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Abstract

Motivation: The variation graph toolkit (VG) represents genetic variation as a graph. Although each

path in the graph is a potential haplotype, most paths are non-biological, unlikely recombinations

of true haplotypes.

Results: We augment the VG model with haplotype information to identify which paths are more

likely to exist in nature. For this purpose, we develop a scalable implementation of the graph exten-

sion of the positional Burrows–Wheeler transform. We demonstrate the scalability of the new

implementation by building a whole-genome index of the 5008 haplotypes of the 1000 Genomes

Project, and an index of all 108 070 Trans-Omics for Precision Medicine Freeze 5 chromosome 17

haplotypes. We also develop an algorithm for simplifying variation graphs for k-mer indexing with-

out losing any k-mers in the haplotypes.

Availability and implementation: Our software is available at https://github.com/vgteam/vg, https://

github.com/jltsiren/gbwt and https://github.com/jltsiren/gcsa2.

Contact: jouni.siren@iki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequence analysis pipelines often start by mapping the sequence reads

to a reference genome of the same species. A read aligner first uses a

text index to find candidate positions for the read. Then it aligns the

read to the candidate positions, trying to find the best mapping.

A reference genome that takes the form of a single sequence may

represent a new dataset poorly if the sequenced individual diverges

substantially at some location. Mapping reads to such a reference

can introduce reference bias into the subsequent analysis. Richer ref-

erence models can help to avoid the bias, but challenges remain in

choosing the right model and working with it effectively (Paten

et al., 2017; The Computational Pan-Genomics Consortium, 2018).

We can replace the single reference sequence with a collection of

haplotypes. Because individual genomes are similar, compressed

text indexes can store such collections in very little space (Mäkinen

et al., 2010). However, due to this similarity, most reads map equal-

ly well to many haplotypes. If the reference model is a simple

collection, we cannot tell whether a read maps to the same position

in different haplotypes or not.

If the haplotypes are aligned, we can use the alignment to deter-

mine whether the mappings are equivalent. Text indexes can also take

advantage of the alignment by storing shared substrings only once

(Huang et al., 2010). The FM-index of alignment (Na et al., 2016,

2018) goes one step further by collapsing the multiple alignment into

a directed acyclic graph (DAG), where each node is labeled by a se-

quence. It indexes the graph and stores some additional information

for determining which paths correspond to valid haplotypes.

We can also build a reference graph directly from a reference se-

quence and a set of variants (Schneeberger et al., 2009). This ap-

proach has been used in many tools such as BWBBLE (Huang et al.,

2013), GCSA (Sirén et al., 2014), vBWT (Maciuca et al., 2016), the

Seven Bridges Graph Pipeline (Rakocevic et al., 2019), Graphtyper

(Eggertsson et al., 2017) and VG (Garrison et al., 2018). It will al-

ways produce a DAG if structural variants are not considered.

Algorithms for working with sequences are often easy to generalize
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to DAGs. On the other hand, because an acyclic graph imposes a

global alignment on the haplotypes, allowing only matches, mis-

matches and indels, it cannot represent structural variation such as

duplications or inversions adequately.

Assembly graphs such as de Bruijn graphs collapse sequences by

local similarity instead of global alignment. They are better suited to

handling structural variation than DAGs. However, the lack of a

global coordinate system limits their usefulness as references.

Graph-based reference models share certain weaknesses. Because

they collapse sequences between variants, they represent both the

original haplotypes and their recombinations: paths that switch be-

tween haplotypes. This may cause false positives when a read maps

better to an unobserved recombination than to the correct path.

Graph regions with many variants in close proximity can give rise to

very large numbers of recombinant paths, and be too complex to

allow an index to cover all possible paths in the graph. Graph tools

try to deal with such regions by, for example, limiting the amount of

variation in the graph, artificially simplifying complex regions and

making trade-offs between query performance, index size and max-

imum query length.

CHOP (Mokveld et al., 2018) embeds haplotypes into a graph

and indexes the corresponding paths. For a given parameter k, the

graph is transformed into a collection of short strings such that adja-

cent strings overlap by k – 1 characters. Each haplotype can be rep-

resented as a sequence of adjacent strings. Any read aligner can be

used to map reads to the strings. However, because the aligner sees

only short strings, it cannot map long reads or paired-end reads.

The variation graph toolkit (VG) (Garrison et al., 2018) works

with many kinds of graphs. While some other graph tools use graphs

to represent other data types (e.g. aligned sequences, or variants), the

graph itself is the primary object in the VG model. A global coordinate

system can be provided by designating certain paths as reference paths.

VG uses GCSA2 (Sirén, 2017) as its text index. GCSA2 repre-

sents a k-mer index as a de Bruijn graph and compresses it structur-

ally by merging redundant nodes. VG handles complex graph

regions by indexing a simplified graph, in which the complex regions

are replaced by simpler graph structures, although the final align-

ment is done in the original graph. The drawback of this approach is

that simplification can break paths corresponding to known haplo-

types, while leaving paths representing recombinations intact.

