
REVIEW
published: 29 January 2019

doi: 10.3389/fendo.2019.00006

Frontiers in Endocrinology | www.frontiersin.org 1 January 2019 | Volume 10 | Article 6

Edited by:

David Karasik,

Bar-Ilan University, Israel

Reviewed by:

Matthew Harris,

Harvard Medical School,

United States

Antonella Forlino,

University of Pavia, Italy

*Correspondence:

Chrissy L. Hammond

chrissy.hammond@bristol.ac.uk

Specialty section:

This article was submitted to

Bone Research,

a section of the journal

Frontiers in Endocrinology

Received: 07 November 2018

Accepted: 09 January 2019

Published: 29 January 2019

Citation:

Bergen DJM, Kague E and

Hammond CL (2019) Zebrafish as an

Emerging Model for Osteoporosis: A

Primary Testing Platform for Screening

New Osteo-Active Compounds.

Front. Endocrinol. 10:6.

doi: 10.3389/fendo.2019.00006

Zebrafish as an Emerging Model for
Osteoporosis: A Primary Testing
Platform for Screening New
Osteo-Active Compounds
Dylan J. M. Bergen 1,2, Erika Kague 1 and Chrissy L. Hammond 1*

1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol,

United Kingdom, 2Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead

Hospital, University of Bristol, Bristol, United Kingdom

Osteoporosis is metabolic bone disease caused by an altered balance between bone

anabolism and catabolism. This dysregulated balance is responsible for fragile bones

that fracture easily after minor falls. With an aging population, the incidence is rising and

as yet pharmaceutical options to restore this imbalance is limited, especially stimulating

osteoblast bone-building activity. Excitingly, output from large genetic studies on people

with high bone mass (HBM) cases and genome wide association studies (GWAS) on the

population, yielded new insights into pathways containing osteo-anabolic players that

have potential for drug target development. However, a bottleneck in development of new

treatments targeting these putative osteo-anabolic genes is the lack of animal models

for rapid and affordable testing to generate functional data and that simultaneously can

be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly

used in functional genomics and drug screening assays which resulted in new treatments

in the clinic for other diseases. In this review we outline the zebrafish as a powerful

model for osteoporosis research to validate potential therapeutic candidates, describe

the tools and assays that can be used to study bone homeostasis, and affordable

(semi-)high-throughput compound testing.

Keywords: zebrafish, screening, genetic mutants, osteoblast, osteoclast, osteoporosis, drug development, animal

model

INTRODUCTION

Osteoporosis (OP) is a degenerative bone disease that affects around 27.6 million people over
the age of 50 in the 27 European Union (EU27) countries alone (1). As average life expectancies
increase, it is predicted that the annual cost of treating OP in the EU will rise from e37 billion
in 2010 to e46.5 billion by 2025 (2). OP is characterized by a reduction in bone mineral density
(BMD), reduction of bone mass (BM), and a decrease in the trabecular volume of long bones;
resulting in brittle bones that are more prone to fracture (3). The underlying mechanism behind
OP is a dysregulation of bone homeostasis; with decreased bone anabolism (decreased activity
of osteoblasts and osteocytes) and increased catabolism (enhanced osteoclast activity). Successful
treatment of OP should therefore increase bone anabolism and decrease catabolism to reinstate
the equilibrium in bone homeostasis (4, 5). While therapeutic options are increasing, all but one
available therapies aim to reduce bone resorption. However, as osteoclast and osteoblast activity
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are coupled, anti-resorptives can negatively affect anabolic
osteoblast activity and may not fully restore bone architecture
(6). The only injectable osteoanabolic compound, teriparatide,
is an analog of the parathyroid hormone (7). However, it is not
an ideal long-term therapy option as, not only is it expensive,
long term exposures in rat increase susceptibility to osteosarcoma
(8, 9) limiting treatment duration (currently 2-years) in OP
patients (10). Thus, an ideal treatment plan should focus on
both strengthening bones using an osteoanabolic compound,
combined with use of an anti-resorptive treatment (also ideally
non-invasive) to maintain bone integrity (5), few such options
exist. Currently, a major bottleneck in the development of new
pharmaceuticals is the collection of primary functional data on
new biological drug targets with osteo-anabolic capacities.

The twinning of genetic information with mechanistic data is
key for development of new treatments. For example, familial
studies on high bone mass (HBM) cases led to the discovery
of mutations in SOST (Sclerostin). Further mechanistic data
generated in model systems showed that SOST acts negatively
on the WNT signaling pathway and led to the development of
a novel antibody treatment Romosozumab (approved in 2018
for clinical use), which blocks SOST activity (11–13). With the
advent of genome-wide association studies (GWAS), and efficient
whole-genome/exome sequencing (WGS/WES) data mapping
there has been a sizeable increase in availability of human
genetic data from cohort studies for musculoskeletal conditions
including OP, high bone mass (HBM), and osteoarthritis (OA)
(14–20). Recent large cohort studies, such as UK-Biobank,
have identified many new loci that contain novel osteogenic
factors. For example, the UK-Biobank (21) data yielded 518
loci associated with changes in BMD using heel ultrasound data
(16, 19). Currently, there is a substantial gap in translating
these human genetic findings to model systems (22) in which
the mechanism by which these genes act on the skeleton can
be defined, where hypotheses can be tested, and ultimately
define new putative drug targets that can be assessed with
pharmacological agents. Because the skeletal system involves
complex interactions between different cell and tissue types,
genes and mechanical stimuli it is difficult to recapitulate
features of OP in a petri dish. However, traditional rodent
models are expensive to genetically manipulate. Zebrafish (Danio
rerio) could therefore bridge this gap by offering fast genetic
manipulation and complex tissue interactions required to model
complex diseases such as OP.

Zebrafish are vertebrates and show strong similarities in their
skeletal physiology to mammals (23). They are highly fecund and
a single pair of fish can lay up to 300 eggs a week, which develop
externally and are translucent (24). They show conservation of
70% of all genes and 85% of disease genes with humans (25, 26).
However, the main advantage of zebrafish for functional genetic
studies is their genetic tractability, as constructs that modify the
genome can be injected directly into embryos at the single cell
stage. This has allowed the generation of transgenic lines that
allow dynamic imaging of all the cells of the developing skeletal
system in live larvae (27–29) (Table 1) and in more recent years
allowed genome editing strategies to be employed. In this review
we set-out these different approaches and how developing and

adult zebrafish can be used to study bone mineralization, bone
content formation, and osteoblast-osteoclast interactions in a
whole animal context. We also discuss future prospects for drug
screening pipelines in zebrafish which may confer advantages
over other pre-clinical model systems.

