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Abstract: In mass spectrometry-based metabolomics, the differences in the analytical results from
different laboratories/machines are an issue to be considered because various types of machines
are used in each laboratory. Moreover, the analytical methods are unique to each laboratory. It is
important to understand the reality of inter-laboratory differences in metabolomics. Therefore, we
have evaluated whether the differences in analytical methods, with the exception sample pretreatment
and including metabolite extraction, are involved in the inter-laboratory differences or not. In this
study, nine facilities are evaluated for inter-laboratory comparisons of metabolomic analysis. Identical
dried samples prepared from human and mouse plasma are distributed to each laboratory, and the
metabolites are measured without the pretreatment that is unique to each laboratory. In these
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measurements, hydrophilic and hydrophobic metabolites are analyzed using 11 and 7 analytical
methods, respectively. The metabolomic data acquired at each laboratory are integrated, and the
differences in the metabolomic data from the laboratories are evaluated. No substantial difference in
the relative quantitative data (human/mouse) for a little less than 50% of the detected metabolites is
observed, and the hydrophilic metabolites have fewer differences between the laboratories compared
with hydrophobic metabolites. From evaluating selected quantitatively guaranteed metabolites, the
proportion of metabolites without the inter-laboratory differences is observed to be slightly high. It is
difficult to resolve the inter-laboratory differences in metabolomics because all laboratories cannot
prepare the same analytical environments. However, the results from this study indicate that the
inter-laboratory differences in metabolomic data are due to measurement and data analysis rather
than sample preparation, which will facilitate the understanding of the problems in metabolomics
studies involving multiple laboratories.

Keywords: metabolomics; relative quantification; inter-laboratory comparison; mass spectrometry;
hydrophilic metabolite; hydrophobic metabolite

1. Introduction

Mass spectrometry (MS)-based metabolomics have been widely applied to a variety
of research fields, targeting microorganisms, plants, animals, and humans, to understand
metabolism in the body [1–4]. Additionally, the relatively large datasets obtained from
metabolomics are treated in large-scale studies, such as cohort and epidemiological stud-
ies [5–7]. When small-scale studies based on MS-based metabolomics are carried out, it
is sufficient to proceed with metabolomics in one laboratory; in these cases, there is no
particular problem with using only one mass spectrometer or protocols optimized at one
laboratory. However, large-scale studies often require metabolomic analyses using various
types of mass spectrometers in multiple laboratories. In these situations, data integration
between laboratories is an issue to be considered. It has been reported that the use of dif-
ferent metabolomics platforms in biomarker studies based on non-targeted metabolomics
results in low confidence in the reproducibility of the results [8].

Investigations of the differences in MS-based metabolomics from different laborato-
ries/machines have been reported by some research groups. For example, Siskos et al. have
investigated the inter-laboratory differences in targeted metabolomics using AbsoluteIDQ,
which is employed to carry out quantitative analyses of amino acids, amines, acylcar-
nitines, glycerophospholipids, and sphingolipids. More than 80% of plasma metabolites
have a relative standard deviation (RSD%) of <20% between laboratories using the same
protocols [9]. The quantitative lipidomics analysis by Bowden et al. has shown that the
plasma concentration of many lipids differs between the laboratories using non-normalized
protocols [10]. Both studies performed quantitative analysis, but not semi-quantitative
analysis, which has been applied to metabolomics studies in many research groups. The
main difference is the standardization of the analytical protocols, and Siskos et al. used the
same analysis kit at all laboratories, although the chromatographs and mass spectrometers
used in each laboratory are different. Thus, the standardization of the analytical protocols
is important to resolve the inter-laboratory differences. Further, Liebisch et al. advocated
the necessity of the “gold-standard” protocols for metabolomics [11]. Several other investi-
gations of inter-laboratory differences in metabolomics are reported [12–14]. However, it is
very difficult to create the gold standard protocols in metabolomics because the types of
chromatographs and mass spectrometers that can be used in each laboratory are different.

In our previous study by Izumi et al. [15], the extracted samples obtained from two
types of cultured cells are transferred to some laboratories, and metabolomics is performed
using the daily routine protocols of each laboratory, including the additional metabolite
extraction steps. This means that each laboratory performed metabolomics without the
standardization of the analytical protocols. The results showed that only approximately
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60% of the metabolites detected in the laboratories were not different. In this study,
metabolomics for identically extracted samples prepared from human and mouse plasma
is carried out at some laboratories; however, unlike our previous study, the additional
metabolite extraction steps are not conducted [15]. Additionally, a strict quantitative
confirmation step is added in this evaluation, and the current article is a sequential study
that is developed from our previous study [15], and the goal of this study is to understand
the reality of inter-laboratory differences in metabolomics, including the differences in
analytical methods, as potential the problems in metabolomics studies involving multiple
laboratories. For example, from this study, it may be possible to find out which metabolites
lead to different results depending on the analytical methods.