In this paper, we augment the VG model with haplotype infor-

mation. We develop the Graph BWT (GBWT), a scalable implemen-

tation of the graph extension of the positional Burrows–Wheeler

transform (gPBWT) (Durbin, 2014; Novak et al., 2017), to store the

haplotypes as paths in the graph. To demonstrate the scalability of

the GBWT, we build a whole-genome index for the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2015) haplotypes

and a chromosome 17 index for the Trans-Omics for Precision

Medicine (TOPMed) haplotypes. We also describe an algorithm that

adds the haplotype paths back to the simplified graph, without re-

introducing too much complexity, in order to make the text index

more complete.

The main differences from the old gPBWT implementation

(Novak et al., 2017) are:

• We use local structures for each node instead of global structures

for the graph. The index is smaller and faster and takes better ad-

vantage of memory locality.
• The GBWT is implemented as an ordinary text index instead of a

special-purpose index for paths. Most FM-index algorithms can

be used with it. For example, we can use the GBWT as an FMD-

index (Li, 2012) and support bi-directional search.

• We have a fast and space-efficient incremental construction algo-

rithm that does not need access to the entire collection of haplo-

types at the same time.
• Our implementation can be used independently of VG.

A preliminary version of this paper appeared in WABI 2018. In

addition to a more extensive description and discussion, for this

paper, we have improved the GBWT implementation in the follow-

ing ways:

• VG now parses the VCF files once and stores the information in

a format directly usable by GBWT construction. This makes

index construction for the 1000 Genomes Project haplotypes al-

most three times faster than in the preliminary paper.
• We further demonstrate the scalability of the GBWT by building

a chromosome 17 index for the 108 070 TOPMed haplotypes

from Freeze 5b, showing that we can build indexes for popula-

tion cohorts more than an order of magnitude larger than in the

original paper.
• We adapt the BWT-merge algorithm (Sirén, 2016) for merging

GBWT indexes over the same chromosome. By building indexes

for multiple batches in parallel and merging them with the new

algorithm, we make GBWT construction for the TOPMed haplo-

types several times faster.
• We can now remove paths from a GBWT index.

The haplotype information stored in GBWT can also be used to

improve read mapping, and, potentially, variant inference. For ex-

ample, when we extend the seeds we get from a GCSA2 index, we

can restrict the extension to paths corresponding to the haplotypes

in the GBWT index. Alternatively, we may use the haplotype infor-

mation for alignment scoring. We intend to explore these applica-

tions in a subsequent paper.

2 Materials and methods

2.1 Background
2.1.1 Strings and graphs

A string S½0; n� 1� ¼ s0 � � � sn�1 of length jSj ¼ n is a sequence of

characters over an alphabet R ¼ f0; . . . ;r� 1g. Text strings

T½0; n� 1� are terminated by an end-marker T½n� 1� ¼ $ ¼ 0 that

does not occur anywhere else in the text. Substrings of string S are

sequences of the form S½i; j� ¼ si � � � sj. We call substrings of length k

k-mers and substrings of the type S½0; j� and S½i; n� 1� prefixes and

suffixes, respectively.

Let S½0; n� 1� be a string. We define S:rankði; cÞ as the number

of occurrences of character c in the prefix S½0; i� 1�. We also define

S:selectði; cÞ ¼ maxfj � n j S:rankðj; cÞ < ig as the position of the

occurrence of rank i>0. A bit-vector is a data structure that stores a

binary sequence and supports efficient rank/select queries over it.

A graph G ¼ ðV;EÞ consists of a finite set of nodes V � N and a

set of edges E � V � V. We assume that the edges are directed:

ðu; vÞ 2 E is an edge from node u to node v. The in-degree of node v

is the number of incoming edges to v, while the out-degree is the

number of outgoing edges from v. Let P ¼ v0 � � � vjPj�1 be a string

over the set of nodes V. We say that P is a path in graph G ¼ ðV;EÞ,
if ðvi; viþ1Þ 2 E for all 0 � i < jPj � 1.

The VG model (Garrison et al., 2018) is based on bi-directed

graphs, where each node has two orientations. We simulate them

with directed graphs. We partition the set of nodes V into forward

nodes Vf and reverse nodes Vr, with Vf \ Vr ¼1 and jVf j ¼ jVrj.
We match each forward node v 2 Vf with the corresponding reverse
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node �v 2 Vr, with ��v ¼ v for all v 2 Vf . For all nodes u; v 2 V, we

also require that ðu; vÞ 2 E() ð�v; �uÞ 2 E.

