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Abstract
Large gene regulatory networks (GRN) are often modeled with quasi-steady-state approxi-

mation (QSSA) to reduce the huge computational time required for intrinsic noise quantifica-

tion using Gillespie stochastic simulation algorithm (SSA). However, the question still

remains whether the stochastic QSSA model measures the intrinsic noise as accurately as

the SSA performed for a detailed mechanistic model or not? To address this issue, we have

constructed mechanistic and QSSA models for few frequently observed GRNs exhibiting

switching behavior and performed stochastic simulations with them. Our results strongly

suggest that the performance of a stochastic QSSA model in comparison to SSA performed

for a mechanistic model critically relies on the absolute values of the mRNA and protein

half-lives involved in the corresponding GRN. The extent of accuracy level achieved by the

stochastic QSSA model calculations will depend on the level of bursting frequency gener-

ated due to the absolute value of the half-life of either mRNA or protein or for both the spe-

cies. For the GRNs considered, the stochastic QSSA quantifies the intrinsic noise at the

protein level with greater accuracy and for larger combinations of half-life values of mRNA

and protein, whereas in case of mRNA the satisfactory accuracy level can only be reached

for limited combinations of absolute values of half-lives. Further, we have clearly demon-

strated that the abundance levels of mRNA and protein hardly matter for such comparison

between QSSA and mechanistic models. Based on our findings, we conclude that QSSA

model can be a good choice for evaluating intrinsic noise for other GRNs as well, provided

we make a rational choice based on experimental half-life values available in literature.

Introduction
Most of the events in and around the biological cell are inherently noisy. The sources of noise in
the biological systems are diverse and can be mainly classified into two different classes [1–5],
namely intrinsic and extrinsic noise. Recently, there were a number of experimental findings [6–
11], which revealed that intrinsic and extrinsic noise levels in a particular cell can dictate its ulti-
mate cell fate to a great extent. The intrinsic noise is mainly classified as the molecular noise that
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is present in any cell type because of low copy numbers of mRNAmolecules corresponding to
any particular protein [1,3,12,13]. Further, it is well established [14,15] that the coefficient of var-
iation (CV) of the distribution of a particular protein not only depends on the average number of
mRNA and protein molecules but also relies on the absolute values of the half-lives of the corre-
sponding mRNA and protein molecules. Gillespie’s stochastic simulation algorithm (SSA) [16]
provides fundamentally the most accurate and correct description of the intrinsic noise for a bio-
logical network if all the terms in the corresponding model are based on mass action kinetics.
This means as the biological network grows in size and complexities, it will be computationally
highly time consuming to simulate every reaction event using SSA. To overcome this challenge,
different kinds of efforts had been made to avoid continuously simulating the reactions that hap-
pen in a faster time scale in case of SSA [15,17–19]. Quasi-steady-state approximation (QSSA) is
one of such methods where one reduces the detailed mechanistic model of a complex biological
network depending on the time scales of the reactions in the concerned system and as a result
effectively cut short the number of molecular species and reactions to simulate stochastically
[15,19]. In this context, one should keep in mind that well-separated timescales in a deterministic
model do not guarantee a reduced QSSAmodel to be valid and there are instances where addi-
tional conditions needed to be fulfilled [20]. In last few decades, quasi-steady-state approximated
models of different biological systems were proved to be quite successful to furnish all the deter-
ministic dynamical features of the corresponding biological systems under different biological
conditions and even in some cases the stochastic behavior as well [15,19,20]. There were evi-
dences that some of these QSSAmodels were faithfully reproducing the intrinsic noise for simple
biological systems [15,19,20]. In this context, we want to investigate what happens if we use the
QSSA approach to quantify the intrinsic noise for relatively complex biological networks? Under
what conditions the QSSA approach will quantify the intrinsic noise as accurately as the SSA per-
formed using the mechanistic version of the model and when the result will differ significantly?

The organization of the paper is as follows. In the first section, we develop a mechanistic
and the corresponding QSSA model for a simple positive feedback module. We employ Gilles-
pie’s stochastic algorithm [16] to simulate the QSSA model as well as the mechanistic model to
identify the conditions where both the models will give identical measure of intrinsic noise for
the corresponding motif and where the results will start to differ from each other significantly.
First, we compare the stochastic results obtained from the mechanistic and the corresponding
QSSA models to investigate the role played by the mRNA and protein half-lives while keeping
the protein and mRNA abundance levels fixed. In this section we changed the half-life values
following two different approaches. In approach 1, we change the ratio of the mRNA and pro-
tein half-lives by keeping the mRNA half-life fixed [15] and in approach 2, we vary the absolute
values of mRNA and protein half-lives by keeping the half-life ratio fixed. Next, we have done
similar comparison between the two models as a function of number of molecules of protein
(mRNA number of molecules remained fixed) and number of molecules of mRNA (protein
number of molecules remained fixed) by following approach 1 and approach 2. We further per-
form similar studies with extended GRNs to show that the conclusions made from a simple
positive feedback motif holds good even for relatively bigger networks as well. Finally, in the
discussion section, we summarize our results and discuss the measures to be taken before using
a QSSA model to faithfully quantify intrinsic noise for relatively complex biological networks.

Creating mechanistic and QSSAmodels for a simple positive feedback
module
We have constructed a toy model of a simple positive feedback motif [21–26] that is fre-
quently observed in many biological regulations (Fig 1A, detailed network shown in the right
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panel) [25,26] in terms of mass action kinetics (mechanistic model, right panel, Table 1). We
further made some appropriate steady state approximations on the variables except the total
protein (X) and mRNA (MP) and obtained the corresponding QSSA model (left panel,
Table 1) for the given GRN.

The parameter values for the model concerned are given in Table 2. Here we have kept
km>>J3, as it was shown by Thomas et al. [20] that in order for the reduced QSSA model to be
accurate one needs to fulfill this additional condition to be satisfied on top of the appropriate
time scale separation. The details of the steady state approximations are provided in the S1
Text. The identical bifurcation diagrams shown in Fig 1B (left panel, QSSA model and right
panel, mechanistic model) for the total protein (X) as a function of J0 (the basal rate of the MP

synthesis), signify that the two models provided in Table 1 are deterministically similar (the
corresponding bifurcation diagrams of MP as a function of J0 are given in Fig 1C). This clearly
shows that both the deterministic models will lead to identical steady states deterministically

Fig 1. Positive feedbackmotif under consideration and the corresponding bifurcation diagrams. (A)QSSA positive feedback motif (left panel) and the
detailed mechanistic scheme (right panel) are given where solid and dotted lines represent biochemical reactions and catalytic effects respectively. G and Ga

denote inactive and active states of gene, Mp denotes mRNA, P denotes protein, P2 is the dimer of protein and X is the total protein. The protein (P)
molecules form dimers P2. P2 binds to the promoter region of the inactive gene (G) and activates G to Ga. km and kp are the degradation rates of MP and P
respectively. (B) Bifurcation diagrams (left panel, QSSAmodel and right panel, mechanistic model) of total protein (X) are plotted as a function of J0. The
solid lines represent stable steady states and dotted lines represent unstable steady states; J0 is the basal rate of mRNA (MP) synthesis and acts as the
bifurcation parameter. In both the models deterministic mean of X (molecules) = 457.9 at J0 = 3 min-1. (C) Bifurcation diagrams (left panel, QSSAmodel and
right panel, mechanistic model) of mRNA (MP) are plotted as a function of J0. In both the models deterministic mean of MP (molecules) = 185.2 at J0 = 3 min-1.

doi:10.1371/journal.pone.0136668.g001
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under different values of J0 and sets the stage to investigate whether the QSSA model shown in
Table 1 (left panel) can quantify the intrinsic noise as efficiently and accurately as the detailed
mechanistic model (right panel, Table 1) or not.