FLEXIBLE GENETIC MANIPULATION IN
THE ZEBRAFISH

Zebrafish are genetically high amenable and new ways to
manipulate the genome are constantly being added to the
zebrafish genetic toolbox, which includes knockout, knock-
down and, DNA insertion strategies. The external development
of the embryos allows tools targeting genes of interest to
be microinjected directly in embryos at the 1-cell stage and
hundreds of embryos can readily be injected in a morning.
Acute knockdown of gene expression can be achieved either
by targeting mRNA with antisense RNA morpholino (MO)
molecules that stably bind the target mRNA to block translation
or splicing through steric hindrance (41). MOs offer a rapid
method to assess the phenotype of a gene of interest during
early development. However, they can only be used to study
developmental processes occurring over the first 4 or 5
days of development, which limits their utility in skeletal
studies as mineralization occurs from 4 days of development.
While concerns have been raised about MO veracity as
morphants frequently show more severe phenotypes than stables
mutants generated for the same gene (42, 43). This is due to a
transcriptional compensation response for chronic loss of a gene
as has been shown in mouse, cultured human cell lines, plants,
and zebrafish models (44–51). Thus, while MOs have a role,
their use has been largely supplanted by use of genome editing
strategies.

Traditionally, zebrafish mutant lines have been generated
by forward genetic screening; using mutagens [e.g., N-ethyl-
N-nitroso urea (ENU)] to induce random point mutations
in offspring that were then screened for phenotypes of
interest (52–56). The expansion of the zebrafish genetic toolkit
with zinc-finger nucleases (ZFN), Transcription Activator-
Like Effector Nucleases (TALEN) (57, 58), and Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9
(59) reverse genetic strategies, which, in combination with
a fully sequenced genome (25), allow tailored gene-specific
mutagenesis in the zebrafish. Gene function can be studied
in genetic knockouts by generating insertion/deletion (indel)
mutations leading to premature stop codons, deleting whole
exons containing important protein domains and generate new
stable mutant lines (Figure 1A). Moreover, the CRISPR/Cas9
protocol is so efficient that the F0 injected fish (crispants) can
be used to study loss of gene function in these crispants, despite
them carrying mosaic mutations (i.e., not every cell carries a
mutation and more than one mutation may be present) (23, 60)
(Figure 1B). Single base gene editing (knock ins) using modified
Cas9 enzymes or supplying a DNA template for the endogenous
homologous recombination machinery initiated by a double
stranded break allows to introduce specific genetic changes to
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TABLE 1 | Common transgenic lines to study musculoskeletal system in small teleostei.

Gene/pathway Cell type(s) Description Transgenic line Citation

BMP pathway BMP transcriptionally activated cells Reporter—21 BMP responsive elements (BMPRE) from

X. laevis

Tg(5xBMPRE-Xla.Id3:GFP) (30)

collagen10a1a Osteoblasts (juvenile) Reporter—BAC containing zebrafish collagen10a1a

promoter

TgBAC(col10a1a:Citrine) (29)

collagen2a1 Chondrocytes Reporter—BAC containing zebrafish collagen2a1

promoter

Tg(Col2a1aBAC:mCherry) (29)

ctsk Osteoclasts Reporter—BAC containing zebrafish ctsk promoter TgBAC(ctsk:Citrine) (27)

entpd5a Mineralizing osteoblasts Reporter—BAC containing zebrafish entpd5a promoter TgBAC(entpd5a:Citrine/YFP) (27)

fli1a Vasculature/neural crest Reporter —BAC containing fli1a promoter Tg(fli1a:EGFP) (31)

Hedgehog

pathway

Gli transcriptionally activated cells Reporter—8 Gli responsive elements driving egfp or

mCherry

Tg(Gli-d:gfp/mCherry) (32)

Osteocalcin Osteoblasts (mature) Reporter—3.7 kb upstream osteocalcin promoter from

Medaka driving gfp expression

Tg(Ola.osteocalcin:EGFP) (33)

rankl Osteoclast-osteoblast interaction Conditional—Heat shock inducible (HSE) ubiquitous

simultaneous expression of rankl and cfp in medaka

Tg(rankl:HSE:CFP) (34)

runx2 Osteoblasts (juvenile) forming new

bone

Reporter—557 bp intronic human RUNX2 enhancer

(Hsa), regulating RUNX2, conserved in multiple species,

driving gfp expression

Tg(Hsa.RUNX2-

Mmu.Fos:EGFP)

(33)

sox10 Mesenchymal chondrocytes Reporter—4.9 kb of sox10 promoter driving egfp Tg(−4.9Sox10:EGFP) (35)

sp7 (osx) Osteoblasts Reporter—BAC containing zebrafish sp7 promoter Tg(sp7:EGFP) (36)

sp7 (osx) Osteoblasts Reporter—Medaka sp7 regulatory elements driving

nls-gfp or mCherry

Tg(sp7:nuGFP/mCherry) or

Tg(Ola.sp7:NLS-GFP)

(37)

sp7 (osx) Osteoblasts Reporter—BAC sp7 promoter driving luciferase

expression

Tg(Ola.sp7:luciferase) (38)

sp7 (osx) Osteoblasts (ablation) Conditional—Chemical ablation of osteoblasts by E. coli

enzyme Nitroreductase (NTRo) activity

Tg(osterix:mCherry-

NTRo)pd46

(39)

WNT - β-catenin

pathway

β-catenin activated cells Reporter—T-cell factor enhancer (TCF) promoter

containing 7 beta-catenin binding sites

Tg(7xTCF.XlaSiam:nlsGFP) (40)

BAC, bacterial artificial chromosome; bp, base pair; kb, kilobase.

model specific human disease mutations in zebrafish orthologs
(62, 63).

SIMPLE ASSESSMENT OF ZEBRAFISH
BONES DURING DEVELOPMENT AND
ADULTHOOD

Zebrafish in common with higher vertebrates, have both
dermal/intramembranous ossification, in which bone is formed
de novo directly by osteoblasts, and chondral/endochondral
ossification in which bone forms by progressively replacing a
cartilaginous template. Although zebrafish have thinner bones
than terrestrial vertebrates, with fewer embedded osteocytes
and little trabeculation, all of the relevant skeletal cell types
and modes of regulation are conserved between zebrafish and
higher vertebrates. This, importantly for the study of OP,
includes osteoblast and osteoclast coupling and regulation of
bone remodeling (64, 65).

A major advantage of using zebrafish to probe the mechanism
of bone homeostasis is that cell behavior can be visualized
dynamically in vivo. Zebrafish larvae are translucent and develop
rapidly (24), and early skeletal processes can be dynamically
visualized in the living fish through use of fluorescent transgenic
reporter lines marking these cell types (see Table 1 for examples).

Formation of the craniofacial skeleton occurs early, with the
first cartilaginous structures of the jaw forming by 2 days post
fertilization (dpf) (66), the first skeletal joints are formed and
mobile by 3 dpf (60), by 5 dpf, hypertrophic chondrocytes,
marked by col10a1a, are seen in some elements from 5 dpf
(29), and first osteoblasts surrounding the cartilage and forming
bone matrix by 7 dpf (67). The first intramembranous bones,
such as the cleithrum, anterior notochord, and operculum, are
visible in the craniofacial skeleton from 72 hpf (66). While
skeletal development occurs early, true remodeling through
the combined activity of osteoblasts and osteoclasts does not
commence until the second week of development as osteoclasts
(marked by Cathepsin-K (Ctsk) or TRAP) are not formed until
day 10–12. Unlike mammals, mononucleated osteoclasts as well
as multinucleated cells are present and actively resorb bone
(65, 67).