2. Results and Discussion
2.1. Analytical Procedure and Data Acquisition

The analytical procedure of this study is shown in Figure 1; nine laboratories partici-
pated in this study. In this study, identically extracted samples were prepared from two
kinds of plasma (human and mouse plasma), and their mixed plasma was distributed
to nine participating laboratories throughout Japan. The relative quantification of each
metabolite in the samples was performed using different targeted metabolomics methods
using several separation techniques (gas chromatography, GC; liquid chromatography,
LC; capillary electrophoresis, CE; ion chromatography, IC; and supercritical fluid chro-
matography, SFC) coupled with MS (quadrupole mass spectrometry, QMS; time-of-flight
mass spectrometry, TOFMS; quadrupole-time-of-flight mass spectrometry, QTOFS; triple
quadrupole mass spectrometry, TQMS; quadrupole-Orbitrap mass spectrometry, Q Exac-
tive; and quadrupole-Orbitrap-linear ion trap mass spectrometry, Orbitrap Fusion). In all
the laboratories, the peak for each metabolite was identified according to their routine ana-
lytical protocols, and each peak area/height value was measured. No protocol was shared;
however, a list of targeted metabolites was prepared based on our previous report [15]. For
detailed information on the metabolites targeted in this study, we consulted our previous
report [15]. In each laboratory, metabolomics was carried out without conducting any work
other than the pretreatment required for each analysis, and 18 analytical methods were
employed to extract each sample in triplicate.

The identification of hydrophilic metabolites was carried out according to the protocol
of each laboratory, including the comparison of the retention/migration time, MS and
tandem MS (MS/MS) spectra, and the multiple reaction monitoring (MRM) transition of
the targeted metabolites in the samples with those of authentic standards analyzed under
identical conditions. For the hydrophobic metabolites (lipids) analysis, we targeted 21 lipid
classes, including acylcarnitine (AC), cholesterol ester (ChE), ceramide (NS) (Cer(NS)),
diacylglycerol (DG), free fatty acid (FA), hexose ceramide (NS) (HexCer(NS)), lysophos-
phatidic acid (LPA), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE),
lysophosphatidylglycerol (LPG), lysophosphatidylinositol (LPI), lysophosphatidylserine
(LPS), monoacylglycerol (MG), phosphatidic acid (PA), phosphatidylcholine (PC), phos-
phatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phos-
phatidylserine (PS), sphingomyelin (SM), and triacylglycerol (TG), with a variety of 20 FA
side chains. Thus, the targeted lipid molecules comprised 3390 compounds. The identifica-
tion of lipids was conducted based on the retention time, precursor ion, and fragmentation
patterns or specific MRM transitions of each metabolite.

The information on the analytical methods for detecting the hydrophilic and hydrophobic
metabolites are shown in Tables 1 and 2. Eleven methods for the hydrophilic metabolites
from the six laboratories and seven methods for the hydrophobic metabolites from the six
laboratories were used. The detailed analytical information is shown in Tables S1 and S2, so
that the differences among the laboratories can be understood. To compare the results from
the laboratories, the relative signal intensity data of the metabolites were subjected to statistical
evaluation. The evaluations were performed in two steps (first and second steps). The first step
proceeded with the same procedures as in our previous report [15] for all metabolites detected.
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In the second step, the metabolites guaranteed to be quantitatively analyzed were selected from
all the metabolites detected based on the values of [S-2]/([S-1] + [S-3]) × 100, as described in
Sections 3.2 and 3.4, the sample preparation and data analysis sections. Afterward, the same
evaluations in the first step were performed on the selected metabolites.

Figure 1. Analytical procedure in the current study. Nine laboratories (Lab. 1 to Lab. 9) participated
in this study. In the hub laboratory, identically extracted samples were prepared from two kinds of
plasma (human and mouse plasma), and their mixed plasma was distributed to the nine participating
laboratories throughout Japan. In each laboratory, metabolomics was carried out without conducting
any work other than the pretreatment required for each analysis, and 18 analytical methods were
employed to extract each sample. After data submission to the hub laboratory, the data integration
and data analysis were performed.

Table 1. Analytical methods for the hydrophilic metabolites.

Method ID Lab ID Analytical Method & Mode Ref.

A 1 CE–TOFMS (cation mode, scan) [16]
B 1 CE–TOFMS (anion mode, scan) [17]
C 1 Capillary–IC/QExactive (scan) [18]
D 2 IC/QExactive (scan) [19]
E 2 PFPP–LC/QExactive (scan) [19]
F 3 C18–LC/TQMS (MRM) [20]
G 2 Derivatization and GC/QMS (scan) [21]
H 4 Derivatization and GC/QMS (scan) [22]
I 3 Derivatization and GC/TQMS (MRM) [23]
J 5 Derivatization and GC/TQMS (MRM) [23]
K 6 Derivatization and GC/QMS (SIM) [24]

PFPP, pentafluorophenylpropyl.