Results

Comparison of the stochastic distributions at different values of J0
Once we created the deterministically similar models, we employed the Gillespie’s simulation
algorithm [16] at J0 = 3 min-1 (deterministic means of X = 457.9 molecules and MP = 185.2
molecules) to quantify the intrinsic noise from both the models (The reaction scheme followed
for Gillespie simulation for both the models are provided in the S1 Text). We have performed
the stochastic simulation at J0 = 3 min-1 where we do have only one stable steady state and mea-
sured the steady state distribution of the total protein (X) to compare the QSSA (left panel, Fig
2A) and mechanistic (right panel, Fig 2A) models (The corresponding time courses for the two
situations are given in S1A Fig). The result looks extremely promising from the perspective of
the QSSA model as the statistical quantities (mean = 457.2 and standard deviation = 42.98 in
number of molecules, Coefficient of variation (CV) = 9.4%) obtained from the total protein dis-
tribution resembles quite well with the statistical values (mean = 462.3 and standard

Table 1. Equations of the QSSA and Mechanistic models.

QSSA Model Mechanistic Model
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2 � kfP2

P = X– 2P2

doi:10.1371/journal.pone.0136668.t001

Table 2. Parameters of the QSSA and Mechanistic models.

Parameter Value

J1 43.838 min-1

J3 9.22E-04 min-1

k1 4.0E-01 molecule-1min-1

k2 81.31 min-1

ka 8.0 min-1

kd 5.0 min-1

km 1.0E-01 min-1

kp 1.0E-03 min-1

ke 4.0E-01 molecule-1min-1

kf 81.31 min-1

Gt 1 molecule

doi:10.1371/journal.pone.0136668.t002
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deviation = 43.54 in number of molecules, CV = 9.42%) obtained from the corresponding total
protein distribution of the mechanistic model.

This evidently shows that under the chosen parameter regime the QSSA model does a good
job to accurately quantify the molecular noise at the protein level in comparison to the mecha-
nistic model. This kind of Gillespie runs is also performed with different sets of random num-
ber sequences (one of them shown in S1C Fig) and we got similar results. Additionally, we
make sure that the parameter set used for the steady state approximation to obtain the QSSA
model is a sensible choice. Since, if one performs Gillespie simulation with a wrong choice of
parameters (for example, ka = 8E-03 min-1 and kd = 5E-03 min-1 instead of ka = 8 min-1 and kd
= 5 min-1 as given in Table 2, Fig 2A), the stochastic results (S1 Table) for the mechanistic
model (S2 Fig, right panel) will be totally different than that of the stochastic simulation result
(S1 Table) of the corresponding QSSA model (S2 Fig, left panel). Stochastic results for the

Fig 2. Stochastic simulation based on Gillespie Algorithm. (A) Steady state distributions of X (total protein) are plotted at J0 = 3 min-1 for the QSSA (left
panel, mean = 457.2, standard deviation = 42.98, CV = 9.4%) and the mechanistic models (right panel, mean = 462.3, standard deviation = 43.54,
CV = 9.42%). (B) Steady state distributions of MP (mRNA) are plotted at J0 = 3 min-1 for the QSSA (left panel, mean = 185.2, standard deviation = 15.05,
CV = 8.13%) and the mechanistic models (right panel, mean = 185.6, standard deviation = 27.26, CV = 14.68%). All the values (except CVs) are in number of
molecules.

doi:10.1371/journal.pone.0136668.g002
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QSSA model are not at all affected by the inaccuracies made in the steady state approximations;
where as mechanistic model can sense such changes quite adequately.

Although we got similar total protein distributions for the two models (Fig 2A), the corre-
sponding mRNA (MP) steady state distributions that are given in Fig 2B (left panel, QSSA
model and right panel, mechanistic model) appear to be quite different in nature (The corre-
sponding time courses for the two situations are given in S1B Fig). We observe that the statisti-
cal quantities such as standard deviation and the CV at the mRNA level (mean = 185.2,
standard deviation = 15.05, CV = 8.13%, for QSSA model and mean = 185.6, standard devia-
tion = 27.26, CV = 14.68%, for mechanistic model) are quite different for the two models
under the same parametric domain even though the average abundance level of MP is same for
both the cases. It clearly indicates that the protein (P) in the given biological network is not
sensing the molecular noise present at the mRNA level adequately in case of the mechanistic
model. As a consequence the intrinsic noise calculated in the form of CV of the total protein
distribution for QSSA and mechanistic models seems to be in agreement. For other values of J0
(for example J0 = 1.5 min-1, S3 Fig) corresponding to the bi-stable domain sometimes we have
found subtle differences (S3A Fig) and sometimes the results match quite well (S3B–S3D Fig)
between the two models depending on whether we start the simulations from lower or upper
steady states for a particular random number sequence. Since in the bi-stable domain it is hard
to quantify and compare the noise statistics in a systematic manner, at this juncture we concen-
trate to understand why in case of the mechanistic model, the total protein level is not sensing
the molecular noise at the mRNA level adequately at J0 = 3 min-1 for the current parameter set
given in Table 2? We believe, this will eventually lead to the answer that under what conditions
the QSSA model for the simple positive feedback motif will give similar result stochastically
and will efficiently quantify the intrinsic noise like its detailed mechanistic version.

Comparison of intrinsic noise as a function of the half-lives of the mRNA
(MP) and total protein (X)
In literature [3,4,14,15], it is well known that the half-lives of the mRNA and protein play a cru-
cial role to determine the noise at the protein level. Pedraza and Paulsson [14] had shown that
for simple transcription and translational events the intrinsic noise at the protein level is given
by,

ðCVPÞ2 ¼ 1

hNPi
þ tM

tM þ tP

� �
1

hNMi
ð1Þ

where, CVP is the coefficient of variation of the protein distribution, which not only depends
on the average number of protein (<NP>) and mRNA (<NM>) molecules but it is also highly
dependent on the half-lives τP and τM of the corresponding protein and mRNA molecules.
Keeping these observations in mind, we wanted to verify whether the dependence on half-lives
still exist in a gene regulatory network with feedback regulation or not and whether the sto-
chastic calculation with QSSA model can capture such effects effectively or not like a detailed
mechanistic model. At this point, we have taken two different approaches to vary the half-lives
of mRNA and protein molecules to compare the two models.

Approach 1: Varying the ratio of the half-lives (KC) by keeping the absolute value of the
mRNA half-life fixed. We performed a systematic study where we have calculated the CV for
the total protein and mRNA distributions as a function of different ratio (KC ¼ tM=tP ) of

mRNA and protein half-lives keeping the abundance levels of the protein (~ 458 molecules)
and mRNA (~ 185 molecules) fixed (deterministically) for all the ratios of half-lives used (Fig 3
and S2 Table).