There are many transgenic lines available to mark

musculoskeletal tissues, these include reporter lines which
label cells or signaling pathway activation by driving expression

of proteins in the cytoplasm, targeted to the nucleus, or plasma

membrane, and lines that tag proteins (28, 68). Reporter lines
mark cell types by using a tissue specific promotor, responsive

elements from a signaling pathway, or transcription factor

binding sites controlling expression of a fluorescent protein
(Table 1). For example, to study bone homeostasis, osteoblasts
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FIGURE 1 | Rapid and efficient mutagenesis using CRISPR/Cas9 genome editing in zebrafish. (A) To generate a stable mutant line, F0 CRISPR/Cas9 injected

individuals carrying mosaic mutations (defined by fin-clipping, B) should be outcrossed to wildtype fish to allow selection of a single germline mutation. Out-crossing

the founder to wildtype will establish a stable F2 mutant line. Note that the F1 can have multiple founders with damaging mutations, incrossing these will result in F2

homozygotes (for recessive alleles) for functional analysis. When performing incrosses from F2, it will take another 2 months of breeding time. (B) This rapid protocol

can be used to generate mutations in a gene of interest using CRISPR/Cas9 RNA or protein with gRNAs targeted against the gene from custom made gRNA oligos (i).

Micro-injection of CRISPR/Cas9 RNA or protein and gRNAs specific to gene of interest into embryos at the single cell stage (ii) generating double stranded breaks

during the first few rounds of cell divisions. The repair machinery is prone to errors and those cells will carry a different type of mutation giving a range of insertion and

deletion (indel) mutations (spectrum of mutations, mosaicism). The overall mutagenic efficiency is typically high (around 80% with fragment analysis) allowing larval

skeletal phenotypes to be assessed in the injected (F0) population (60). After imaging an Alizarin Red S (AR) stained individual in a transgenic background (here

osteoblast marker sp7:gfp)(iii), mutagenesis assessment such as fragment analysis will determine a quantified mutagenesis rate (61) which can be correlated to a

phenotype (iv). Note that mosaic mutants (crispants) can also be grown up to see the effect on the adult skeleton.
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and osteoclasts can both be labeled in vivo, using osteoblast
reporters such as sp7, and osteoclast reporters such as ctsk, so
that their numbers, location and activity monitored in living
bone tissue either longitudinally, in response to drug treatment,
genetic mutation, or environmental stimuli (Table 1). Relevant
to research into OP, osteoclasts can be specifically temporally
activated by use of a heat shock promoter driving RANK ligand
(rankl) expression; such that following a period of immersion
in water at 39◦C, osteoclast activity, labeled with the blue
fluorescent protein (CFP), is increased resulting degradation of
the bone matrix and in an osteoporotic phenotype of low BMD
(34). A simple Alizarin Red S (AR) staining, whichmarks calcium
phosphate crystals and fluoresces strongly in the red channel
(580 nm wavelength), allows a rapid assessment of ossified
elements in live or fixed fish. In combination with transgenic
lines, endochondral ossification in the lower jaw (Figure 2A) and
intramembranous bone formation in the operculum (Figure 2B)
can be easily visualized compared to traditional rodent models.

IMAGING THE ADULT SKELETON FOR
ASSESSING MINERALIZATION

The zebrafish adult skeleton is relatively complex and once fully
formed by around 2 months is composed of 74 ossified cranial

elements (compared with 22 in humans), 28–31 vertebrae; 4
cervical, 10–11 thoracic vertebrae, and 15–16 separated vertebrae
in the tail region and fins (pectoral, dorsal, anal (ventral), and
caudal) (69). As in larvae, live AR and Calcein staining, or use
of transgenic lines, allows easy detection of superficially located
calcified elements in the skull, elasmoid scales, and fins using
a simple fluorescent microscope. Deeper tissues can be imaged
by multiphoton microscopy in small juveniles. However, bones
located more internally (e.g., vertebrae and ribs) in large adults
are difficult to visualize using this method. Post-mortem staining
of bone (AR) and cartilage [Alcian blue (AB)] is a cost-effective
way to analyse these structures for adult skeletal abnormalities
(Figure 3A) and has been used in forward genetic screens to
obtain detailed skeletal morphology information (56, 70, 71).

Recent advances in X-ray based imaging: radiographs, micro-
computed tomography (µCT), and synchrotron equipped µCT
technologies (SR-µCT), and their subsequent downstream
imaging processing, opened avenues to assess the adult zebrafish
skeleton. The major advantage of using these X-ray imaging
techniques is that they are non-destructive and can be used
in the intact fish, allowing the samples to be used for other
purposes, such as histology. Radiographs give two-dimensional
(2D) images of the zebrafish skeleton at relatively low resolution
(Figure 3B), permitting the visualization of bone elements and
a broad evaluation of changes in the skeleton, radiographs can

FIGURE 2 | Ossified elements in the cranial region during early development. (A) Ventral view of a 7 days live Alizarin Red S (AR) labeled larval jaw showing dermal

ossification of cleithrum (CL), and ossification of the cartilaginous ceratohyal (CH). Arrow indicates the CH which undergoes endochondral ossification. Slow muscle

transgene reporter in green (smych:gfp). Image taken on a Leica lightsheet microscope. (B) Lateral view of a 6 days old larva live labeled with Alizarin Red S (red) and

carrying GFP under the control of the osteoblast promoter s7/osterix (green; sp7:gfp) allowing visualization of mineralized elements (red) and osteoblasts (green) in a

living individual. Insets show the cleithrum (i) and operculum (ii) with osteoblast enrichment at the distal ends of these elements (gray arrows). Image taken on a

confocal microscope. Wildtype strains AB/TL in both panels. Ossified elements: BR, branchiostegal ray; CH, ceratohyal; CL, cleithrum; MC, Meckel’s cartilage; MX,

maxilla; OP, operculum; PBC, posterior basicranial commissure; PQ, palatoquadrate. Scale bars = 100µm.
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be used to image live anesthetized fish permitting longitudinal
analysis of the skeleton over time (70). Higher resolution
(2µm voxel size) and three-dimensional (3D) assessment
of the zebrafish skeleton can be achieved by using µCT
(Figures 3C–E). As fish bone, like that of mammals, is composed
of hydroxyapatite crystals, quantification of BMD can be
performed by comparison to phantoms, which are samples of
known hydroxyapatite content (72). Additionally, treatment with
agents to improve contrast such as silver nitrate (AgNO3) or
iodine, allow detection of juvenile (less dense) bone and of soft
tissues such as muscle and cartilage (72).

Very detailed data on bone micro-architecture can be
achieved with SR-µCT (73, 74). This technique can yield a
spatial resolution of 100 nanometres on tissue samples and
visualize fine bone structures at a cellular level including the
vasculature in mineralized bone, osteoclast resorption pits, and
osteocyte lacunae (75). As the size and resolution of data sets
increase, the bottleneck in the process is frequently data analysis.
Commercially available software packages such as “boneJ” are
tailored for CT data analysis, and recently open source user
friendly software have become available to process µCT data
from zebrafish scans. For example, the “FishCut” software
processes whole-body µCT scan datasets and applies semi-
automated analysis algorithms. The current version segments
the axial skeleton, then generates values for the surface area
of vertebrae and centrae, and calculates BMD and mineralized
thickness in a semi-automated fashion (76).