2.1.2 FM-index

The suffix array SA½0;n� 1� of text T½0; n� 1� is an array of point-

ers to the suffixes of the text in lexicographic order. For all i< j, we

have T½SA½i�;n� 1� < T½SA½j�;n� 1�. The Burrows–Wheeler trans-

form (BWT) (Burrows and Wheeler, 1994) is a permutation of the

text with a similar combinatorial structure. We define it as the per-

muted string BWT½0; n� 1�, where BWT½i� ¼ T½ðSA½i� � 1Þmod n�.
Let C½c� be the number of occurrences of characters c0 < c in the

text. The main operation provided by the BWT is the last-first or

LF-mapping, which we define as LFði; cÞ ¼ C½c� þ BWT:rankði; cÞ.
We use shorthand LFðiÞ for LFði;BWT½i�Þ and note that

SA½LFðiÞ� ¼ ðSA½i� � 1Þmod n.

Let X be a string and let c be a character. If T0 < X for i suffixes

T 0 of text T, we say that string X has lexicographic rank i among the

suffixes of text T. The number of suffixes starting with any character

c0 < c is C½c�, and the number of suffixes T 0 < X preceded by char-

acter c is BWT:rankði; cÞ. Hence the lexicographic rank of string cX

is LFði; cÞ.
The FM-index (Ferragina and Manzini, 2005) is a text index

based on the BWT. Assume that we can compute BWT:rankði; cÞ in

tr time. Further assume that we have stored ði; SA½i�Þ for all SA½i� div-

isible by some integer d>0. The FM-index supports the following

queries:

• findðXÞ: Return the lexicographic range ½sp; ep� of suffixes start-

ing with pattern X. If ½spiþ1; epiþ1� is the lexicographic range for

pattern X½iþ 1; jXj � 1�, the range for pattern X½i; jXj � 1� is

½LFðspiþ1;X½i�Þ;LFðepiþ1 þ 1;X½i�Þ � 1�. By extending the pat-

tern backwards, we can support findðXÞ in OðjXj � trÞ time.
• locateðsp; epÞ: Return the list of occurrences SA½sp; ep�. For each

position i 2 ½sp; ep�, we iterate LFðiÞ until we find a stored pair

ðLFkðiÞ; SA½LFkðiÞ�Þ. Then SA½i� ¼ SA½LFkðiÞ� þ k. Locating each

occurrence SA½i� takes Oðd � trÞ time.
• extractðj; j0Þ: Return the substring T½j; j0�. We start from the near-

est stored ði; SA½i�Þ with SA½i� > j0 and iterate ði; SA½i�Þ  ðLFðiÞ;
SA½i� � 1Þ until SA½i� ¼ jþ 1. As BWT½i� ¼ T½SA½i� � 1�, we ex-

tract the substring backwards in O
�
ðd þ j0 � jÞ � tr

�
time.

A generalized FM-index can index multiple texts T0; . . . ;Tm�1.

Each text Tj is terminated by a distinct end-marker $j, where $j <

$jþ1 for all j. As the suffixes of the texts are all distinct, we can sort

them unambiguously. In the final BWT, we replace each $j with $ in

order to reduce alphabet size. The index works as with a single text,

except that we cannot compute LFði; $Þ. We also define the docu-

ment array DA as an array of text identifiers. If SA½i� points to a suf-

fix of text Tj, we define DA½i� ¼ j.

2.2 Indexing haplotypes
The positional BWT (Durbin, 2014) and its graph extension (Novak

et al., 2017) can be understood as ordinary FM-indexes. We develop

the GBWT explicitly from this point of view, making it an FM-

index of multiple texts over an integer alphabet V. Instead of storing

the BWT as a single string, we partition it into substrings BWTv

corresponding to the most significant character v 2 V in the lexico-

graphic ordering. We also use the substrings as the basic blocks for

computing rank over the BWT. By storing the substring

BWTv and rank information in each node v 2 V, the resulting index

can take advantage of memory locality when the graph has a cache-

friendly memory layout.

2.2.1 Positional BWT

Assume that we have m haplotype strings S0; . . . ; Sm�1 of equal length

over alphabet R. At each variant site i, character Sj½i� tells whether

haplotype j contains the reference allele (Sj½i� ¼ 0) or an alternate allele

(Sj½i� > 0). Given a pattern X and a range of sites ½i; i0�, we want to find

the haplotypes Sj matching the pattern at the specified sites

(Sj½i; i0� ¼ X). Ordinary FM-indexes do not support such queries, as they

find all occurrences of the pattern, not just those at a particular position.

The positional BWT (PBWT) (Durbin, 2014) is an FM-index

that supports positional queries. We can interpret it as the FM-index

of texts T0; . . . ;Tm�1 such that Tj½i� ¼ ði; Sj½i�Þ (Gagie et al., 2017).

If we want to search for pattern X in range ½i; i0�, we search for pat-

tern X0 ¼ ði;X½0�Þ � � � ði0;X½jXj � 1�Þ in the FM-index. The texts are

over a large alphabet, but their first-order empirical entropy is low.

We can encode the BWT using alphabet R with a simple model.