Applicability of QSSAModels to Quantify Intrinsic Noise

PLOS ONE | DOI:10.1371/journal.pone.0136668 September 1, 2015 6 / 24



Fig 3. Plot of CV of protein andmRNA versus ratio of half-lives (KC) of MP and P at J0 = 3 min-1 and the corresponding sensitivity analysis. (A)
Coefficient of variation of total protein (X) abundance versus KC. (B) Coefficient of variation of MP abundance versus KC. km = 1E-01 min-1 is considered in all
the cases. When KC = 0.01, then kp = 1E-03 min-1, J3 = 9.22E-04 min-1. When KC = 0.02, then kp = 2E-03 min-1, J3 = 1.85E-03 min-1. When KC = 0.025, then
kp = 2.5E-03 min-1, J3 = 2.31E-03 min-1. When KC = 0.033, then kp = 3.34E-03 min-1, J3 = 3.08E-03 min-1. When KC = 0.046, then kp = 4.67E-03 min-1, J3 =
4.3E-03 min-1. When KC = 0.1, then kp = 1E-02 min-1, J3 = 9.22E-03 min-1. When KC = 0.2, then kp = 2E-02 min-1, J3 = 1.85E-02 min-1. When KC = 0.33, then
kp = 3.34E-02 min-1, J3 = 3.08E-02 min-1. When KC = 1.0, then kp = 1E-01 min-1, J3 = 9.22E-02 min-1. When KC = 7.0, then kp = 7E-01 min-1, J3 = 6.5E-01 min-
1. All other parameters are same as Table 2. (C) Sensitivity analysis of the parameters involved at KC = 1E-02 and J0 = 3 min-1. Sensitivity is measured on the
basis of CV of stochastic mean of X as a function of rate constants involved in QSSAmodel and mechanistic model. Here CVX refers to the coefficient of
variation in stochastic mean of X resulting due to parameter variation. It is divided by the CV of our standard stochastic model (Fig 2A) using our model-
parameter set (Table 2). All the parameters are increased individually at an amount of 10% of the model parameters (Table 2) keeping all other parameters
constant.

doi:10.1371/journal.pone.0136668.g003
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This approach is similar to some earlier study performed by Shahrezaei and Swain [15] for
simple transcription and translational regulations of a protein (without any feedback regula-
tion) where they have shown that if γ> 1 (where g ¼ 1=KC

according to our definition) then

the analytical expression obtained by them for the noise at the protein level after QSSA on the
mRNA dynamics, nicely fits the data for budding yeast experimental observations [13,27,28].
To obtain Fig 3A and 3B, we fixed the value of the mRNA half-life at τM = 7 min [29] (in Fig 2
we have used τM = 7 min, as km = 1E-01 min-1) and varied protein half-life τP (from 700 min to
1 min) [30] that eventually varies the ratio KC. From Fig 3A, it is quite evident that for KC<1,
i.e. when the half-life of protein is much greater than the mRNA half-life, the stochastic calcu-
lation obtained from QSSA model resembles the stochastic result generated from mechanistic
model if we compare the CV of total protein (X). CVX in case of stochastic calculation from
QSSA model only starts to deviate significantly from that of the mechanistic version when the
protein half-life is taken 35 mins (KC = 0.2) (Fig 3A and S2 Table). This indicates that in our
case as the ratio KC becomes greater than 0.1, the mechanistic model starts to sense the molecu-
lar fluctuations due to mRNA more efficiently and hence the stochastic quantifications done
from the two models start to differ. As the ratio KC is increased the CVX is also rising in case of
the stochastic calculations done from the QSSA model and it shows similar trend as that of the
mechanistic model but the rise is not as steep as it is in case of the mechanistic model simula-
tions (Fig 3A). This is expected as we can see in Fig 3B (S2 Table) that the stochastic simula-
tions from QSSA model cannot capture the molecular noise at the mRNA level even for the
lowest magnitude of the ratio KC in comparison to the simulations performed with mechanistic
model. We start to observe the effect of the differences in the mRNA CV levels found in Fig 3B
at the CVX for the two models (Fig 3A), only for higher values of KC. This shows that the sto-
chastic runs with QSSA model for the considered network are good to understand the trend of
the intrinsic noise variation for the total protein level but it appears from Fig 3A that they are
not appropriate for accurate quantification of the intrinsic noise if the ratio of the half-lives of
the corresponding mRNA and protein are such that we have KC>0.1 but for KC�0.1 the sto-
chastic results from QSSA model will be quite reliable. At this juncture we did perform sensitiv-
ity analysis [31,32] of the rate constants involved in the QSSA and mechanistic models by
taking the corresponding associated CVs for the total protein (X) (Fig 3C) at J0 = 3 min-1. We
found that for KC = 0.01 situation, both the QSSA and mechanistic model parameters show
quite identical sensitivities (Fig 3C) for all the rate constants related to the system, so no won-
der that the stochastic calculation executed with the QSSA model gives similar results like the
mechanistic model for KC = 0.01 (Fig 3A). The sensitivity analysis performed with KC = 0.2
(S4A Fig) and KC = 1 (S4B Fig) start to differ for QSSA and mechanistic models, which kind of
supports why the CVs of total protein quantified from the two models start to vary as we
increase the value of KC further in Fig 3A.

Approach 2: Varying the absolute values of the mRNA and protein half-lives keeping
the ratio KC fixed. Till now we have discussed if we change the ratio KC (by keeping τM = 7
min and changing only τP) how good a QSSA model performs in comparison to the mechanis-
tic model to quantify the intrinsic noise. This kind of calculation makes sense for the case of
budding yeast where for more than 80% of genes the value of KC<1 [15,27,28]. However, it is
well-known that the absolute values of the half-lives (τM and τP) for mRNA and protein are
equally inportant to the level of gene expression noise [3,4,14].

This implies that one can have fixed value of KC for different values of τM and τP, which can
eventually change the burst size and burst frequencies and impact the overall intrinsic noise sig-
nificantly. The important question is whether stochastic calculation fromQSSA model can cap-
ture that feature accurately or not? To address this issue, we keep on changing the absolute
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values of the half-lives (τM and τP) for mRNA and protein by keeping the ratio KC fixed at 0.01
(Fig 4A and 4D), 1 (Fig 4B and 4E) and 100 (Fig 4C and 4F) (the average number of the total
protein (~ 458 molecules) and mRNA (~ 185 molecules) are also kept fixed for all the cases
deterministically, parameters are given in S2 Table). The way we varied the absolute values of
the half-lives τM and τP (with KC fixed at 0.01, 1, 100) span almost all the possibilities of half-life
combinations that can exist in reality for mammalian cells found in recent experiment [30]. The
stochastic simulation results obtained for both the models performed equally well to quantify
intrinsic noise at the total protein (X) level for all the KC values used in Fig 4A–4C for a certain
range of absolute values of τM and τP. For KC = 0.01 (Fig 4A), the intirnsic noise quantified from
QSSA model at the protein (X) level starts to differ frommechanistic model when τM = 0.1 min

Fig 4. Impact of absolute values of τP and τMon CV of X (Total protein) and MP (mRNA) as well as on
ZX and ZMP

(where Zi = % deviation of the measured intrinsic noise between the QSSA and the
mechanistic models for i = X or MP). Plot of CV of X versus τP and τM for (A) KC = 1E-02 (B) KC = 1.0 (C) KC

= 100.0. Plot of CV of MP versus τP and τM for (D) KC = 1E-02 (E) KC = 1.0 (F) KC = 100.0. (G) Impact of
absolute values of τP and τM on ZX. (H) Impact of absolute values of τP and τM on ZMP