ZEBRAFISH MUTANTS OF BRITTLE OR
THIN BONES

An increasing number of zebrafish genetic mutants in skeletally
relevant genes have been shown to recapitulate human bone
disease. These have provided insight into the dynamic regulation
of bone formation, mineralization, and remodeling. We have
included a list of zebrafish skeletal mutants in Table 2. While
there are currently few models for OP, there are various
zebrafish mutant lines that accurately model human skeletal
dysplasias, including collagenopathies and forms of osteogenesis
imperfecta, which are characterized by brittle bones and frequent
low-impact bone fractures. Autosomal dominant mutations
COL1A1 and COL1A2 genes predominantly affect glycine-X-
Y (Gly-X-Y) repeat domains that result in collagen α1(I) and
α2(I) heterotrimer maturation defects (119), causing fragile
bone matrix and insufficient mineralization (120). The Gly-
X-Y mutations lead to impaired hydroxylation and defects
in collagen maturation in the endoplasmic reticulum (ER),
which is also conserved in zebrafish (121–123). The autosomal
dominant chihuahua (chi) zebrafish mutant, was identified
in a forward genetic screen using radiography (70). Linkage
mapping identified a mutation causing a glycine to aspartate
amino acid substitution in a conserved Gly-X-Y repeat of
col1a1a (zebrafish col1a1 is duplicated). Note that in contrast
to mammals, zebrafish type-I collagen is constituted by three
different α chains [α1 (col1a1a), α3 (col1a1b), α2 (col1a2)] due to
duplication (124). chi/+ zebrafish display phenotypes resembling

FIGURE 3 | Examples of visualization and quantification of mineralized bone in

zebrafish. (A) Wholemount Alizarin Red S (AR) and Alcian Blue staining of 3

months fixed fish. (B) Radiograph of 1-year old live fish showing whole body:

endo- and exoskeleton. (C) Low resolution µCT images acquired with a 20µm

voxel size of a 3 months old fish. Note that pixel intensity can be used to

determine BMD; represented on the color coded pixel intensity bar. (D,E) High

resolution (5µm voxel size) µCT images of vertebral column with anal fin rays

(D) and caudal fin rays (E). Vertebral centrae have higher density at their edges

(solid arrow) than the center (dashed arrow). In the fin rays, a higher density

(solid arrow) is observed in older segments within the proximity to the body in

comparison to younger segments located more caudally showing lower pixel

intensity (dashed arrow). The same pixel intensity color coding as (C) applies.

All fish and their insets are depicted from a lateral view in an anterior-posterior

(left-right) orientation. Scale bars = 50µm in (A,B); and 100µm in (C–E).

those seen in humans, including a shortened axial skeleton,
with irregular radiodensity, uneven mineralization, and brittle
bones that fracture easily (especially ribs). Transmission electron
microscopy revealed that chi/+ fish show signs of ER stress (70).
The ER trapping of insufficiently hydroxylated oligotrimerized
α1(I)/α2(I)/α3(I) collagen leads to lower extra-cellular collagen
maturity, abnormally shaped and thinner vertebrae bodies, areas
of higher calcium content, different local mechanical properties,
and reduced osteocyte number (84). Osteogenesis imperfecta has
a broad disease spectrum in the clinic, and recent comparative
studies of multiplemutant alleles for col1a1a, col1a1b, col1a2, and
also bmp1a (described later) and plod2 described a diversity of
skeletal phenotypes (Table 2) with brittle bones as the common
feature (85).

The zebrafish sp7/osterix mutant has been shown to
model human osteogenesis imperfecta caused by recessive
damaging mutations in SP7 (125). This mutant showed uneven
mineralization, severe fractures caused by minimal impact, and
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TABLE 2 | Zebrafish mutants, transgene insertion mutants, and morphants showing altered skeletal mineralization.

Human gene Zebrafish name BMD

effect

Primary defect/effect Fish modeling Human skeletal

phenotype

Citation

ABCC6 gräte + ATP hydrolysis defects causing (ectopic)

increased mineralization in spine and soft

tissues

N/A Pseudoxan-thoma

elasticum

(77)

ATP6V1H atp6v1h – Increased osteoclast activity by

upregulated mmp9 and mmp13

Osteoporosis Familial osteoporosis

with short stature

(78)

BMP1 frilly fins, welded – Fibrillar collagen processing affecting bone

matrix integrity

Osteogenesis

imperfecta

Osteogenesis

imperfecta; high BMD

(in vertebrae) but weak

bones

(72, 79, 80)

C-FMS

(CSF1R/CD115)

panther, csfr1a + Reduced osteoclast number and immune

cell mobility causing stenosis

Osteopetrosis N/A (72, 81, 82)

COL11A2 col11a2 + Collagen triple helical stability; dominant

effect

OA: Stickler syndrome Stickler Syndrome (83)

COL1A1 chihuahua,

microwaved,

dmh13, dmh14,

dmh15, dmh29

– Collagen triple helix stability; dominant

effect leading to brittle bones in axial and

fin skeleton.

Osteogenesis

imperfecta and

Ehlers-Danlos

syndrome (chuhuahua

and microwaved)

Osteogenesis

imperfecta and

Ehlers-Danlos

Syndrome

(56, 70, 79, 84–86)

COL2A1 dmh21 (?),

dmh27, dmh28,

dmh30 (?)

= Collagen triple helical stability; dominant

effect. Notochord and vertebra

deformations.

Spinal deformations Stickler syndrome (56)

CTSK ctsk *U + Depletion of pre and mature osteoclasts Osteopetrosis Osteopetrosis (87)

CX43 (GJA1) stoepsel,

short-of-fin

– (?) Brittle vertebrae anomalies due to loss of

function hemichannel (Ca2+) activity

N/A Oculodento-digital

dysplasia

(88, 89)

CYP26B1 stocksteif, dolphin,

cyp26b1

+ Hyper-mineralization and fusion of the

vertebrae and joints due to altered

intracellular retonic acid metabolism

Retonic acid

processing

Craniosynostosis,

craniofacial anomalies,

fusions of long bones

(37, 90, 91)

DKK1 (DICKKOPF) hs:dkk* – When heat-shocked, Dkk1 is expressed

and blocks Wnt/Beta-catenin signaling.

Impaired elasmoid scale and ray fin

outgrowth.

N/A Osteolytic bone lesions

in multiple myeloma

patients

(92)

EDA and EDAR nackt (eda), finless

(edar), fang (edar),

topless (edar)

– Absence and deformation of dermal bone

structures such as lepidotrichia, elasmoid

scales, and skull

Ectodermal dysplasia,

impaired teeth

Hypohidrotic

ectodermal dysplasia 1

(X-linked); Tooth

agenesis

(93)

ENPP1 dragonfish + Ectopic hyper-mineralization in axial

skeleton due to altered phosphate

metabolism

Arterial calcification of

infancy

Arterial calcification

/hypophosphatemic

rickets

(94, 95)

ENTPD5 no bone – Does not mineralize bone due to altered

phosphate metabolism

N/A N/A (94)

GBA1 gba1 – Impaired osteoblast differentiation due to

altered Wnt signaling

Osteoporosis, Gaucher

disease

Osteoporosis, Gaucher

disease

(96)

GLI2 hs:gli2-DR* – Heat-shock (hs) initiates expression of

dominant repressive Gli2. Impaired scale

calcification.