Assume that SA½x� points to a suffix starting with ðiþ 1; cÞ.
We often know the character from a previous query, and we can de-

termine it using the C array. Then BWT½x� ¼ ði; c0Þ for a c0 2 R, and

we can encode it as c0. (Note that we build the rank structure for the

original BWT, not the encoded BWT.) When the collection of haplo-

type strings is repetitive, as it typically is with sufficiently large col-

lections of biological haplotypes, we can compress the PBWT

further by run-length encoding the BWT (Mäkinen et al., 2010).

2.2.2 Graph extension

Haplotypes correspond to paths in the VG model. Because

chromosome-length phasings are often not available, there may be mul-

tiple paths for each haplotype. The graph extension of the PBWT

(Novak et al., 2017), or gPBWT, generalizes the PBWT to indexing

such paths. While the original extension was specific to VG graphs, we

present a general version over directed graphs. We call this structure

the Graph BWT (GBWT), as it both represents arbitrary collections of

paths over graphs and is encoded locally within the graph.

Let P0; . . . ;Pm�1 be paths in graph G ¼ ðV;EÞ. We can interpret

the paths as strings over alphabet V. Assume that 0 62 V, as we use it as

the end-marker. We build an FM-index for the reverse strings. We sort

reverse prefixes in lexicographic order, so the LF-mapping traverses

edges in the correct direction and place the end-marker before the string.

The GBWT supports the following variants of the basic FM-

index queries:

• findðXÞ returns the lexicographic range of reverse prefixes start-

ing with the reverse pattern (the range of prefixes ending with the

pattern).
• locateðsp; epÞ returns the text identifiers DA½sp; ep�. We do not

return text offsets, as the node corresponding to the range ½sp; ep�
already provides similar information.

• extractðjÞ returns the path Pj. We save memory by not supporting

substring extraction.

These queries should be understood as examples of what we can

support. Because the GBWT is an FM-index of multiple texts, most

algorithms using an FM-index can be adapted to use the GBWT.

For example, let P ¼ v0 � � � vjPj�1 be a path. The reverse path of P is

the path �P ¼ �vjP�1j � � � �v0 traversing the reverse nodes in the reverse

order. If we also index �P for every path P, the GBWT becomes an

FMD-index (Li, 2012) that supports bi-directional search.

2.2.3 Records

For each node v 2 V, we define the local alphabet Rv ¼ fw 2 V j
ðv;wÞ 2 Eg. We also add $ to Rv if v is the last node on a path, and

define R$ as the set of the initial nodes on each path. We partition
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the BWT into substrings BWTv corresponding to the prefixes ending

with v, and encode each substring BWTv using the local alphabet

Rv. If w 2 Rv is the kth character in the local alphabet in sorted

order, we encode it as RvðwÞ ¼ k.

We develop a representation based on the following assumptions:

1. Almost all nodes v 2 V have a low out-degree, making the local al-

phabet Rv small. Hence we can afford storing the rank of all w 2
Rv at the start of BWTv. Decompressing that information every

time we access the node does not take too much time either.

2. The number of occurrences of almost all nodes is bounded by

the number of haplotypes. As the length of BWTv is bounded

for almost all v 2 V, we can afford scanning it every time we

compute rank within it.

3. The collection of paths is repetitive. Run-length encoding com-

presses the BWT well, reducing both index size and the time

required for scanning BWTv.

4. There exists an integer range ½a;b� such that the set of nodes V is

a dense subset of the range. Hence, we can afford storing some

information for all i 2 ½a; b� without using too much space.

5. The graph is almost linear and almost topologically sorted. The

closer to topological order we can store the nodes, the less space

we need for graph topology and the better we can take advan-

tage of memory locality.

All these are reasonable assumptions for a large set of biological

haplotype sequences over a variation graph.

We store a record consisting of a header and a body for each

node v 2 V and for the end-marker $. For each character w 2 Rv in

sorted order, the header stores a pair ðw;BWT:rankðv;wÞÞ, where

BWT:rankðv;wÞ is the total number of occurrences of character w

in all BWTv0 with v0 < v. The body run-length encodes BWTv, rep-

resenting a run of ‘ copies of character w as a pair ðRvðwÞ; ‘Þ. See

Figure 1 for an example.

Because the BWT is a set of records, we use node/offset pairs as

positions. Pair (v, i) refers to offset BWT½C½v� þ i� ¼ BWTv½i�. We

define rank queries over positions as

BWT:rankððv; iÞ;wÞ ¼ BWT:rankðv;wÞ þ BWTv:rankði;wÞ:

Similarly, we define LFððv; iÞ;wÞ ¼ ðw;BWT:rankððv; iÞ;wÞÞ and use it

in place of ordinary LF-mapping in the FM-index (Section 2.1.2).

The FM-index is based on iterating LF-mapping. Because

LF-mapping in a standard BWT tends to jump randomly around the

BWT, this can be a significant bottleneck. The GBWT achieves bet-

ter memory locality, if we store the records for adjacent nodes close

to each other. When we iterate LF-mapping over a path in the graph,

we traverse adjacent memory regions.

