detoxification enzyme, glutathione-S-
transferase, thereby reducing drug entry into the nucleus. These results provide a rational
explanation for the ineffectiveness of cisplatin in breast cancer, which is characterized
by high expressions of both PRL and its receptor [38]. However, platinum agents like
cisplatin and carboplatin as neoadjuvant therapies for triple negative breast cancers have
been shown to significantly increase the pathologic complete response [39]. Human mam-
mary epithelial cells harboring degradation-resistant PRLr display accelerated proliferation
and increased invasive growth. Conversely, a decrease in PRLr levels achieved by either
pharmacological or genetic means in human breast cancer cells dramatically reduces the
transformation and tumorigenic properties of these cells [40]. In our investigation, we
observed that parity not only led to a decrease in the circulating levels of PRL, but it also
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persistently reduced the response of hypothalamic–pituitary axis secretagogues. These
findings along with previous data indicate that parity reduces the risk of breast cancer by
lowering the levels of prolactin and persistently altering the hypothalamic–pituitary axis.
The results from the rodent model system are expected to have implications for human
breast cancers as well.

5. Conclusions

Both GH and PRL are mainly synthesized and secreted by the pituitary under the
influence of the hypothalamus. These two hormones have been demonstrated to play a key
role in normal breast development as well as in breast cancer development. Our findings
here showed that parity affected the hypothalamic–pituitary axis, resulting in long-term
decreased levels of GH and PRL. Further, parity also decreased the responsiveness of the
hypothalamic–pituitary axis to GH and PRL secretagogues. These findings suggest that
parity reduces the life-time risk of breast cancer by altering the neuroendocrine regulation
of the hypothalamic–pituitary axis. In conclusion, an effective mechanism for reducing
the levels of GH and PRL would therefore provide a powerful tool for decreasing breast
cancer risk.
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