. τP and τM are the half-
lives of P and MP respectively and are given in minutes.

doi:10.1371/journal.pone.0136668.g004
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and τP = 10 min. Similarly for KC = 1 (Fig 4B), the deviation starts at τM = 7 min and τP = 7 min
and for KC = 100 (Fig 4C), the deviation starts at τM = 10 min and τP = 0.1 min. Interestingly,
we found that in Fig 4D–4F for certain combinations of absolute values of τM and τP (at different
fixed values of KC), the stochastic QSSAmodel can also quantify the intrinsic noise at the
mRNA (MP) level with reasonable accuracy in comparison to the mechanistic model. In all the
cases (Fig 4A–4F), the CVs obtained from stochastic calculation of the QSSA model hardly
changes for a fixed value of KC when the absolute values of the τM and τP are changed whereas
the CVs calculated from the mechanistic model starts to deviate from QSSAmodel as soon as
the value of either τM or τP or both τM and τP are such that they can significantly change the
burst frequency and burst size related to the intrinsic noise of the concerned network. This evi-
dently shows an important fact that even for ratio KC>0.1 the QSSA model can quantify the
intrinsic noise (for protein as well as for mRNA) as accurately as the mechanistic model and we
can have situations where for ratio KC<0.1 the QSSA model can fail to quantify the intrinsic
noise (even at the protein level) as precisely as the mechanistic model. This result is quite differ-
ent than what has been shown by Shahrezaei and Swain [15] earlier as they did not concentrate
on changing the absolute values of τP and τM while performing their analysis.

To understand this issue in more comprehensive manner, we further plotted the % devia-
tion of the measured intrinsic noise (Zi) (Where Zi = [(CVi (mechanistic model)–CVi (QSSA
model)) / CVi (mechanistic model)] x 100, i = X or MP) at the protein (X) (Fig 4G) and mRNA
(MP) (Fig 4H) level in 2-dimentional heatmaps as a function of absolute values of τP and τM. In
Fig 4G and 4H, we have defined 4 different regions by considering the stabilities of the mRNA
and the corresponding protein. We have made such classification by keeping the experimental
data available for budding yeast [27,28] as well as the data for Mammalian cell [30] in mind. It
is quite evident from Fig 4G that in region I (unstable mRNA/unstable protein) the stochastic
results obtained from QSSA model deviates (>40–50% deviation) the most from the mechanis-
tic model and in region IV (stable mRNA/stable protein), stochastic results generated from
QSSA model are as good as (within 5–10% deviation) the mechanistic model with orders of
magnitude reduction in computational time. The stochastic results obtained for the case of
region II (stable protein/unstable mRNA) and region III (unstable protein/stable mRNA) by
using the QSSA model are moderately satisfactory (10–30% deviation) in comparison to sto-
chastic results from mechanistic model. Fig 4H also evidently shows that the intrinsic fluctua-
tions at the mRNA level can only be captured faithfully by stochastic QSSA model for
combinations of τP and τM values falling within region IV (within 10–20% deviation) and for a
part of region (III) where the mRNA is highly stable. This clearly shows that even if there is
enough separation of timescale between the mRNA and protein dynamics (as in case of region
II and III), if either of them has a short absolute value of half-life then bursting frequency gen-
erated because of that will be hard to capture by stochastic simulation using QSSA model. On
the contrary, The QSSA model will do a fine job to quantify the intrinsic noise for both mRNA
and protein even if there is no separation of time scale between mRNA and protein dynamics
(as in case of region IV) as long as the absolute values of τP and τM are such that the bursting
frequencies generated due to them are negligible. As soon as the absolute values of τP and τM
are quite small (region I) the effective increase in bursting frequency will change the intrinsic
noise significantly and QSSA model will fail to capture that effect.

Comparison of intrinsic noise as a function of number of protein
molecules
In this section we wanted to understand how the QSSA model competes with the mechanistic
model to capture the intrinsic noise as a function of number of protein molecule for a fixed
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number of mRNA molecules and fixed value of KC (Fig 5A–5D, approach 1). We will further
investigate what happens if we change the absolute values of the τP and τM by keeping the KC

fixed (Fig 5E and 5F, Approach 2).
The changes made in the parameter values (than given in the Table 2) to keep the determin-

istic mean of mRNA fixed ~ 185 molecules in all the cases for the Fig 5, are given in S3 Table.
In Fig 5, we have shown how the CV of the total protein level will vary as a function of total
protein abundance level keeping the deterministic mean of mRNA fixed at ~185 molecule at J0
= 3.0 min-1 for four different KC values. For KC = 0.01 (Fig 5A), the CV at the total protein
level from the stochastic calculation obtained by using QSSA model seems to be identical as
that obtained from mechanistic model as a function of total protein number. In both the cases
the intrinsic noise at the total protein level decreases as the average number of protein molecule
is increasing in a similar quantitative fashion. As the value of KC is increased to 0.1 (Fig 5B),
1.0 (Fig 5C) and 100.0 (Fig 5D), the statistical results quantified from stochastic calculation of
QSSA model started to differ from the stochastic results obtained from the mechanistic model

Fig 5. Plot of CV of total protein (X) versus total protein (X) abundance following approach 1 and approach 2 by keeping deterministic mean of MP

= 185.2 molecules for all the cases. (A) KC = 1E-02, τP = 700 min (approach 1), (B) KC = 1E-01, τP = 70 min (approach 1), (C) KC = 1.0, τP = 7 min
(approach 1), (D) KC = 100.0, τP = 7.0E-02 min (approach 1). In all the cases we kept τM = 7 min. (E) KC = 1E-02, τP = 10 min, τM = 1E-01 min (approach 2).
(F) KC = 100.0, τP = 7 min, τM = 700 min (approach 2).

doi:10.1371/journal.pone.0136668.g005
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quantitatively. The qualitative feature of the stochastic calculation from QSSA model still
showed similar trend as that of the stochastic result of the mechanistic model. We have per-
formed similar studies to compare the intrinsic noise at the total protein level as a function of
average values of total protein by fixing the number of mRNAmolecules at lower and higher
levels (S5 Fig, related changes in the parameter values given in S4 Table) and it strengthens the
conclusions made from Fig 5. From this study it is evident that if the half-lives ratio of mRNA
and protein remains as KC�0.1, then the stochastic results using QSSA model will definitely
quantify the intrinsic noise at the total protein level as accurately as stochastic calculation done
with the mechanistic model even if the protein number starts to vary significantly in the corre-
sponding biological network. It does not mean that the intrinsic noise calculated from QSSA
model for KC = 100.0 (i.e., KC>0.1case) will always be inaccurate in comparison to mechanistic
model and for KC<0.1 will always match. As we observed in case of Fig 4G, here too, if we mea-
sure the intrinsic noise as a function of total protein number using QSSA and mechanistic
models by changing the absolute values of the half-lives τP and τM keeping the KC fixed, we
found that even for KC<0.1 (Fig 5E, KC = 0.01, τM = 0.1 min and τP = 10 min) the results can
differ significantly and for KC>0.1(Fig 5F, KC = 100.0, τM = 700 min and τP = 7 min) the results
can match quite well. This clearly demonstrates the fact that the absolute values of the protein
and mRNA half-lives are the important dictating factors to decide whether the QSSA model is
good enough to capture the intrinsic noise for a gene regulatory network in comparison to the
corresponding mechanistic model or not, number of molecules of total protein hardly matters.