As a run-length encoded FM-index, the GBWT supports the fast

locateðÞ algorithm (Mäkinen et al., 2010). The direct algorithm, as

described in Section 2.1.2, locates each position i 2 ½sp; ep� separate-

ly. If we instead process the entire range at once, advancing every

position by one step of LF-mapping at the same time, we achieve

better memory locality. We can also compute LF-mapping for an en-

tire run BWTv½x; y� ¼ wyþ1�x in the same time as for a single pos-

ition i 2 ½x; y�.

2.2.4 GBWT encodings

We have two representations for the GBWT. The dynamic GBWT is

a representation of the GBWT optimised for index construction,

where speed is more important than size. The compressed GBWT

balances query performance with index size. We use it when the set

of haplotypes is fixed and for storing the index on disk. See

Supplementary Material S1 for further details.

2.3 GBWT construction
The assumptions in Section 2.2.3 make the GBWT easier to build

than an ordinary FM-index. Inserting new texts into the collection

updates adjacent records, just like searching traverses adjacent

records. Because the local alphabet is small, because the number of

occurrences of each character is limited and because run-length

encoding compresses the BWT well, records tend to be small.

Hence, we can afford re-building a record each time we update it.

On the other hand, the GBWT is harder to build than the PBWT.

In the PBWT, all strings are of the same length and have the same

variant site at the same position. Hence, we can build the final re-

cord for a site in a single step. In the GBWT, indels in the haplotypes

become indels on the haplotype paths and hence we have to update

the same record multiple times. We also have to buffer the strings in-

stead of indexing them as we generate them.

2.3.1 Construction algorithms

Our basic GBWT construction algorithm is similar to RopeBWT2

(Li, 2014). We have a dynamic FM-index (Chan et al., 2007) and

insert multiple texts into the index in a single batch using the BCR

algorithm (Bauer et al., 2013). The algorithm is sequential and

hence not suitable for large datasets. Parallelizing it is difficult, be-

cause the algorithm interleaves queries with index updates.

When the basic algorithm is too slow, we partition the dataset

into super-batches and build a separate GBWT index for each super-

batch. We then merge the indexes using the BWT-merge algorithm

(Sirén, 2016). The merging algorithm can also be reversed to remove

texts from the index. This can be useful, if we want to remove a

sample from the dataset without having to rebuild the entire index.

Indexes for different chromosomes can be merged quickly with a

simple algorithm. Because each chromosome uses different node identi-

fiers, we can simply reuse the existing records in the merged index.

See Supplementary Material S2 for further details on the con-

struction algorithms.

2.3.2 Construction in VG

We provide support in VG to construct a GBWT from a VCF file

(Danecek et al., 2011) with phasing information. The construction

Fig. 1. Top: A graph with three paths (lines above the nodes). Bottom: The

GBWT of the paths, with lines connecting the paths’ entries in each node’s

record
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parses the VCF file, determines the path corresponding to each allele

and builds haplotype paths from the allele paths. Because we need

two layers of buffering, we process the VCF file in batches of s sam-

ples (default 200) in order to save memory. Heuristics are required

to deal with situations where VCF sites overlap and paths may not

be well defined.

The GBWT stores texts with integer identifiers. A metadata layer

maps the identifiers to structured names. While the metadata sup-

ports genomes with arbitrary ploidy, our current VCF parsing code

does not take full advantage of it. The parser expects a diploid gen-

ome, where some regions may be haploid.

As repeated VCF parsing can be slower than GBWT construc-

tion, we start by parsing the VCF file and storing the information in

a directly usable format in a number of files. The main file contains

the reference path and the paths corresponding to each allele of each

variant. For each batch, we create a phasing file containing the run-

length encoded phasing information for the corresponding samples.

The total size of the files is usually comparable to a compressed VCF

file. If the VCF file contains interleaved diploid and haploid samples

(e.g. female and male samples for chromosome X), the files can be

several times larger. After the files have been written, we can con-

tinue the construction in VG or use separate GBWT construction

tools.

We generate a path for each haplotype in the current batch.

At each variant site and for every haplotype, we first append refer-

ence nodes until the site. Then we check whether the reference coor-

dinates of the site overlap with the path we have already generated.

If there is an overlap, we try to resolve it by removing reference

nodes from the generated path or by skipping reference nodes on

the path corresponding to the allele at the current site. If we cannot

resolve the overlap, we can treat it as a phase break and start a new

path. Alternatively, we can replace the alternate allele with the refer-

ence allele. Finally we append the path corresponding to the allele to

the end of the path we are generating.

When we have finished the haplotype or there is a phase break,

we insert the path P and its reverse �P into the GBWT construction

buffer. Once the buffer is full (the default size is 100 million nodes),

we launch a background thread to insert the buffer into the index.