N/A Culler-Jones syndrome;

holoprosencephaly

(92)

GOLGB1 (giantin) golgb1 + Ectopic mineralization in spine and soft

tissues by transcriptionally down regulating

galnt3 and changed cilia morphology

N/A GOLGB1

unknown–GALNT3

mutations cause

tumoral calcinosis

(49, 50)

IHH ihha – Loss of mineralization due to blocked

osteoblast differentiation in endochondral

bone. Irregular operculum and scale

morphology with reduced AR stain

Endochondral bone

repair and dermal

ossification

Acrocapitofemoral

Dysplasia,

Brachydactyly Type A1

(67, 97–99)

ITGA10

ITGBL1 #

itga10 ($)

itgbl1 ($)

– Focal adhesion Integrin A/B subunits.

Downregulated in prednisolone larvae.

Osteoporosis N/A (100)

(Continued)
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TABLE 2 | Continued

Human gene Zebrafish name BMD

effect

Primary defect/effect Fish modeling Human skeletal

phenotype

Citation

LGMN lgmn ($) + Legumain (secreted cysteine protease)

inhibits osteoblast activity by degradation

of fibronectin

Osteoporosis Osteoporotic–

upregulated in OP

bone

(101)

LRP4 lrp4 MO – (?) Malformed pectoral and tail fin and

deformed craniofacial skeleton with kidney

cysts

Cenani-Lenz

syndactyly

Cenani-Lenz

syndactyly,

osteoporosis,

Sclerosteosis

(102)

MEF2C mef2ca + Ectopic bone formation of neural crest

derived ligament due to altered DNA

methylation

N/A Unknown (103, 104)

N/A bone calcification

slow

– Non-mapped mutation causing delayed

ossification and increased Cyp26b1

expression

N/A Unknown (105)

PANX3 panx3 MO – Altered Ca2+ channel activity reducing

endochondral ossification

N/A N/A (106)

PLS3 pls3 MO – Reduced larval operculum mineralization Osteoporosis X-linked osteoporosis (107)

PTCH1, PTCH2 ptch1 (ptc2),

ptch2 (ptc1)

+ Increased mineralization in endochondral

bone

N/A Holoprosencephaly (67)

PTH4 # pth4* – Neuronal regulation of phosphate

metabolism

N/A PTH4 is absent in

terrestrial animals

(108)

PTHrP / PTHLH /

PTH3

pthlha/pthlhb MOs + Premature ossification during larval stage

under control of sox9

N/A Brachydactyly;

mutation in promoter

(109)

RANKL rankl U* – Induces osteoclast activity Osteoporosis Osteoporosis (34)

RPZ # rapunzel + Increased BMD in craniofacial and spinal

column elements

N/A None–Teleost specific

gene

(110)

SLC10A7 slc10a7 MO – Secretory pathway defect N/A Decreased BMD;

skeletal dysplasia

(111)

SP7 (OSX, osterix) sp7 (osx, osterix) – Decreased mineralization, skull sutures

defects, impaired teeth formation,

increased BMP signaling, and reduced

differentiation, but increased proliferation,

of osteoblasts. Homozygous mutant

adults are viable

Osteogenesis

imperfecta,

osteoporosis (?)

Osteogenesis

imperfecta

(112, 113)

SP7 (OSX, osterix) sp7 (osx, osterix)

U

– Decreased mineralization of endochondral

bone and vertebrae. Reduced osteoblast

number. Homozygous lethal at 14 dpf

Osteogenesis

imperfecta

Osteogenesis

imperfecta

(114, 115)

SPP1 spp1

(osteopontin)$

– Reduced AR staining in 5 dpf craniofacial

skeleton. Absent in whale shark genome

N/A N/A (116)

TGFB3 tgfb3 MO – Reduced calcification of juvenile bone N/A Oral clefting (117)

TSHR opallus + Mutation causes a constitutive active Tshr

leading to hyperthyroidism causing high

BMD

Hyperthyroidism Hyperthyroidism (76)

TWIST and TCF12 twist1b and tcf12 +/= Frontal skull sutures due to increased

osteoblast proliferation. Mineralization

normal.

Saethre-Chotzen

syndrome

Saethre-Chotzen

syndrome

(118)

$Mosaicism; MO, Morpholino; #No clear ortholog; (?) Indicated / implied; *Transgene affecting gene; UMedaka.

misshapen bones. Moreover, rare craniofacial characteristics
caused by impaired SP7 function, such as wormian bones,
reported in human patients carrying mutations in SP7 were also
observed in zebrafish (112).

Another example of a zebrafish mutant that recapitulates
patient phenotype is the bmp1amutant frilly fins (frf ). In humans
a damagingmissense mutation in the BMP1 signal peptide causes
brittle bones in an osteogenesis imperfecta pedigree (79). frf

mutants showed normal osteoblast number, but pericellular
pro-collagen processing (C-pro-peptide removal) defect
leading to mineralization defects in the axial skeleton and fin
rays (79).

Collagenopathies, such as Stickler Syndrome, have also been
successfully modeled in zebrafish. We have recently reported a
col11a2 zebrafish mutant showing specific traits of the human
disease which include thicker collagen fibers and degradation of
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FIGURE 4 | Fin regeneration and fracture assay to visualize and quantify live bone formation and repair. (A) Schematic representation of a zebrafish with a standard

fluorescent stereomicroscope image of a live Alizarin red S (AR) pre-amputation caudal fin (inset). (B) Schematic representation of bone regeneration after fin

amputation showing the (simplified) cascade of events that follow after fin amputation to regenerate bone (a single ray depicted here). This allows studying de novo

bone formation by newly formed osteoblasts (orange cells) and differentiated osteoblasts (green cells) and subsequent remodeling by osteoblasts and osteoclasts

(purple cells) in an adult fish. Note that during osteogenesis that there is a gradient of mineralization. (C) Live images of the tail fin labeled with Alizarin red (red) prior to

amputation (i, ii) and Calcein (green) post-amputation (iii, iv) taken on a fluorescent dissecting microscope. All images in panel come from the same fish. Seven days

post-amputation showing regrowth of new bone (green). Note that intense Calcein staining is visible distally from the amputation site (white dotted line). (D) The

fracture healing assay involves applying pressure on a fin ray bone element to induce a small fracture to one segment of the fin ray (i), which is visible with life AR

staining (ii). Green Calcein labels the new bone formed in the fracture callus by 7 days (iii and iv). The white arrow indicates the fracture site. Scale bars = 500µm, 3

months old wildtype TL/EKK females.