Comparison of intrinsic noise as a function of number of mRNA
molecules
In most of the biological systems, the abundance level of mRNAs is found to be much less than
the corresponding protein molecules [1,3,12,30]. Keeping this in mind, next we wanted to
investigate, how far the stochastic calculation from QSSA model can capture the effect due to
the change in the mRNA numbers in comparison to the stochastic results obtained from mech-
anistic model at a fixed number of protein molecules and for different values of τP and τM (fol-
lowing both approach 1 and 2).

Following approach 1, we fixed the values of KC and kept the total protein level fixed at ~
458 molecules in all the cases for the Fig 6A–6D (parameter values are given in the S5 Table).
From Fig 6A it is evident that the CV calculated for the total protein level are comparable
between the stochastic calculation done with QSSA and mechanistic models as a function of
mRNA population when KC (0.01) is small. As the KC value is increased systematically by
keeping the mean value of total protein fixed at ~ 458 molecules, the differences between the
CV values at the total protein level (as a function of mRNA abundance) increased between the
stochastic calculations performed with the QSSA and mechanistic models (Fig 6B with KC =
0.1, Fig 6C with KC = 1.0 and Fig 6D with KC = 100.0). The qualitative nature of the variations
in CV values remain identical in both the cases but quantitatively they again start to differ as a
function of average number of mRNA molecules for KC>0.1. In this case too, it is quite clear
from Fig 6E and 6F that if we change the absolute values of τP and τM (by keeping KC fixed),
the stochastic results calculated from QSSA model can differ for KC = 0.01 (Fig 6E, τM = 0.1
min and τP = 10 min) and can be similar for KC = 100.0 (Fig 6F, τM = 700 min and τP = 7 min)
as a function of mRNA number.

This clearly shows that before using any QSSA model for quantifying the molecular noise
faithfully, one must carefully check the absolute values of the half-lives of the proteins and
mRNAs involved in that network and the number of molecules of mRNA and protein will be
less influencing factors for this purpose.
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Considering the effect of additional feedback loops in the simple positive
feedback module
To generalize the observations made in the previous sections, we have further systematically
constructed mechanistic and QSSA models of two more modules (Fig 7). We have assumed
that the protein (X) involved in the positive feedback module can further activate a protein
(YP) which inturn can deactivate (Fig 7A) or activate (Fig 7B) the production of protein (X) by
giving a feedback at the protein (X) level (Fig 7A, negative feedback and Fig 7B, positive
feedback).

We often encounter this kind of biological networks in different biological systems [33–35]
and it is imperative to understand the reliability of the stochastic calculations using QSSA mod-
els to accurately evaluate the intrinsic noise regulations for such systems. The detailed version
of the modules shown in Fig 7 are provided in S6 Fig and the corresponding QSSA models and
the mechanisitc models along with the parameter values are given in the supplementary

Fig 6. Plot of CV of total protein (X) versusmRNA (MP) abundance following approach 1 and approach 2 by keeping deterministic mean of
X = 457.9 molecules for all the cases. (A) KC = 1E-02, τP = 700 min (approach 1), (B) KC = 1E-01, τP = 70 min (approach 1), (C) KC = 1.0, τP = 7 min
(approach 1), (D) KC = 100.0, τP = 7.0E-02 min (approach 1). In all the cases we kept τM = 7 min. (E) KC = 1E-02, τP = 10 min, τM = 1E-01 min (approach 2).
(F) KC = 100.0, τP = 7 min, τM = 700 min (approach 2).

doi:10.1371/journal.pone.0136668.g006
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information (S6 and S8 Tables). We are interested in understanding how the molecular noise
at the total protein (X) and mRNA (MP) levels will be influenced by the absolute values of tYM
(half-life of YM), tYP (half-life of YP) and their ratio KS (where(KS ¼ tYM =tYP

)) by following the

two approaches discussed in the earlier sections. Further, we would like to investigate how far
the stochastic simulations based on the QSSA models constructed for the two modules shown
in Fig 7 can reproduce the stochastic simulation results obtained from the corresponding
mechanistic models under these situations.

Comparison of intrinsic noise as a function of the half-lives of proteins and mRNAs (for
Module 1). With the small positive feedback module studied earlier, we have observed that
the intrinsic noise at the total protein level (X) as well as at the mRNA (MP) level can be evalu-
ated nicely by the QSSA model in comparison to the mechanistic model under certain
restricted domain of absolute values of the corresponding protein and mRNA half-lives
(approach 2) involved in the network. To further investigate in this direction, we took a step
forward and considered the existence of an additional negative feedback loop of YP on X in
presence of positive feedback of X on its own transcription (for example, in mammalian cell
cycle E2F autocatalyzes its own transcription and also activates CycA which together with
Cdk2 activates the degradation process of E2F [33]). Before doing the stochastic simulations,
we first did the bifurcation analysis (S7A and S7B Fig (left panel QSSA model and right panel
mechanistic model, parameters are given in S6 Table)) of the corresponding deterministic
models to show that both the models are deterministically similar even when the additional
negative feedback loop at the total protein (X) level is operative in the system. We have calcu-
lated the molecular noise (following approach 1) at the total protein (X) level by using the sto-
chastic version of both the models (S1 Text) given in S7 Table for module 1 (Fig 7A) as a
function of KS at two different fixed values of KC = 0.01(τM = 7 min and τP = 700 min, Fig 8A)
and KC = 1.0 (τM = 7 min and τp = 7 min, S8A Fig).

In Fig 8A, the CV for the total protein (X) calculated from QSSA model resembles the
mechanistic model calculation but the result for the CV of YP protein differs as we go on
changing the KS (following approach 1, tYM fixed at 7 min) at a fixed value of the ratio KC

Fig 7. Various gene regulatory networks under consideration. (A) Positive feedback with additional negative feedback motif, where X (total protein)
activates the synthesis of another protein YP which negatively regulates X population level. (B) Double positive feedback motifs, where X (total protein)
activates the synthesis of another protein YP which positively regulates the synthesis of X. In all the cases X autoregulates its own synthesis positively. Here
MP denotes mRNA of P, YP denotes another protein and YM is the mRNA of protein YP. Detailed mechanistic models are given in (S6 Fig).

doi:10.1371/journal.pone.0136668.g007
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(parameters used to keep the protein and mRNA numbers fixed are given in S7 Table). We
have performed the similar comparison for KC = 1 (τM = 7 min and τP = 7 min) as well and
found that for this value of KC (S8A Fig), QSSA model can not quantify the intrinsic noise pre-
cisely for both X and YP. This result is in agreement with what we have discussed earlier for the
simple positive feedback motif and consistent with the findings of Shahrezaei and Swain [15].