2.4 Haplotype-aware graph simplification
VG uses a series of pruning heuristics to simplify graphs for k-mer

indexing. First it removes edges used by k-mers that make too many

edge choices (e.g. more than 3 choices in a 24-mer). Edges with no

alternatives are not deleted, as there is no choice in taking them.

Then it deletes connected components with too little sequence (e.g.

less than 33 bases). Finally, if the graph contains reference paths, it

may add them back to the pruned graph.

Heuristic pruning often breaks paths taken by known haplo-

types. This may cause errors in read mapping, if we cannot find can-

didate positions for a read in the correct graph region. On the other

hand, indexing too many recombinations may increase the number

of false positives. Hence, we would like to prune recombinations

while leaving the haplotypes intact.

We describe an algorithm that unfolds the haplotype paths in

pruned regions, restoring support for them in the graph and dupli-

cating nodes when necessary. Our algorithm works with any prun-

ing algorithm that removes nodes from the graph. See Figure 2 for

an example of the algorithm in action. We work with bi-directed

VG graphs, unless otherwise noted. Reference paths can also be

unfolded with a similar algorithm.

Let Gi ¼ ðVi;EiÞ be the graph induced by GBWT paths and

Gp ¼ ðVp;EpÞ be a pruned graph. We build a complement graph

induced by edges Ei n Ep and consider each connected component

Gc ¼ ðVc;EcÞ in it separately. The set Vb ¼ Vc \ Vp is the border of

the component, as the nodes exist both in the component and in the

pruned graph. Nodes in the set Vc n Vb are internal nodes.

Each connected component Gc represents a graph region that

was removed from the original graph. We build an unfolded compo-

nent consisting of the paths in Gc supported by GBWT paths and in-

sert it into the pruned graph Gp. We achieve this by duplicating the

internal nodes that would otherwise cause recombinations.

In order to build the unfolded component, we must find all max-

imal paths P of length jPj 	 2 supported by GBWT paths in the

component. A path starting from a border node is maximal if it

reaches the border again or cannot be extended any further. GBWT

paths consisting entirely of internal nodes of the component are also

maximal.

Let v be a GBWT node and vgðvÞ 2 Vc the corresponding VG

node. If vgðvÞ is a border node, we create a search state ðv; findðvÞÞ
consisting of a pattern and a range. For internal nodes, we create

search state ðv; findð$vÞÞ. Then, for each search state ðX; ½sp; ep�Þ,
with x ¼ X½jXj � 1�:

1. If jXj 	 2 and the last node vgðxÞ is a border node, we stop the

search for this state. If vgðX½0�Þ is also a border node, X is a

maximal path and we output it.

2. We try to extend the search with all GBWT nodes v corresponding to

the successors u 2 Vc of vgðxÞ, taking the orientation of v from the

VG edge. If ½sp0; ep0� ¼ ½LFððx; spÞ; vÞ;LFððx; epþ 1Þ; vÞ � 1� 6¼1,

we create a new state ðXv; ½sp0; ep0�Þ.
3. If no extension was successful and jXj 	 2, path X is maximal

and we output it.

Let P be a maximal path we output. If P is not a border-to-

border path, we try to extend the lexicographically smaller of

P and �P with reference paths, replacing P with the extended path.

To avoid having the same path in both orientations, we replace each

path P with the smaller of P and �P.

We could create new duplicates of all internal nodes on P and in-

sert the path into Gp, but this would create too much non-determin-

ism for GCSA2 (If VG node v has predecessors u and u0 with

Fig. 2. Unfolding the paths in the graph in Figure 1. Border nodes have been highlighted. Left: The graph after removing nodes 4, 5 and 6. Center: Complement

graph. The maximal paths are ð2; 4 j 6; 7Þ; ð2 j 5; 7Þ and ð3; 4 j 5; 7Þ, with the bar splitting a path into a prefix and a suffix. Right: Unfolded graph. Dashed edges

cross from prefixes to suffixes. Duplicated nodes have the original ids below the node
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identical labels, k-mers starting from u and u0 and passing through v

cannot be distinguished. GCSA2 construction has to extend these k-

mers until the order of the index (e.g. k ¼ 256), which may increase

the size of the temporary files significantly). Instead, we split each

path into a prefix and a suffix of equal length and build a trie of the

prefixes and a trie of the reverse suffixes. Every edge in the tries

becomes a node in the unfolded component.

Let v be the label of a trie edge starting from the root. If vgðvÞ is a

border node, it already exists in Gp. Otherwise, we add a new dupli-

cate of vgðvÞ. Now let v and v0 be the labels of two successive trie

edges, and let u be the VG node we used for v. We create a new dupli-

cate u0 of vgðv0Þ and add node u0 to Gp. We also add edge

ðu;u0Þ or ðu0; uÞ, depending on whether we are in a prefix or a suffix.

Finally, if we used VG node u for the end of a prefix and VG node u0

for the start of the corresponding suffix, we add edge ðu; u0Þ to Gp.