2.2. Data Summary and Comparisons of the Analytical Methods for the Relative Quantification for
the Metabolites Detected (First Step)

First, 160 hydrophilic and 660 hydrophobic metabolites were identified in human
and mouse plasma using at least one analytical method (Figure 2, Table 3). Among these
metabolites, 111 hydrophilic and 291 hydrophobic metabolites in both human and mouse
plasma were detected by ‘two or more’ analytical methods (Table 3). Using ‘three or
more’ analytical methods, 74 hydrophilic and 188 hydrophobic metabolites were detected
(Table S3). Using ‘four or more’ analytical methods, 51 hydrophilic and 114 hydrophobic
metabolites were detected (Table S3). Further, 402 metabolites were identified by multiple
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analytical methods, and the proportion of all the metabolites identified in at least one
analytical method was almost the same as that in our previous study [15].

Table 2. Analytical methods for the hydrophobic metabolites.

Method ID Lab ID Analytical Method Ref.

A 7 C18–LC/QTOFMS (positive/negative, scan) [25]
B 8 C18–LC/Q Exactive plus (positive/negative, scan) –
C 9 C18–LC/Orbitrap Fusion (positive/negative, scan) [26]
D 4 C8–LC/TQMS (positive/negative, MRM) [27]
E 2 DEA–SFC/TQMS (positive/negative, MRM) [28]
F 2 C18–SFC/TQMS (positive/negative, MRM) [19]
G 3 FI/TQMS (positive, MRM) [20]

DEA, diethylamine; and FI, flow injection.
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Figure 2. Number of metabolites detected by each analytical method and the percentages of the
metabolites measured in common by multiple methods: (A) the numbers of metabolites detected by
each analytical method for the hydrophilic or hydrophobic metabolites are shown; (B) the percentages
of metabolites commonly measured by multiple methods are shown using pie charts. In the first step,
160 hydrophilic metabolites and 640 hydrophobic metabolites were identified in both human and
mouse plasma. In the second step, 113 hydrophilic metabolites and 297 hydrophobic metabolites
were identified in both human and mouse plasma.
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Table 3. Summary of datasets.

Hydrophilic Metabolites Hydrophobic Metabolites Hydrophilic +
Hydrophobic Metabolites

1. Number of identified metabolites
from human plasma and/or mouse
plasma samples using at least one
analytical method

160 660 820

2. Number of identified metabolites
from both samples using ‘two or
more’ methods

111 291 402

3. Number of metabolites that were
statistically significant between the
human plasma and mouse plasma
samples using multiple methods
based on a two-sided Student’s
t-test (α = 0.05)

88 256 344

4. Number of metabolites with
similar human plasma/mouse
plasma levels among the methods,
based on a two-sided Student’s
t-test (α = 0.05) and a relative
quantitative value of 1

82
(93.2%)

243
(94.9%)

325
(94.5%)

5. Number of metabolites with
statistically similar human
plasma/mouse plasma levels
among the multiple methods, using
a one-way analysis of variance
(ANOVA) (α = 0.05)

40
(36.0%)

62
(21.3%)

102
(25.4%)

6. Number of metabolites with
statistically similar human
plasma/mouse plasma levels
among the multiple methods,
ignoring one outlier method using a
one-way ANOVA (α = 0.05)

56
(50.5%)

135
(46.4%)

191
(47.5%)

The percentages (%) in the parentheses in items 5 and 6 indicate the ratio of the numbers in item 5 or 6 to item 2.
The percentages (%) in parentheses in item 4 indicate the ratio of the numbers in item 4 to item 3.

The relative ratios (human/mouse) of 160 hydrophilic metabolites obtained using
the 11 different methods and 660 hydrophobic metabolites obtained using the 7 different
methods are shown in Tables S5 and S6, respectively. In the metabolites identified by ‘two or
more’ analytical methods, the statistical significance of each metabolite between human and
mouse plasma samples was determined using a two-sided Student’s t-test (p < 0.05). From
the results, 88 hydrophilic and 256 hydrophobic metabolites were statistically significant
among the human and mouse plasma samples (Table 3). Among the significantly different
metabolites, the numbers (percentages) of hydrophilic and hydrophobic metabolites with
similar human/mouse values from multiple methods were 82 (93.2%) and 243 (94.9%),
respectively (Table 3). This result means that the percentages of metabolites with different
results among the laboratories were only 6.8% for the hydrophilic metabolites and 5.1% for
the hydrophobic metabolites. This suggested that most metabolites could be qualitatively
analyzed in each laboratory.