type-II collagen in zebrafish larvae leading to compromised jaw
shape, mechanical properties and movement of the jaw leading
to premature OA (83). In many skeletal dysplasias zebrafish
not only model the human condition but allow mechanistic

insight into how genetic changes lead to the cellular changes that
underpin the disease symptoms. As such zebrafish offer exciting
prospects for delivering functional studies in new osteoporotic
genetic loci.
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FIGURE 5 | Zebrafish elasmoid scale structure and bone cell types. (A) Single scale from the flank of a 3 months old fish carrying the sp7:gfp osteoblast reporter

transgene (green) and stained for Alizarin Red S (AR, red). Whole scale is shown in bright field (i) and gray scale images for AR (ii) and GFP (iii) in the top panels. The

brightfield image (i) depicts the anterior anchor region (A, black dotted line boundaries), the lateral circuli (L, green dotted line boundaries, white arrow), central region

(C, surrounded by black, green, and light blue dotted lines), and central region covered by epidermis (C+E, light blue dotted line, with grooves by green arrow) with

enhanced mineralization. (B) Confocal images showing a merge image of osteoblasts (sp7:gfp transgenic fish, green) abundantly distributed over the freshly harvested

scale and AR staining (red). Individual channels are depicted in gray scale images. Note increased mineralization at the edge of the scale corresponding increased

GFP presence (blue arrows). Insets focus on the lateral circulus and note osteoblast cytoplasmic protrusions (pink arrows). (C) Confocal images visualizing osteoclasts

with cathepsin K (ctsk) YFP reporter expression (green), mineralization by AR (red), and brightfield (gray). Note that YFP positive cells were predominantly seen in the

central region with epidermis (C+E) and distal edges of the central region (C). (D) Multiphoton forward scattering (second harmonic generation (SHG), 880 nm

wavelength) visualizes collagen fibrils in an ethanol fixed scale. Inset (i) shows the organization of collagen fibrils in a plywood structure. Wildtype strains (panel):

TL/EKK (A), TL (B), AB/TL (C). Scale bars 100µm.

ASSAYS OF CAUDAL FIN REGENERATION
AND FRACTURE REPAIR TO ASSES
DE NOVO BONE MATRIX FORMATION

Zebrafish are capable of regeneration many tissues and organs
including the heart, lens, and pancreas. They also show
regeneration of skeletal tissues following amputation of the tail
fin (lepidotrichia) or removal of elasmoid scales (126, 127). As

the fins and scales are translucent, and readily imaged they allow

cells and their calcified matrix to be visualized in detail using

standard fluorescent microscopes (Figure 4A). After amputation

of a ray fin (typically a caudal fin), a wound healing response

results in the formation of an epimorphic blastema which

regenerates all affected tissues of the amputated organ, including
bone, in a controlled fashion (128). Following this inflammation
response, osteoblasts undergo dedifferentiation and proliferate to
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contribute to the blastema (33, 129). These juvenile osteoblasts
then secrete matrix with intermediate properties between
cartilage and bone and are later remodeled as mature bone by
matured osteoblasts and recruited osteoclasts (Figure 4B) (33,
128). These fins can also be injured via cryo-injury by placing
a −196◦C knife perpendicularly to the caudal fin rays allowing
to study the bone resorption response (130). These techniques
offer great perspectives to compare bone formation and bone
remodeling, in an adult context.

Using transgenic lines and in vivo staining methods, such
as AR (fluoresces red, 545 nm excitation, 580 nm emission) and
Calcein (fluoresces green, 495 nm excitation, 515 nm emission),
which binds to calcified matrix, the dynamics of bone formation
can be visualized by using a fluorescent stereomicroscope in a
regenerating caudal fin of a living fish. This allows longitudinal
analysis by following regeneration rate and volume, since AR
stains fully mineralized bone and Calcein binds to newly
deposited bone matrix (Figure 4C).

The utility of fin regeneration assays to test bioactive
compounds has been demonstrated by treating regenerating
fins with the glucocorticoid prednisolone. Following treatment
bone formation was reduced, and furthermore, both osteoblast
number and subsequent bone deposition and osteoclast
recruitment was reduced in these fins (131). Interestingly,
skull injury repair is less affected following prednisolone
treatment (131), this is similar to mammals. Treatment of fins
with Botulinum toxin (Botox) leads to a reduction in bone
mineralization and regeneration following amputation (132),
comparable to the situation in mammals where fracture repair is
impaired following Botox induced paralysis (133, 134).

A major issue with OP is increased fracture risk due to weaker
bone structure, and therefore identification of therapeutics
that can improve fracture healing is desirable. Zebrafish
show a fracture healing response, including callus formation
(Figure 4D), with strong similarities to that of mammals.
Fractures can be induced in zebrafish fins using simple pressure
applied externally to the fin (131, 135). As the fin has around 300
bony rays, multiple fractures can be induced in a single fin. A
fracture callus is formed and de novo bone formation is initiated
2 days post-injury accompanied by an increased expression
of osteoblast genes such as runx2 and sp7/osx (131, 135). As
the fin is flat, the fracture repair process can be dynamically
tracked at cellular resolution using transgenic lines (Table 1) or
by labeling bone formation with AR and Calcein (Figure 4D).
As for regeneration, it is possible to add pharmacological agents
to the regenerating tissue (131), allowing potential osteoanabolic
compounds to be tested for beneficial effects in fracture repair in
vivo (136).

SKELETAL ASSAYS USING ELASMOID
SCALES

The body of zebrafish is covered with elasmoid scales made
of calcified dermal bone harboring osteoblasts and osteoclasts
(Figures 5A–C). The calcified matrix is composed of a plywood
structure of collagen fibrils (137), which are easily visualized with

second harmonics generationmicroscopy (Figure 5D). Scales are
embedded in, and grow from, the dermis and shed and replace
naturally throughout life of the fish (138). As scales are part of
the exoskeleton they are easy to collect from an anesthetized fish.
Each flat scale is subdivided in four regions by its morphology:
anterior, lateral, central, and central with epidermis (Figure 5A)
(139). The anterior region is attached to the skin and does not
grow or form new bone. The lateral area is characterized by
its curved ridges (circuli), whereas the central area has linear
trenches. Within the lateral circuli and central grooves newly
mineralized matrix is formed by osteoblasts (139) and degraded
by osteoclasts (140). The posterior area has increased osteoblast
number and bone is continuously deposited (Figures 5A,B).
Osteoblasts in different regions of the scale express different
markers of maturity (97). As the scale contains living cells,
including nerve and vascular endothelial cells, their use offers an
opportunity to study bone cell behavior in a mature context.