At this point, we changed the absolute values of the half-lives (approach 2) of the protein
(X) and mRNA (MP) by keeping the ratio KC same in Fig 8B (τM = 0.1 min and τP = 10 min for
KC = 0.01) as well as in S8B Fig (τM = 700 min and τP = 700 min for KC = 1) and again per-
formed same comparison between QSSA and mechanistic models. We can clearly see that now
the stochastic results from QSSA model fails to capture the intrinsic noise accurately for both X
and YP protein in comparison to mechanistic model in Fig 8B. On the contrary, S8B Fig shows
that intrinsic noise at the level of X are quite comparable even for KC = 1 but in case of YP there
is still disagreement. The reason behind this is quite clear from Fig 4G. In case of Fig 8A, the
values of the τM (7 min) and τP (700 min) used fall in the top part of the region (II) where sto-
chastic result from QSSA model are reasonably in good agreement with mechanistic model cal-
culation whereas the values of the τM (0.1 min) and τP (10 min) used for Fig 8B fall in the
region (I) where the disagreement between QSSA and mechanistic models is evident. In case of
S8A Fig, the values used for τM and τP are both 7 mins respectively, which corresponds to
region (I) and consequently there was disagreement and as soon as the values of τM and τP are
both changed to 700 mins in S8B Fig, (coresponding to region IV) there was agreement
between the stochastic results performed with QSSA and mechanistic models.

Further we wanted to investigate if we change the absolute values of the half-lives of the pro-
tein YP and mRNA YM at fixed values of KS and KC, how stochastic calculation with QSSA
model performs in comparison to mechanistic model. To do this we considered two different
cases KS = 0.01, KC = 0.01 (Fig 8C) and KS = 1, KC = 0.01 (Fig 8D). Fig 8C (left panel) and Fig
8D (left panel), vividly show that whatever may be the absolute values of tYM and tYP (for KS

either fixed at 0.01 or at 1), the intrinsic noise at the level of protein X, can always be quantita-
tively reproduced by the QSSA model in comparison to mechanistic model even if the two
pairs of absolute values of tYM and tYP fall in region (I) defined in Fig 4G. Under the same situa-

tion the QSSA model fails to quantify the intrinsic noise accurately at the level of protein YP

(Fig 8C and 8D, right panel) whenever the pair of absolute values of tYM and tYP falls in region

(I) corresponding to Fig 4G. Fig 8C (right panel) and Fig 8D (right panel) also clearly show
that the QSSA model will quantify the intrinsic noise appropriately at the level of protein YP in
comparison to mechanistic model if the absolute values of tYM and tYP fall in region (II) and

(IV) defined in Fig 4G. To show that the stochastic QSSA model can even capture the mRNA
fluctuations for module 1, we performed the comparison between stochastic QSSA and SSA
calculation from mechanistic model for KS = 1 and KC = 1 (S8C Fig) by keeping the absolute
values of τP = 700 min and τM = 700 min (to be in the region (IV) of Fig 4H). It is evident that
the intrinsic fluctuations for the mRNA (MP) (S8C Fig, top right panel) can be captured beau-
tifully by stochastic QSSA model for all the combinations of absolute values of tYM and tYP in
different domains. Moreover, The stochastic QSSA model can satisfactorily quantify the intrin-
sic noise for mRNA (YM) (S8C Fig, bottom right panel) if the combinations of half-life values
(tYM and tYP) correspond to region (IV) as mentioned in Fig 4H and the quantification starts to

differ as soon as the combination of half-life values tend to fall in region (I) or (II).
We have performed similar studies with the Module 2 (with an additional positive feedback

motif) and the detail results are provided in S2 Text and in the supplementary figures (S9–S11
Figs, S9 Table) referred there on. The stochastic simulation studies performed with Module 1
and Module 2, reiterate the fact that absolute values of the protein and mRNA half-lives will be
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Fig 8. Plot of CV of the total protein (X) and YP versus ratio of half-lives (KS) of YM and YP as well as the absolute values of the half-lives of YM and
YP at KC = 1E-02 in the module 1 with additional negative feedback on X. (A) τP = 700 min, τM = 7 min and tYM = 7 min (B) τP = 10 min, τM = 1E-01 min
and tYM = 7 min. (C) KS = 1E-02, τp = 700 min and τM = 7 min. (D) KS = 1.0, τP = 700 min and τM = 7 min. Values of tYM and tYP are given in minutes.

doi:10.1371/journal.pone.0136668.g008
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the major factor to decide whether the stochastic simulation performed by a QSSA model can
quantify the intrinsic noise as efficiently as mechanistic model or not.

Discussion
In important biological processes such as cell cycle regulation [6,9,10], maintainance of stem-
ness [36,37], differentiation regulation [36,37] etc., intrinsic noise has been shown to play cru-
cial role to determine the ultimate cell fate. Not only that, intrinsic noise can even drive a
system to a completely different dynamical regime which is not permitted if we analyze the cor-
responding deterministic model under same conditions [38,39]. One of the standard practice
to tackle intrinsic noise theoretically is to construct a proper mechanistic model in terms of
mass action kinetic terms for the corresponding gene regulatory network under consideration
and employ the Gillespie stochastic simulation algorithm (SSA) [16] to accurately quantify the
molecular noise present in the system. Unfortunately, in most of the cases the Gillespie simula-
tion for a detailed mechanistic model is highly expensive in terms of computational time. In lit-
erature, efforts had been made [15,17–19] to make appropriate approximations to simulate
only the slow reactions involved in a large biological network by SSA. Among them the QSSA
method found to be quite successful in reducing the computational time for SSA without losing
much the accuracy of the result for simple biological systems [15,19]. In this regard the perti-
nent question that we raised is that whether it is appropriate to use these QSSA models to
quantify the intrinsic noise for gene regulatory networks with feedback motifs? How much reli-
able they are to quantify the molecular noise in comparison to the detailed mechanistic mod-
els? This is an important question because if the QSSA models do a decent job to quantify the
intrinsic noise in comparison to mechanistic models, then computationally SSA calculations
will become much faster and easy to execute for larger networks.

By following approach 1, We have demonstrated that for the simple positive feedback motif
under consideration, the stochastic calculations of QSSA models can quantify the intrinsic
noise for a particular protein in a network with reasonable accuracy as a function of the ratio
(KC) of the half-lives of mRNA and protein, provided both the protein and mRNA are reason-
ably stable (which means less bursting frequency) and under the condition KC<0.1. We
observed that after a certain specific value of the ratio KC (KC>0.1), the stochastic results
obtained from the QSSA model simulation for the protein (X) started to differ from the sto-
chastic results of the mechanistic model simulation (Fig 3) which is quite in accordance with
the observations made by Shahrezaei and Swain [15]. Although our approach 1 makes sense in
the context of budding yeast where for more than 80% genes the protein half-life [13] is greater
than the corresponding mRNA half-life [27,28], we have to keep in mind that even if the life-
times of mRNA and protein are well separated in time scale (for the values KC<0.1) it might
not guarantee that the reduced QSSA model will always be able to capture the intrinsic noise
efficiently. We have further shown by implementing approach 2 that we can have disagreement
for KC<0.1 and agreement for KC>0.1 between the two models and these things highly depend
on the absolute values of the mRNA and protein half-lives. This result is quite unique and
Shahrezaei and Swain [15] did not perform such analysis.