The one-way ANOVA using human/mouse values (α = 0.05) showed that there was
no difference between the 40 hydrophilic and 62 hydrophobic metabolites across multi-
ple methods (Table 3). Further, 102 metabolites corresponded to 25.4% (102/402) of the
402 metabolites identified from both samples by ‘two or more’ analytical methods (Table 3).
These results indicate that the proportion of metabolites with similar human/mouse val-
ues from the laboratories was approximately one-quarter. However, when ignoring one
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outlier in the data, the results improved: the human/mouse (S-1/S-3) levels were similar
among the 56 hydrophilic and 135 hydrophobic metabolites, and the total 191 metabolites
corresponded to 47.5% (191/402) of the 402 metabolites identified from both samples by
‘two or more’ analytical methods (Table 3). These evaluation procedures based on ‘two or
more’ analytical methods are the same as those performed in our previous study [15], and
the differences between the current and previous studies are the presence or absence of
pre-treatment, including the metabolite extraction before measurement, and the sample
types. In addition, the number of analytical methods was also different. An important point
in the current study is that there are few differences in the pretreatment procedures among
the laboratories. These results indicate that the differences in separation methods, such as
GC, LC, CE, IC, and SFC, may contribute to inter-laboratory differences in the results of
MS-based metabolomics. Additionally, in all the evaluations using the metabolites detected
by ‘two or more’, ‘three and more’, and ‘four or more’ analytical methods, the proportion
of metabolites without the inter-laboratory differences was higher for hydrophilic metabo-
lites than for hydrophobic metabolites (Table S3). In contrast, the differences between the
hydrophilic and hydrophobic metabolites were not as large in our previous study [15].
Therefore, the differences in the types of machines, such as GC/MS, LC/MS, CE–MS,
IC/MS, and SFC/MS, can affect the inter-laboratory differences in the measurement results
of hydrophobic metabolites.

2.3. Data Summary and Comparisons of the Analytical Methods for the Relative Quantification of
the Quantitatively Guaranteed Metabolites (Second Step)

MS-based metabolomics facilitates the simultaneous measurement of numerous metabo-
lites; however, some metabolites may be measured with low quantitativeness in certain
analytical methods because of the dynamic ranges and detection sensitivity of mass spec-
trometers. Therefore, in the second step, the metabolites that were quantitatively measured
were selected from all the detected metabolites; thereafter, we performed the first step on
the quantitatively guaranteed metabolites (Figure 1). In this study, the quantitatively guar-
anteed metabolites were selected based on the values of [S-2]/([S-1] + [S-3]) × 100, as
described in Section 3.4. Consequently, 131 hydrophilic and 297 hydrophobic metabolites
were selected based on the criteria set above. The percentage of metabolites selected was
81.9% (131/160) for the hydrophilic metabolites and 45.0% (297/660) for the hydrophobic
metabolites (Table 4). These results indicate that the quantitatively guaranteed percentage
of hydrophilic metabolites may be higher than that of hydrophobic metabolites. In the eval-
uations by ‘two or more’ analytical methods, the one-way ANOVA using human/mouse
values (α = 0.05) showed that there was no difference between the 30 hydrophilic and
49 hydrophobic metabolites across multiple methods (Table 4). Further, 79 metabolites
corresponded to 32.9% (79/240) of the 240 metabolites identified from both samples by
‘two or more’ analytical methods (Table 4). These results indicate that the proportion of
metabolites with similar human/mouse values among the laboratories was approximately
one-third. However, when ignoring one outlier in the data, the results improved such
that the human/mouse levels were similar among the 48 hydrophilic and 87 hydrophobic
metabolites. Further, 135 metabolites corresponded to 56.3% (135/240) of the 240 metabo-
lites identified from both samples by ‘two or more’ analytical methods (Table 4). The
percentages of the metabolites without the inter-laboratory differences in the second step
were relatively higher than those in the first step, which targets all the detected metabolites.
Further, the improvement in these percentages was due to the results of hydrophobic
metabolites (Tables 3 and 4). A similar tendency was observed in the evaluations by ‘three
or more’ and ‘four or more’ analytical methods (Tables S3 and S4).
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Table 4. Summary of the datasets after the selection of the quantitatively guaranteed metabolites.

Hydrophilic Metabolites Hydrophobic Metabolites Hydrophilic +
Hydrophobic Metabolites

1. Number of identified metabolites
from human plasma and/or mouse
plasma samples by at least one
analytical method

131 297 428

2. Number of identified metabolites
from both samples by ‘two or more’
multiple methods

86 154 240

3. Number of metabolites that were
statistically significant between the
human plasma and mouse plasma
samples from multiple methods
based on a two-sided Student’s
t-test (α = 0.05)

66 123 189

4. Number of metabolites that
showed similar human
plasma/mouse plasma levels
among the methods based on a
two-sided Student’s t-test (α = 0.05)
and a relative quantitative value of 1

60
(90.9%)

117
(95.1%)

177
(93.7%)

5. Number of metabolites with
statistically similar human
plasma/mouse plasma levels
among multiple methods using a
one-way ANOVA (α = 0.05)

30
(34.9%)

49
(31.8%)

79
(32.9%)

6. Number of metabolites with
statistically similar human
plasma/mouse plasma levels
among multiple methods, ignoring
one outlier using a one-way
ANOVA (α = 0.05)

48
(55.8%)

87
(56.5%)

135
(56.3%)

The percentages (%) in the parentheses in items 5 and 6 indicate the ratio of the numbers in item 5 or 6 to column
2. The percentages (%) in the parentheses in item 4 indicate the ratio of the numbers in item 4 to item 3.