PHARMACOLOGICAL MANIPULATION OF
BONE TISSUE AND CHEMICAL GENETIC
SCREENING

As larvae are small and develop in water, it is possible to grow
larvae in multi-well format with the addition of water-soluble
compounds to their growth media for easy uptake. Zebrafish
have been used extensively for high-throughput screening using
larvae and now drugs are used in clinical studies that were first
identified in zebrafish. A great example is the identification of the
kinase inhibitor dorsomorphin (BMP type-1 receptor (BMP1R)
antagonist) to treat lymphoma which was discovered in an early
embryogenesis phenotype screen using 7,500 small-molecules
(141, 142). Another example used semi-automated imaging
strategy of Calcein stained larvae exposed to a small-compound
library identifying 6 catabolic and 2 anabolic compounds that
alter notochord mineralization (143) (Table 3). Thus, when
fluorescent compounds are twinned with fluorescent reporters
for osteoblasts (e.g., sp7:gfp with AR) (Figure 2B), it will allow
assessment of osteoblast number and activity in a semi-high
content setting using plate imaging microscopy (162). When
these assays are combined with high efficiency CRISPR/Cas9
genome engineering strategies, it will open avenues to test
compounds of interest that could alter disease causing mutations
deteriorating effects. Thus, this comprehensive approach will
also offer opportunities to develop compounds for personalized
medicine. For OP research it may be more advantageous to
focus on adult skeletal assays to allow assessment of osteoclast
activity (bone catabolism) simultaneously with an assessment of
osteoblasts (bone anabolism). An example of pharmaco-genetics
improving brittle bones, is when type-I collagen secretion in the
bone matrix is ameliorated by treating chi/+ mutants with 4
phenyl butyrate (4PBA) compound (86).

Zebrafish elasmoid scales are bony plates that are
small and contain bioactive osteoblasts and osteoclasts
(Figures 5B,C). These therefore offer huge potential as a primary
pharmacological screening tool for skeletal compounds. The
scales can be cultured for 72-h post-harvesting during which they
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TABLE 3 | List of compounds, diets, and exercise that alter ossification in zebrafish larvae, adults, and/or adult elasmoid scales.

Treatment Gene/pathway BMD effect Primary effect Part of compound

screen?

Life stage Citation

4PBA HSP47–ER

protein/fibrillar

collagen folding

+ Increased mineralization in both WT and chi/+

fish due to better clearing of type-I collagen

from ER

No Adult larval (86)

Alendronate /

etidronate

Alendronate/etidronate

therapies

(bisphosphonates)

+ Counteracts the negative effects of GIOP on

scales. Reduced TRAP and increased AL

activities.

No Adult larval (144, 145)

BGJ398 FGF-receptor

kinase inhibitor

– Reduced sp7 positive osteoblasts in elasmoid

scales resulting in impaired scale growth

No Adult (92)

BML-2832 library Alkaline

phosphatase

inhibitors

+/– Six catabolic and two anabolic compounds

affect larval mineralization of the vertebral

region.

Yes Larval (143)

BMP-2a BMP pathway + Increased sp7:luciferase activity on cultured

scales

No Adult (38)

Botulinum toxin Botox muscle

paralyzes

– Lower BMD and bone deposition in fin ray

bones due to muscle paralysis. Impaired

osteoblast differentiation.

No Adult (132)

Cobalt chloride Down-regulation

of stem cell

markers

– Reduced number of osteoblasts and

subsequent mineralization of the operculum,

without affecting its size.

No Larval (146)

Cyclopamine and

BMS-833923

Hedgehog

pathway

– Smaller scales and fins during regeneration.

Scales show a lower number of osteoblasts.

No Adult (97, 147)

Dexamethasone Glucocorticoids – Glucocorticoid pathway inducing osteoporosis

(GIOP) by inhibiting osteoblast activity

No Adult larval (148)

DMP-PYT BMPII-R–

SMAD1/5/9

+ Increased BMP (pSMAD1/5/8(9)) and WNT

signaling in 6–7 dpf larvae exposed for 4 days.

Yes, C2C12 cells Larval (149)

Dorsomorphin BMPI-R–

SMAD1/5/9

– Reduced BMP (pSMAD1/5/8(9)) and ALK

activity, reducing osteogenesis by inhibiting

osteoblast activity.

Yes, compound

libraries

Embryo

Larval

(141)

Ferric ammonium

citrate

Radical Oxygen

Species

– Iron overload down regulating osteogenic

markers which can be rescued with hepcidin1

overexpression

No Adult larval (150, 151)

High fat diet Obesity risk factor

for OP

– Increased osteoclast activity in elasmoid scales No Adult (152)

High glucose diet Hyperglycemia OP

risk factor

– Increased osteoclast activity and peripheral

bone degradation in elasmoid scales

No Adult (153)

Hyper-gravity Increased loading + Enhanced mineralization after exposure to 3 g

in a large diameter centrifuge

No Larval (154)

Niclosamide,

Riluzole, Genistein

WNT pathway + Increased sp7:luciferase activity on cultured

scales

Yes, WNT compound

library

Adult (38)

N-LLEL and

anandamide

Long-chain fatty

acids binding

cannabinoid type

receptors

+ Higher alkaline phosphatase activity and

protecting effect on the alteration of bone

markers induced by GIOP

Yes, on scales Adult (155)

Oligosaccharides A. bidentata

oligosaccharides

+ Dried root extract of Asian medicinal herb

reducing osteoclast and increasing osteoblast

activities

No Larval (156)

Omega-6

Arachidonic acid

Omega-6

derivative

– Stimulating matrix metalloproteinase activity

Enhanced bone turnover by increased

osteoclast activity in the scale.

No Adult (157)

Prednisolone Glucocorticoids – Glucocorticoid pathway inducing osteoporosis

by inhibiting osteoblast activity

Yes, used as OP

control

Adult larval (100, 140)

R115866 Cyp26

antagonist–retonic

acid metabolism

+ Hyper-mineralization of axial skeleton and

phenocopying of stockteif mutant phenotype

No Larval (37)

(Continued)
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TABLE 3 | Continued

Treatment Gene/pathway BMD effect Primary effect Part of compound

screen?

Life stage Citation

Retonic acid Cyp26b1 and

collagen

deposition

+ Altered collagen deposition due to increased

activity of Cyp26b1

No Larval (37, 158)

RU486 Glucocorticoid

receptor

antagonist

+ Used as prednisolone specificity/toxicity

control–reverses its catabolic effect

No Larval (145)

SD-134 Inhibits legumain

(LGMN) protease

domain

+ Increase in larval vertebrae mineralization after

4 days of exposure (7 dpf)

No Larval (101)

Sodium

metasilicate

Silicate ion + Silicate ion stimulating osteoblast function No Larval (159)

SU5402 FGF-1 receptor

antagonist

– Impaired osteoblast proliferation in amputated

fins

No Adult (33)

Swimming

exercise

Bone loading + Zebrafish performed controlled exercise in a

tunnel have a higher vertebrae BMD compared

to non-exercising fish

No Adult (160)

Tanshinol D(þ)b-3,4-

dihydroxyphenyl

lactic acid

+ Herbal extract reducing oxidative stress and

reduction of glucocorticoid induced

osteoporosis phenotype.

No Larval (148)

Teriparatide Teriparatide

(parathyroid

hormone)

+ Human osteoporosis treatment increases

mineralization in GIOP fish.

No Larval (161)

Vitamin D3 Cholecalciferol

and calcitriol

+ Enhanced mineralization in prechordal sheet

and cleithrum due to altered calcium uptake.