After we have handled all components, the simplified graph Gp

contains all GBWT paths. The GCSA2 index of Gp contains all k-

mers (e.g. 256-mers) in the haplotypes. This allows us to prune the

graph more aggressively, removing more k-mers corresponding to

recombinations. In order to map reads to the original graph G ¼
ðV;EÞ instead of the simplified graph Gp, we replace the node identi-

fiers v 2 Vp in the GCSA2 index with the original identifiers v0 2 V.

3 Results

We have implemented the GBWT in Cþþ using the SDSL library

(Gog et al., 2014). The following experiments were done using VG

v1.12.1 with GCSA2 v1.2 and a pre-release version of GBWT v0.8.

All code was compiled using GCC 7.3. We used a single Amazon

EC2 i3.8xlarge instance with 16 physical (32 logical) cores of an

Intel Xeon E5 2686 v4 and 244 GiB of memory (Sizes measured in

MiB, GiB and TiB are based on 1024-byte kibibytes. Sizes measured

in MB, GB and TB are based on 1000-byte kilobytes.). The system

was running Ubuntu 18.04 with Linux kernel 4.15.0. Temporary

files were stored on a local RAID 0 volume consisting of four 1.9 TB

SSDs.

In the following, we discuss GBWT construction benchmarks

and experiments with haplotype-aware graph simplification.

Supplementary Material S3 contains low-level query benchmarks

that show how the GBWT can take advantage of memory locality.

3.1 Datasets
We built VG graphs for two datasets: 1000 Genomes Project (1000

GP) final phase (The 1000 Genomes Project Consortium, 2015)

whole-genome haplotypes and TOPMed Freeze 5 b haplotypes for

chromosome 17. The 1000 GP graphs were built relative to the

GRCh37 human reference genome, while the TOPMed graph used

the GRCh38 reference. As the 1000 GP haplotypes have issues with

overlapping variants, we generated both short paths by creating

phase breaks at unresolvable overlaps and long paths by ignoring

the variants that caused such overlaps. The TOPMed haplotypes

had only 0.29 unresolvable overlaps per haplotype on the average,

so we generated only long paths.

See Table 1 for further details on the datasets and Supplementary

Material S4 for a comparison of input (reference, VCF) and output

(graph, GBWT) sizes. We have also included the 1000 GP chromosome

17 for comparison. The TOPMed graph was built with the old VG max-

imal node size default of 1000bp, while the 1000 GP graphs use the

new 32bp default. The effect of this difference is negligible: the average

distance between variants in the TOPMed graph is only 6.5bp.

3.2 Index construction
For 1000 GP, we first built separate indexes for each chromosome,

running 14 jobs in parallel. We used the default construction param-

eters with short paths. For long paths, we used a larger buffer size

(to speed up the construction) and a smaller batch size (to save mem-

ory). The number of parallel jobs was determined by memory usage

(almost 1 GiB for each 10 Mb) and the number of CPU cores (2

threads per job). We ordered the jobs X;1; . . . ;22;Y, as large chro-

mosomes take longer to finish. The last job to finish was chromo-

some 2, which determined the total construction time (11.8 h and

16.3 h for short and long paths, respectively). Merging the single-

chromosome indexes into a whole-genome index took 12 min and

38 GiB memory for short paths and 12 min and 33 GiB for long

paths. See Table 1 for further details.

Because the direct construction algorithm is sequential, it is too

slow for building the TOPMed index (Table 1). We used the BWT-

merge algorithm for faster parallel construction. Parsing the VCF

file and writing the phasing information in batches of 100 samples

took 42 h and 39 GiB memory. We then grouped the batches into 22

super-batches of 2500 samples each and built GBWT indexes for the

super-batches in parallel. With a buffer size of 500 million, the con-

struction took 15 h and 33 GiB memory for each of the first 21

super-batches and 9 h and 21 GiB for the partially-filled last one.

We had enough memory to run 7 jobs in parallel, so the total wall-

clock time for indexing the super-batches was 54 h.

We merged the super-batch indexes in 46 h and 102 GiB mem-

ory. The total construction time was 5.9 days or 4.2 times less than

with the direct construction algorithm. By building all super-batch

indexes in parallel, the construction time can be reduced further to

4.3 days, out of which 1.7 days is spent for VCF parsing. See

Supplementary Material S2 for further details.