2.4. Possible Causes of the Differences in the Results from Different Laboratories/Machines in
MS-Based Metabolomics
2.4.1. Hydrophilic Metabolites

Regarding the hydrophilic metabolites, the number of metabolites with inter-laboratory
differences was relatively small compared to the hydrophobic metabolites (Tables 3 and 4,
Tables S3 and S4). In Figure 3A, the results of essential and non-essential amino acids, which
are abundant in biological samples, including blood plasma, are shown. The patterns of
the inter-laboratory differences in these amino acids under the analytical conditions of this
study were different from those of our previous study [15]. Characteristic to the current
study, the results from LC/MS with a pentafluorophenylpropyl column (Method E) were
different from those from other methods, although this was not observed in our previ-
ous study [15]. This may mean that there are plasma-specific factors that affect plasma
metabolomics in an analytical environment similar to Method E, such as the types of
chromatographs/mass spectrometers and their analytical conditions. In contrast, large
variability in the results of histidine (His) from the laboratories were observed between this
study (Figure 3A) and our previous study [15]. Figure 3B shows the results of these amino
acids when quantitatively guaranteed metabolites were selected in the second step. In this
step, the inter-laboratory differences seemed to have disappeared to some extent, although
some amino acids were excluded in the second step. This means that the analytical stability
at each laboratory is also important.
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Figure 3. Inter-laboratory comparisons of the relative quantification for essential and non-essential
amino acids. The relative quantification values (S-1/S-3) from the first (A) and second (B) steps for
essential and non-essential amino acids are presented as the mean ± SD obtained from triplicate
experiments. The red bars in each graph show the metabolites that were judged as the outliers based
on one-way ANOVA (α = 0.05).

Differences in the relative ratios (human/mouse) from multiple methods, including
CE–MS (Methods A–B), IC/MS (Methods C–D), LC/MS (Methods E–F), and GC/MS
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(Methods G–K), were observed (Figure 4). The hydrophilic metabolites, including citric
acid (Cit), creatinine, glucaric acid, glucuronate, and uric acid, are indicated in Figure 4,
with remarkable differences from the multiple methods. In general, GC/MS requires
derivatization pretreatments and is standardized using the electron ionization (EI) method.
However, the mass spectrometers accompanied by chromatographs, except GC/MS, are
not normalized to ionization conditions. Trimethylsilyl derivatization is not suitable for
the measurement of amino acids by GC/MS because of its low derivatization efficiency;
however, this was not observed in this study (Figure 3). No molecular subclass tendency
was confirmed in the metabolites with differences in the separation and mass spectrometry
machines (Figure 3), and these metabolites were not essential and non-essential amino
acids. In addition to the derivatization pretreatments and EI-based methods, heat stability
may be a key factor. Further, only human or mouse plasma may contain factors that affect
the measurement by each chromatograph or mass spectrometer. For example, Cit (larger
SD values and higher S-1/S-3 ratios in GC/MS compared with other analyses), creatinine
(lower S-1/S-3 ratios in GC/MS compared with other analyses), and uric acid (larger SD
values and higher S-1/S-3 ratios in GC/MS compared with other analyses) showed large
differences in the separation and mass spectrometry machines. Furthermore, the presence
of influential factors in human or mouse plasma was suspected. However, the reasons for
these differences were difficult to determine from the results of this study.

Figure 4. Examples of hydrophilic metabolites with remarkable differences between LC/MS, CE/MS,
IC/MS, and GC/MS. As the examples of hydrophilic metabolites with remarkable differences among
multiple methods (LC/MS, CE-MS, IC/MS, and GC/MS), the results of relative quantification (S-1/S-3)
from the first step data treatment for citric acid (Cit), creatinine, glucaric acid, glucuronate, and uric acid
are shown. The values are presented as the mean ± SD obtained from triplicate experiments. Red bars
indicate outliers based on one-way ANOVA (α = 0.05).