In this context, we have convincingly demonstrated using 2D heat maps (Fig 4G and 4H)
that absolute values of the mRNA and protein half-lives are the crucial determining factors
when one tries to compare the quality of the intrinsic noise quantified from a stochastic QSSA
model in comparison to SSA performed using mechanistic model. We can have perfect agree-
ment between the two calculations both at the protein and mRNA levels if the absolute values
of the half-lives of the correposnding protein and the mRNA are located within region (IV) (as
defined in Fig 4G or 4H). There will be a significant level of disagreement between the
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stochastic calculations performed from QSSA and mechanistic models if the absolute values of
the half-lives correspond to region (I) i.e., when both the protein and mRNA are highly unsta-
ble causing a high degree of bursting frequency, which stochastic calculation performed from
QSSA model will not be able to capture efficiently. As the half-lives of the proteins and mRNAs
related to the gene regulatory network start to approach region (II) or (III), the success of the
stochastic calculations using a QSSA model in comparison to mechanistic model will vary
from case to case as shown in Fig 4G and 4H for both protein and mRNA respectively. This is a
very important result in the context of recent experiments performed with mammalian cell
[30] where they have shown that half-life combinations of protein and mRNA rarely turns out
to be in the region (I) (as defined in Fig 4G) but most of the time the half-life combinations will
fall in region (II), (III) and specially in region (IV) and beyond. This means that more often
and not we can employ QSSA simplification for the corresponding mechanistic models of any
gene regulatory network related to mammalian cell and have a good idea about the intrinsic
noise if we take care of the additonal requirements as suggested by Thomas et al. [20].

We have further shown that the abundance level of protein (Fig 5) or mRNA (Fig 6) hardly
influences the difference that we observe between the stochastic results obtained from QSSA
and mechanistic models. To generalize our observations, we have further considered two dif-
ferent modules [33,34] (Fig 7) with additional negative and positive feedback loops and exe-
cuted similar kind of studies as performed in case of simple positive feedback module shown in
Fig 1A. These studies performed with module 1 and module 2 further corroborate the fact that
absolute values of the half-lives of the proteins and mRNAs related to the gene regulatory net-
work critically control the success of QSSA model in comparison to mechanistic model in the
context of accuracy level achieved for intrinsic noise quantification. If the absolute values of all
the half-lives (related to all the proteins and mRNAs involved in the extended GRNs) are such
that they correspond to the region (IV) defined in Fig 4G and 4H, then we can definitely use
the QSSA model to faithfully calculate the intrinsic noise for both protein and mRNA for a
gene regulatory network. If they fall in region (II) or (III) then depending on other additional
conditions the QSSA model might quantify the intrinsic noise with reasonable accuracy in
comparison to its mechanistic counterpart but it will definitely fail to do so when the half-life
values correspond to region (I).

In conclusion, our analysis with few frequently observed GRNs suggests that care must be
taken before using any QSSA model for stochastic calculations although they are computation-
ally less expensive. We must have an idea about the experimental half-lives of the proteins and
mRNAs involved in the corresponding biological network before using a QSSA model to reli-
ably quantify intrinsic noise for a GRN. We strongly believe that our finding about the impor-
tance of the absolute values of the half-lives while considering the efficiency of the stochastic
QSSA model in comparison to SSA performed with mechanistic model is quite generic and will
be applicable for even bigger GRNs. We hope that this work of us will shine some light to sys-
tematically use QSSA method for accurate measurement of intrinsic noise for large networks.

Materials and Methods

Deterministic simulations
The complete gene auto-regulatory network (Fig 1A) was expressed in terms of 5 ordinary dif-
ferential equations in case of mechanistic model and 2 ordinary differential equations in case
of QSSA model (Table 1). For simplicity we neglected the contribution of GP2 to total protein.
As G+Ga+GP2 = 1, so GP2 level was very low. Thus we can safely neglect the contribution of
GP2 in total protein. The deterministic models were encoded as .ode files and deterministic
simulations were done by the freely available software XPP-AUT. The bifurcation diagrams
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were drawn using AUTO facility available in XPP-AUT. The bifurcation diagrams shown in
Fig 1 and S5 Fig were drawn in MATLAB using the data points generated by XPP-AUT.

In a similar fashion each of the other modules (Fig 7) was expressed in terms of 9 ordinary
differential equations in case of mechanistic models and 4 ordinary differential equations in
case of QSSA models (S6 and S8 Tables). Based on these ordinary differential equations we
have constructed the .ode files. For simplicity contribution of GP2 and GP2s to total protein
population were neglected in all the cases. The bifurcation diagrams shown in S7 and S9 Figs
were generated using the procedure discussed above.

Stochastic simulations
We employed stochastic simulation based on Gillespie’s algorithm [16]. In the traditional deter-
ministic analysis reaction constants are considered as reaction rates but in stochastic analysis
the reaction constants are considered as ‘probabilities per unit time’ [16]. The mechanistic
model corresponding to Fig 1 consisted of 11 reactions and the QSSAmodel consisted of 5 reac-
tions. The mechanistic models of the modules mentioned in Fig 7 were expressed in terms of 21
reactions and the corresponding QSSAmodels were expressed in terms of 11 reactions in each
case. Corresponding reactions and propensities of the reactions were given in S1 Text. We have
stochastically simulated the models using different random number sequences. The plots shown
in the figures were drawn in MATLAB using the data points generated by stochastic simulation.

Supporting Information
S1 Fig. Stochastic simulation based on Gillespie Algorithm. (A) In the left and right panels,
we plot variation in population of X (total protein) with time in the QSSA model and mecha-
nistic model respectively at J0 = 3 min-1. (B) In the left and right panels, we plot variation of
MP with time in the QSSA model and mechanistic model respectively at J0 = 3 min-1. (C) Sto-
chastic simulation based on Gillespie Algorithm using another random number sequence. In
the left and right panels, we plot steady state distribution of X (total protein) in the QSSA
model at J0 = 3 min-1, mean = 457.3, standard deviation = 42.69, CV = 9.34% and steady state
distribution of X (total protein) in the mechanistic model, mean = 461.4, standard devia-
tion = 43.46, CV = 9.42% respectively. All the values (except CVs) are in number of molecules.
(TIFF)

S2 Fig. Steady state analysis of QSSA and mechanistic models. In the left panel, we plot
steady state distribution of X (total protein) in the QSSA model at J0 = 3 min-1, when ka and kd
are 8E-03 min-1 and 5E-03 min-1, mean = 457.2, standard deviation = 42.98, CV = 9.4%. In the
right panel, we plot steady state distribution of X (total protein) in the mechanistic model at J0
= 3 min-1, when ka and kd are 8E-03 min-1 and 5E-03 min-1, mean = 523.7, standard devia-
tion = 197.6, CV = 37.7%. All the values (except CVs) are in number of molecules.
(TIFF)

S3 Fig. Steady state distribution of X at J0 = 1.5 min-1. (A) In the left and right panels, we
plot the steady state distributions of X (total protein) in the QSSA model and mechanistic
model respectively starting from upper steady state. (B) In the left and right panels, we plot the
steady state distributions of X (total protein) in the QSSA model and mechanistic model
respectively starting from lower steady state. Using another random number sequence in the
left and right panels, we plot the steady state distribution of X (total protein) in the QSSA
model and mechanistic model respectively starting from (C) upper steady state (D) lower
steady state.
(TIFF)
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S4 Fig. Sensitivity analysis of the parameters involved at J0 = 3 min-1. (A) KC = 0.2 (τP = 700
min, τM = 35 min) and (B) KC = 1.0 (τP = 700 min, τM = 7 min). For both cases sensitivity is
measured on the basis of CVs of stochastic mean of X as a function of rate constants involved
in QSSA model and mechanistic model. Here CVX refers to the coefficient of variation in sto-
chastic mean of X resulting due to parameter variation. It is divided by the CV of our standard
stochastic model (Fig 3A) using our model-parameter set at KC = 0.2. In all the cases parame-
ters are increased individually at an amount of 10% of the model parameters keeping all other
parameters constant.
(TIFF)