No Larval (146, 161)

can arrayed in multi-well plates and exposed to pharmacological
compounds. As the scale is thin, osteoblasts are accessible to
osteogenic factors, and have been demonstrated to react in a
dose dependent manner to BMP-2 (38). To model an OP-like
phenotype, individuals can easily be exposed to prednisolone
/ dexamethasone (glucocorticoid pathway) (140, 148), ferric
ammonium citrate (150, 151), or metabolically with a high
fat or glucose diet (152, 153), see also Table 3. In the context
of glucocorticoid induced OP (GIOP), the bisphosphonate
Alendronate reverses the effects of prednisolone on ex vivo
cultured elasmoid scale bone, which showed a reduction in
osteoclast activity (measured by TRAP) and an increase in bone
anabolism (measured by alkaline phosphatase activity) (144); the
same response as in mammals (163, 164). As fat metabolism has
been implicated with OP, a small fatty acid derivative library was
used on GIOP adult fish. Biochemical assays on scales derived
from these fish showed that cannaboid receptor 2 binding
anandamide and N-linoleoylethanolamine (N-LLEL) fatty acids
drive osteogenesis by stimulating alkaline phosphatase (ALK)
activity (155).

AWNT-pathway compound library was tested to identify new
osteo-anabolic compounds using an assay in which luciferase
was expressed under control of the sp7 promoter allowing
a quantitative readout of osteoblast activity (Figure 6). This
screen identified three osteo-anabolic (Table 3) and 15 osteo-
catabolic compounds from 85 trial compounds (38). This library
contained five previously published compounds tested in vivo,
and nine tested in vitro mammalian bone progenitor cell lines.
Strikingly, this scale luciferase assay was able to reproduce the

effect of all in vivo tested compounds and about half of all
in vitro tested compounds (38). These studies demonstrate the
exciting potential that scale assays represent for testing of skeletal
compounds relevant to OP in a cost-effective manner.

POTENTIAL DRUG DISCOVERY PIPELINE
FOR OSTEOPOROSIS

Recently, there has been a substantial expansion in the quantity
of high-quality genetic data from large-scale human genomic
and transcriptomic studies that contain potential osteo-anabolic
factors. Here we describe a potential screening pipeline that
makes use of the genetic tractability and imaging in zebrafish to
offer a relatively low cost, high-throughput option compared to
traditional in vitro and in vivomodels (Figure 7).

After identification of several candidate genes/drug targets
from human genetic studies, the pipeline consists of two
experimental arms that can be carried out simultaneously to
generate primary pre-clinical data to validate the putative drug
targets. Using genome editing, loss-of function studies can be
performed in transgenic backgrounds to test the effect of the gene
of interest on the developing skeleton or on mineralization, and
simultaneously allowing safety testing for deleterious effects on
other tissues or organs. For example, using CRISPR/Cas9 editing,
it is possible to generate hundreds of mosaic zebrafish mutants
within 3–4 weeks (includes the generation of the targeting
reagents), which is difficult to achieve in other available systems,
such as cultured chondrocytes and osteoblasts (differentiation of
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FIGURE 6 | Schematic representation to show how osteoblast activity can be quantified from scales. Scales from sp7:luciferase transgenic reporter fish are harvested

from the lateral flanks of a fish, then cultured in multi-well plates with DMEM culture medium (orange wells) at 28◦C for 24 h. Compounds of interest can then be

added (red wells) to the scales and incubated prior addition of a luciferin cocktail (green wells) and measurement of luciferase activity with a luminescent (yellow

sparks) plate reader. Based on text from de Vrieze et al. (38).

these takes multiple weeks). With CRISPR/Cas9 editing it is also
feasible to study the specific human diseasemutation in zebrafish,
as long as it is in a conserved coding region. These fish can be
grown to adulthood and germline mutations identified allowing
more detailed studies on the mature skeleton to be performed
(Figure 7).

In addition to genetic studies, pharmacological assessment of
the identified putative drug target can be performed. By using
water-soluble compounds, or lipid soluble compounds dissolved
in DMSO, screens in a multi-well format can be performed
using ex vivo culture of elasmoid scales. As a single adult fish
has around 200 scales (138), this assay allows testing of many
compounds, including control compounds (e.g., osteo-anabolic
(alendronate) and -catabolic (prednisolone), on scales harvested
from a single individual, reducing intra-individual variation
(38). Therefore, this technique offers a platform to generate
a primary read-out of novel osteo-active compounds in the
context of homeostasis in a mature tissue. Additionally, this ex
vivo technique will reduce the number of (potentially harmful)
compounds being exposed to living fish, therefore contributing

to ethical refinement and reduction of experimental animal use,
but also reducing associated costs. As this scale assay reduces the
number of putative osteogenic compounds substantially, these
positive compounds can be further validated (along with safety
testing) on developing transgenic larvae. These larvae would
be plated out at 3 larvae per well and the compounds added
from 3 days of development, with high-content imaging used
for preliminary assessment of the effects of each compound and
more detailed analysis including dose response followed up for
validated positive hits. Further downstream tests, such as fin
regeneration or fracture assays, can further reduce the number
of compounds as such that only high-confidence compounds will
be assessed in tetrapod pre-clinical studies (Figure 7).

If desired, the two experimental arms can be performed
simultaneously, so that stablemutants are being generated during
the compound testing phase. This opens the possibility to
perform pharmacogenetic experiments in a relatively short time
frame to validate the effects of putative drugs on specific disease
mutations to see if they can “rescue” the disease phenotype
(Figure 7). Together, zebrafish offer the potential in future to
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FIGURE 7 | Proposed pipeline using zebrafish as a primary testing platform to address bottleneck for fast and affordable translation of human genetic findings. Two

experimental arms using the genetic and pharmacological toolboxes allow simultaneous drug target validation. The blue reversed triangle depicts the reduction in

number of putative osteo-anabolic compounds (along with an increase in confidence) when testing the compounds using the skeletal assays available.

bridge the gap between human genetic hits, and fast functional
validation.

PROSPECTS FOR ZEBRAFISH IN
OSTEOPOROSIS RESEARCH

The zebrafish is a well-established increasingly used animal
model for studying various diseases including (congenital)
metabolic bone diseases (165). As zebrafish have historically been
mainly used for its fast-embryonic development properties to
better understand disease onset, zebrafish aging studies have only
recently been conducted to model age-related diseases such as
OA and OP. OP is an emerging field in zebrafish modeling and
more research is needed to fully establish an OP-like phenotype

as it was previously determined in its teleost cousin medaka (34).
The advantageous properties as set-out in this review should be
further exploited to benefit drug development for OP. Zebrafish
show the appropriate response to increased mechanical loading,
where the cellular (transcriptional) response initiates increased
bone formation and mineralization in the loaded bone elements
that are easily quantified (154, 160). However, since zebrafish
and mammalian bone morphology show some differences (64), a
pharmacological assay should particularly focus on the complex
tissue and osteoblast-osteoclast interactions that underpin OP
pathology. As traditional rodent and in vitro co-culture both
have limitations to pursue large-scale drug discovery in a genetic
context, zebrafish can take the place as a primary testing platform
and therefore opening avenues to work toward gene specific
compound discovery that have been identified as risk factors
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in human genetic studies. After primary safety testing, these
identified compounds can be further tested in mammalian
OP models to determine the effect on BMD, bone strength,
and trabeculation. Fully exploiting these opportunities by using
zebrafish as a primary screeningmodel will open exciting avenues
to perform pharmacogenetics for OP on a larger scale.
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