2.4.2. Hydrophobic Metabolites

In the hydrophobic metabolites, the differences in the results from LC/MS (Methods
A–D) and SFC/MS (Methods E–F) were remarkable. These results are presented in Figure 5.
Many of the relative ratios (human/mouse) were lower in SFC/MS (Methods E–F) than in
LC/MS (Methods A–D). This means that chromatographs may affect the differences in the
relative quantitation data between the laboratories, and similar suggestions were shown in
the study by Chocholoušková et al. [29]. For example, the reverse-phase LC used in Meth-
ods A–D separated each lipid molecule based on the hydrophobic interactions between the
nonpolar side chains of C8 or C18 particles and the hydrophobic fatty acyl chains of lipids.
However, SFC separated each lipid class with the normal phase column used in Method
E because the stationary phase with high polarity recognized the head group of lipids
rather than fatty acyl chains. In general, a modern analytical SFC/MS system achieves
discrimination among isobaric and isomeric compounds (e.g., surfactants and pesticides)
through a combination of mass resolution and highly efficient separation by SFC [30,31].
In this study, in the SFC/MS method (Method E), all lipid molecules in the same class
were eluted at similar retention times by SFC-based lipid class separation [28]. Because
this technique (Method E) co-elutes the same class of lipids, the ion-suppression and/or
ion-enhancement effects of the biological matrix can be normalized by adding the appro-
priate internal standards of each lipid class (stable isotope-labeled lipid standards) [19,28].
However, in this study, to clarify the cause of the inconsistency in the relative quantifica-
tion (S-1/S-3) results from the analytical methods, the relative quantification values were
calculated using the raw data (peak area or height) without correcting the acquired data
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with the internal standards. Additionally, the types and amounts of lipids in human and
mouse plasma vary widely. Therefore, it has been suggested that the SFC/MS methods
have different matrix effects (ionization suppression/enhancement) on the individual lipid
molecules contained in each lipid class, depending on the sample species. Thus, the relative
quantification results of the SFC/MS and LC/MS methods were different (Figure 5). To
compare the quantitative accuracy of the SFC/MS and LC/MS data, it is necessary to
calculate and compare the absolute amount of each lipid molecule using the stable isotope-
labeled lipid standards of each lipid class [20]. Further, the inter-laboratory differences in
plasma lipid analysis were reported by Bowden et al. [10]. In the study by Bowden et al.,
lipid analysis was accompanied by the daily routine protocols of each laboratory, which
means that the protocols were not normalized. They were performed by 31 laboratories,
and the differences in the levels of various plasma lipids among these laboratories were
observed. The need to define the generally accepted guidelines for quantitative MS-based
plasma/serum lipidomics, which allows the integration of data obtained from different
instrumentation platforms across independent laboratories, has been proposed [32].

Figure 5. Examples of hydrophobic metabolites with remarkable differences between LC/MS and
SFC/MS. As examples of hydrophobic metabolites with the remarkable differences between LC/MS
and SFC/MS, the results of the relative quantification (S-1/S-3) from the first step data treatment for
ChE 18:1, ChE 18:3, Cer[NS](d18:1/18:0), Cer[NS](d18:1/20:0), DG(16:0/16:0), DG(18:2/20:4), FA 18:2,
FA 20:5, LP C 20:3(sn-1), LPI 18:2(sn-1), PC(16:0/16:1), PC(18:0/18:1), PE(18:0/22:6), SM(d18:1/16:0),
TG(16:0) (18:1) (18:2), and TG(18:1) (18:1) (18:1) are shown. The values are presented as the mean ± SD
obtained from triplicate experiments. Red bars indicate outliers based on one-way ANOVA (α = 0.05).

2.4.3. Hydrophilic Metabolites versus Hydrophobic Metabolites

From the evaluations of this study, it was confirmed that the characteristics of the
inter-laboratory differences were different between the hydrophilic and hydrophobic
metabolites. The hydrophilic metabolites exhibited fewer inter-laboratory differences than
the hydrophobic metabolites. For the hydrophilic metabolites, no association with their
compound subclasses and inter-laboratory differences was observed. In the hydrophobic
metabolites, the differences in the separation and MS machines affected the inter-laboratory
differences. However, there was no association between their compound subclass and
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inter-laboratory differences. Liebisch et al. suggested the necessity of normalized protocols
in lipidomics [11], and it seems to be a recent common understanding that it is important to
establish global quality control samples and gold-standard approaches. However, standard-
ization among laboratories is difficult because of the differences in the separation and MS
machines, as shown in this study. In the study by Siskos et al., in the quantitative analysis
of hydrophilic and hydrophobic metabolites, the standardization of the protocol led to a
reduction in the differences between the laboratories [9]. Lin et al. reported that standard-
ization after post-acquisition strategies was not effective for relative quantification precision
in untargeted GC/MS metabolomics [33]. This may mean that protocol standardization
is effective for the quantitative analysis of metabolomics. Background noise may easily
affect the relative quantitative values. Further, the differences in ionization, depending
on the separation and MS machines, may be directly linked to the results of the relative
quantitation values. In particular, this study suggests that separation methods, such as
GC, LC, CE, IC, and SFC, may strongly contribute to the inter-laboratory differences. It
may be a difficult task to conduct the integration and subsequent evaluation of data for
the metabolites analyzed as relative quantitative values by a variety of analytical methods;
however, understanding the inter-laboratory differences in metabolomics results in the
accurate evaluation of metabolomic data.

3. Materials and Methods
3.1. Materials

Human pooled plasma in ethylenediaminetetraacetic acid (EDTA)–2Na and mouse
pooled plasma in EDTA-2Na were purchased from Kohjin Bio Co., Ltd., (Saitama, Japan)
and Rockland Immunochemicals, Inc., (Limerick, PA, USA), respectively. Methanol and
chloroform were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).
Milli-Q water (Millipore, Billerica, MA, USA) was used for all experiments.