S5 Fig. Noise (CV) level in X with increase in X population at various MP population levels.
(A) Deterministically similar QSSA and mechanistic models, deterministic mean of X (mole-
cules) = 457.9 and MP (molecules) = 46.3 at J0 = 7.5E-01 min-1. The solid lines represent stable
steady states and dotted lines represent unstable steady states; J0 is the basal rate of MP synthe-
sis and acts as the bifurcation parameter. (B) Coefficient of variation of total protein (X) versus
X abundance keeping deterministic mean of MP = 46.3 molecules at J0 = 7.5E-01 min-1 with
various KC. CVs of X are plotted at KC = 1E-02, KC = 1E-01, KC = 2E-01 and KC = 1.0 respec-
tively. (C) Deterministically similar QSSA and mechanistic models, deterministic mean of X
(molecules) = 457.9 and MP (molecules) = 370.4 at J0 = 6 min-1. (D) Coefficient of variation of
X versus X abundance keeping deterministic mean of MP = 370.4 molecules at J0 = 6 min-1

with various KC. CVs of X are plotted at KC = 1E-02, KC = 1E-01, KC = 2E-01 and KC = 1.0
respectively. (E) Deterministically similar QSSA and mechanistic models with deterministic
mean of X (molecules) = 457.9 and MP (molecules) = 740.9 at J0 = 12 min-1. (F) Coefficient of
variation of X versus X abundance keeping deterministic mean of MP = 740.9 molecules at J0 =
12 min-1 with various KC. CVs of X are plotted at KC = 1E-02, KC = 1E-01, KC = 2E-01 and KC

= 1.0 respectively. In all the cases τM~7 min, km = 1E-01 min-1. Deviation between QSSA
model and mechanistic model is more pronounced at higher KC.
(TIFF)

S6 Fig. Mechanistic frameworks of different gene regulatory networks under consideration.
(A) Gene regulatory network with positive and additional negative feedback motifs under con-
sideration where G and Ga denote inactive and active states of gene, MP denotes mRNA, P
denotes protein, P2 is the dimer of protein. The protein (P) molecules form dimers P2. P2 binds
to the promoter region of the inactive gene and activates G to Ga as well as P2 binds to the pro-
moter region of another inactive gene Gs and activates Gs to Gas. mRNAs (YM) are synthesized
at a basal rate J4. km and kp are the degradation rates of mRNA of P (MP) and P and kym and kyp
are the degradation rates of mRNA of YP (YM) and YP. YP activates the degradation of protein
P at Kn rate. (B) Gene regulatory network with double positive feedback motifs under consider-
ation where G and Ga denote inactive and active states of gene, Mp denotes mRNA, P denotes
protein, P2 is the dimer of protein. The protein P form dimers P2. P2 binds to the promoter
region of the inactive gene and activates G to Ga as well as P2 binds to the promoter region of
another inactive gene Gs and activates Gs to Gas. mRNAs (YM) are synthesized at a basal rate J4.
km and kp are the degradation rates of MP and P and kym and kyp are the degradation rates of
YM and YP. YP activates the synthesis of protein P at Kn rate.
(TIFF)

S7 Fig. Deterministically similar QSSA and mechanistic models of gene regulatory net-
works with additional positive and negative feedback motifs. The solid lines represent stable
steady states and dotted lines represent unstable steady states; J0 is the basal rate of MP synthe-
sis and acts as the bifurcation parameter. (A) In the left and right panels, we plot steady state
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population of X in QSSA and mechanistic models respectively. (B) In the left and right panels,
we plot steady state population of YP in QSSA and mechanistic models respectively at KC = 1E-
02, KS = 1E-02, τP = 700 min, τM = 7 min [S6 Table]. Values of Kn, given in the plots, are in
molecule-1min-1. Deterministic mean of X = 390.9 molecules, YP = 149.6 molecules, MP =
174.2 molecules and YM = 162.3 molecules at J0 = 3 min-1 when Kn = 2.5E-07 molecule-1min-1.
Deterministic mean of X = 457.9 molecules, YP = 161.1 molecules, MP = 185.2 molecules and
YM = 174.7 molecules at J0 = 3 min-1 when Kn = 0 molecule-1min-1.
(TIFF)

S8 Fig. Plot of CV of proteins and mRNAs versus ratio of half-lives (KS) of YM and YP as
well as the absolute values of the half-lives of YM and YP at KC = 1.0 in the module 1 with
additional negative feedback on X. (A) τP = 7 min, τM = 7 min and tYM = 7 min (B) τP = 700

min, τM = 700 min and tYM = 7 min. (C) Plots of CV of X, MP, YP and YM abundance in QSSA

and mechanistic models versus absolute values of the half-lives of YM and YP at KS = 1.0, keep-
ing τP = 700 min, τM = 700 min. Values of tYM and tYP are given in minutes.

(TIFF)

S9 Fig. Deterministically similar QSSA and mechanistic models of gene regulatory network
with double positive feedback motifs (additional positive feedback is working on X). The
solid lines represent stable steady states and dotted lines represent unstable steady states; J0 is
the basal rate of MP synthesis and acts as the bifurcation parameter. (A) In the left and right
panels, we plot steady state population of X in QSSA and mechanistic models respectively. (B)
In the left and right panels, we plot steady state population of YP in QSSA and mechanistic
models respectively at KC = 1E-02, KS = 1E-02, τP = 700 min, τM = 7 min [S8 Table]. Values of
Kn, given in the plots, are in min-1. Deterministic mean of X = 543.6 molecules, YP = 172.6 mol-
ecules, MP = 196.3 molecules and YM = 187.1 molecules at J0 = 3 min-1 when Kn = 5E-05 min-1.
Deterministic mean of X = 457.9 molecules, YP = 161.1 molecules, MP = 185.2 molecules and
YM = 174.7 molecules at J0 = 3 min-1 when Kn = 0 min-1.
(TIFF)

S10 Fig. Plot of CV of the total protein (X) and YP versus ratio of half-lives (KS) of YM and
YP as well as the absolute values of the half-lives of YM and YP at KC = 1E-02 in the module
2 with additional positive feedback on X. (A) τP = 700 min, τM = 7 min and tYM = 7 min (B)

τP = 10 min, τM = 1E-01 min and tYM = 7 min. (C) KS = 1E-02, τP = 700 min and τM = 7 min.

(D) KS = 1.0, τP = 700 min and τM = 7 min. Values of tYM and tYP are given in minutes.

(TIFF)

S11 Fig. Plot of CV of proteins and mRNAs versus ratio of half-lives (KS) of YM and YP as
well as the absolute values of the half-lives of YM and YP at KC = 1.0 in the module 2 with
additional positive feedback on X. (A) τP = 7 min, τM = 7 min and tYM = 7 min (B) τP = 700

min, τM = 700 min and tYM = 7 min. (C) Plots of CV of X, MP, YP and YM abundance in QSSA

and mechanistic models versus absolute values of the half-lives of YM and YP at KS = 1.0, keep-
ing τP = 700 min, τM = 700 min. Values of tYM and tYP are given in minutes.

(TIFF)

S1 Table. Steady state analysis of the QSSA and mechanistic models. [S2 Fig].
(DOCX)

S2 Table. (A) Stochastic results of Total protein (X) and mRNA (MP) at different KC in
QSSA model and mechanistic model. [Fig 3] (B) Parameters used in Fig 4.
(DOCX)
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