3.2. Sample Preparation

Human and mouse plasma were mixed in the following proportions: Human/Mouse =
2500 µL/0 µL (S-1), 2,000 µL/2,000 µL (S-2), and 0 µL/2,500 µL (S-3). Each plasma mixture
(50 µL) was mixed with 450 µL of methanol. After mixing, the mixture was kept on ice
for 5 min. The solution was centrifuged at 16,000× g for 5 min at 4 ◦C, and 400 µL of the
supernatant was transferred into a new tube. Afterward, 400 µL of chloroform and 200 µL
of Milli-Q water were added to the supernatant and thoroughly mixed. The mixture was
centrifuged at 16,000× g for 5 min at 4 ◦C; thereafter, 400 µL of the upper layer and 300 µL
of the lower layer were collected into a new tube for the measurement of hydrophilic and
hydrophobic metabolites, respectively. All samples were dried using a centrifuge concentrator
before distribution to the six participating institutions.

3.3. Analytical Procedure

For the measurement of hydrophilic metabolites, GC/MS analysis was performed after
oximation, and the dried samples were derivatized. Other analyses were carried out after
dissolving the dried samples in water. For the measurement of hydrophobic metabolites, each
analysis was performed after dissolving the dried samples in methanol or methanol:chloroform
(1:1). Each measurement was carried out according to their methods for metabolomics, includ-
ing the 11 analytical methods for the hydrophilic metabolites [18,21–28] and the 7 analytical
methods for the hydrophobic metabolites [17,18,24,29–31]. The analytical methods include
chromatographic separation, MS detection, and data processing; the details are presented in
Tables S1 and S2.

3.4. Data Analysis

Data processing, including peak picking and metabolite identification, was conducted
according to the specific methods of each laboratory. In the evaluations in the first step,
the relative quantitative data (S-1/S-3) for each metabolite were obtained from triplicate
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analyses. The data processing details and normalization data for each analytical method
are presented in Tables S1 and S2. The integrated data were subsequently analyzed based
on a two-sided Student’s t-test or one-way ANOVA to evaluate if similar results were
produced by multi-laboratory distinct analytical methods. The statistical significance of each
metabolite between the S-1 and S-3 samples was determined using a two-sided Student’s
t-test (p < 0.05). The number of metabolites with S-1/S-3 levels in the same directions
among multiple analytical methods was examined using a two-sided Student’s t-test and a
relative quantitative value of 1. Further, the number of metabolites with statistically similar
S-1/S-3 levels was examined among multiple methods using one-way ANOVA (p > 0.05).
Subsequently, one outlier in the data showing a p-value of < 0.05 by one-way ANOVA was
found, and then the number of metabolites that changed to a p-value of > 0.05 by one-way
ANOVA in the case that outlier was ignored was counted. All statistical analyses were
performed using in-house scripts written in Python 3 using the Numpy and Scipy modules.
In the second step, the average values (n = 3) of S-1, S-2, and S-3 ([S-1], [S-2], and [S-3]) were
calculated, and the values of [S-2]/([S-1] + [S-3] × 100 were then determined. Subsequently,
the same evaluations as the first step were performed using only the metabolites with
values within 50 ± 7.5%, which corresponded to the 95% confidence interval when n = 3
and RSD% = 10%. This means that the second evaluation was performed using metabolites
with guaranteed quantification and a 95% confidence interval.

4. Conclusions

In MS-based metabolomics, the differences in the analytical results from laborato-
ries/machines are issues to be considered; moreover, these issues are seen in other omics
technologies. The correction of inter-laboratory differences using sequential window acqui-
sition of all theoretical mass spectra (SWATH–MS) is being attempted in proteomics [34].
Further, it seems that proteomics is proceeding in the direction of analyzing proteomic
data acquired using different mass spectrometers with the same software for the data
integrated evaluation. In this study, we evaluated if the differences in the analytical meth-
ods, except sample pretreatment including metabolite extraction, are involved in the
inter-laboratory differences. This investigation shows that some differences between the
laboratories in the current study are due to the differences in the machines only. When
MS-based metabolomics systems are established at each laboratory, validation, including
sample pretreatment, is carried out, and the characteristics of each machine placed in each
laboratory are considered. In other words, the analytical environments and conditions at
each laboratory are prioritized in the establishment of protocols. Therefore, it is difficult
to resolve the inter-laboratory differences because all the laboratories cannot provide the
same analytical environments. It is important to understand the problems in metabolomics
studies involving multiple laboratories, and the results of this study help to achieve this
understanding.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12020135/s1, Table S1: Sample preparation procedure, separation, MS detection, and
data processing for each analytical method of hydrophilic metabolites; Table S2: Sample preparation
procedure, separation, MS detection, and data processing for each analytical method of hydrophobic
metabolites; Table S3: Summary of data set; Table S4: Summary of data set after the selection of
the quantitatively guaranteed metabolites; Table S5: Peak area/height values and results of the
statistical tests of 160 hydrophilic metabolites detected by the 11 different methods; Table S6: Peak
area/height values and results of the statistical tests of 660 hydrophobic metabolites detected by the
seven different methods.
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analytical platforms for lipidomic quantitation using hydrophilic interaction liquid chromatography or supercritical fluid
chromatography coupled to quadrupole—Time-of-flight mass spectrometry. Talanta 2021, 231, 122367. [CrossRef]

30. Pascale, R.; Acquavia, M.A.; Onzo, A.; Cataldi, T.R.I.; Calvano, C.D.; Bianco, G. Analysis of surfactants by mass spectrometry:
Coming to grips with their diversity. Mass Spectrom. Rev. 2021. [CrossRef]

31. Ishibashi, M.; Izumi, Y.; Sakai, M.; Ando, T.; Fukusaki, E.; Bamba, T. High-throughput simultaneous analysis of pesticides by
supercritical fluid chromatography coupled with high-resolution mass spectrometry. J. Agric. Food Chem. 2015, 63, 4457–4463.
[CrossRef] [PubMed]

http://doi.org/10.1021/acs.analchem.6b02930
http://doi.org/10.1194/jlr.M079012
http://doi.org/10.1016/j.bbalip.2017.02.013
http://www.ncbi.nlm.nih.gov/pubmed/28238863
http://doi.org/10.1007/s11306-009-0169-z
http://www.ncbi.nlm.nih.gov/pubmed/20376177
http://doi.org/10.1002/0471142727.mb3004s114
http://doi.org/10.1021/ac203200x
http://www.ncbi.nlm.nih.gov/pubmed/22304021
http://doi.org/10.3390/metabo9110257
http://doi.org/10.1021/pr034020m
http://doi.org/10.1021/ac900675k
http://doi.org/10.1016/j.chroma.2020.460914
http://doi.org/10.1021/acs.jafc.0c04723
http://doi.org/10.3390/metabo11100652
http://doi.org/10.3390/metabo11040207
http://www.ncbi.nlm.nih.gov/pubmed/33808182
http://doi.org/10.1007/s11306-010-0224-9
http://doi.org/10.18632/oncotarget.15081
http://www.ncbi.nlm.nih.gov/pubmed/28179577
http://doi.org/10.5702/massspectrometry.A0073
http://doi.org/10.1038/s41587-020-0531-2
http://doi.org/10.1016/j.jchromb.2017.04.019
http://doi.org/10.1194/jlr.M077321
http://doi.org/10.1194/jlr.D083014
http://doi.org/10.1016/j.talanta.2021.122367
http://doi.org/10.1002/mas.21735
http://doi.org/10.1021/jf5056248
http://www.ncbi.nlm.nih.gov/pubmed/25547162


Metabolites 2022, 12, 135 16 of 16

32. Burla, B.; Arita, M.; Arita, M.; Bendt, A.K.; Cazenave-Gassiot, A.; Dennis, E.A.; Ekroos, K.; Han, X.; Ikeda, K.; Liebisch, G.; et al.
MS-based lipidomics of human blood plasma: A community-initiated position paper to develop accepted guidelines. J. Lipid Res.
2018, 59, 2001–2017. [CrossRef] [PubMed]

33. Lin, Y.; Caldwell, G.W.; Li, Y.; Lang, W.; Masucci, J. Inter-laboratory reproducibility of an untargeted metabolomics GC-MS assay
for analysis of human plasma. Sci. Rep. 2020, 10, 10918.

34. Collins, B.C.; Hunter, C.L.; Liu, Y.; Schilling, B.; Rosenberger, G.; Bader, S.L.; Chan, D.W.; Gibson, B.W.; Gingras, A.C.; Held, J.M.; et al.
Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun.
2017, 8, 291. [CrossRef] [PubMed]

http://doi.org/10.1194/jlr.S087163
http://www.ncbi.nlm.nih.gov/pubmed/30115755
http://doi.org/10.1038/s41467-017-00249-5
http://www.ncbi.nlm.nih.gov/pubmed/28827567

	Introduction 
	Results and Discussion 
	Analytical Procedure and Data Acquisition 
	Data Summary and Comparisons of the Analytical Methods for the Relative Quantification for the Metabolites Detected (First Step) 
	Data Summary and Comparisons of the Analytical Methods for the Relative Quantification of the Quantitatively Guaranteed Metabolites (Second Step) 
	Possible Causes of the Differences in the Results from Different Laboratories/Machines in MS-Based Metabolomics 
	Hydrophilic Metabolites 
	Hydrophobic Metabolites 
	Hydrophilic Metabolites versus Hydrophobic Metabolites 


	Materials and Methods 
	Materials 
	Sample Preparation 
	Analytical Procedure 
	Data Analysis 

	Conclusions 
	References