Table 1. Datasets and direct GBWT construction

Dataset Graph Construction Index

Name Samples Variants Nodes Out-degree Paths Length Batch Buffer Interval Time GBWT Text IDs Total

1000 GP-all-S 2504 84.7 M 612 M 1.3/13 50.6 M 2.19 T 200 100 M 1024 12 h 8.74 GiB 9.90 GiB 18.6 GiB

1000 GP-all-L 2504 84.7 M 612 M 1.3/13 240 232 2.19 T 100 200 M 1024 17 h 8.43 GiB 8.17 GiB 16.6 GiB

1000 GP-17-S 2504 2.33 M 16.6 M 1.3/7 1.67 M 60.1 G 200 100 M 1024 3.7 h 258 MiB 242 MiB 500 MiB

1000 GP-17-L 2504 2.33 M 16.6 M 1.3/7 10 016 60.1 G 100 200 M 1024 4.2 h 252 MiB 193 MiB 444 MiB

TOPMed-17-L 54 035 12.9 M 67.6 M 1.3/11 216 140 4.66 T 200 1000 M 16 384 25 d 1.13 GiB 1.03 GiB 2.16 GiB

Note: The name of each dataset is a combination of source, chromosome and path length (S for short paths with phase breaks, L for long chromosome-length

paths). For each dataset, we give the number of samples and variants, as well as the number of nodes, average/maximum out-degree, number of paths (including

reverse paths) and the total length of the paths in the graph. For construction, we give batch size in samples, buffer size in millions of nodes, interval for stored

text identifiers and wall-clock time for index construction in hours or days. We also report GBWT size, space used by text identifiers and total index size. M, G

and T suffixes indicate millions, billions and trillions, respectively.
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The size of the compressed 1000 GP whole-genome GBWT was

18.6 GiB with short paths and 16.6 GiB with long paths. Roughly

half of this was for the GBWT itself and half for the stored text iden-

tifiers. See Table 1 for further details. The decompressed end-marker

(Supplementary Material S1) adds another 386 MiB with short

paths and 1.83 MiB with long paths. The TOPMed chromosome 17

index took 2.16 GiB, which was also split roughly in half between

the GBWT and the text identifiers. It was 5.0 times larger than the

corresponding 1000 GP index with long paths, while containing 22

times more samples over 5.5 times more variants. The dynamic

indexes are roughly 10 times larger than the corresponding com-

pressed indexes. Their exact sizes are not well-defined due to a large

number of memory allocations and unused space in the arrays.

All the assumptions in Section 2.2.3 were valid for our datasets:

1. All nodes except the end-marker have low out-degrees.

2. As the graphs are acyclic, no path can visit the same node twice.

When phase breaks or overlapping variants break a haplotype

into multiple paths, there will be some overlap between the

paths.

3. The 1000 GP indexes take 0.03 to 0.04 bits per character and

the TOPMed index takes 0.002 bits per character, excluding the

text identifiers.

4. VG construction tries to avoid leaving gaps between node

identifiers.

5. The VG graphs built from a VCF file are almost in topological

order.

3.3 Haplotype-aware graphs
VG originally used 128-mer GCSA2 indexes. When pruning the

graph for indexing, we could allow 4 edge choices in a 16-mer. Such

indexes were unsatisfactory, however, because they could not map

exactly matching 150 bp reads in one piece. When we double the

order of the index to 256-mers, we need more aggressive pruning to

avoid exponential growth during index construction. By default, we

now double the distance between edge choices, allowing only 3 edge

choices in a 24-mer.

Pruning removes k-mers corresponding to both true haplotypes

and their recombinations. To determine the effect of more aggressive

pruning, we built several whole-genome GCSA2 indexes for the

1000 GP graph and compared their k-mer contents. In the follow-

ing, graph pruned-k has been pruned with the parameters for a

k-mer index, and the reference paths have been restored afterwards.

Similarly, unfolded-k is a graph where the haplotype paths and ref-

erence paths have been unfolded after pruning, using the GBWT

index with long paths. See Table 2 for the results.

There are 27.0 billion 64-mers in the pruned-256 index.

Unfolding the haplotype paths adds 3.46 billion 64-mers to the

unfolded-256 index. While most of these additional k-mers corres-

pond to haplotypes, some of them may be recombinations covering

multiple complex regions. The pruned-128 index contains 90% of

the haplotype k-mers that were missing from pruned-256, but it also

adds 11.4 billion 64-mers arising from recombinations of the haplo-

types. Overall, by switching from the old pruned-128 index to the

new unfolded-256 index, we add the last missing haplotype k-mers

to the index while getting rid of a large number of recombination k-

mers and supporting direct matches of sequencing reads up to

256 bp.

4 Discussion

We have developed the GBWT, a scalable implementation of the

graph extension of the PBWT. The earlier gPBWT implementation

used 9.3 h and 278 GiB of memory for indexing the 1000 GP

chromosome 22 using a single thread (Novak et al., 2017). In com-

parison, our implementation takes 2.0 h and 4.0 GiB (short paths)

or 1.9 h and 5.9 GiB (long paths) using two threads. We also

reduced the final index size from 321 MiB to 134 MiB (short paths)

or 131 MiB (long paths) without text identifiers. By running mul-

tiple jobs in parallel, we were able to build a whole-genome index in

12 h (short paths) or 17 h (long paths) on a single system.

Contemporary sequencing projects are sequencing in excess of

100 000 diploid genomes. Our aim is to scale the GBWT to allow

working with such large collections, providing a compressed,

indexed and searchable representation that should fit into the mem-

ory of a single server. Potential applications in genome inference and

imputation, as well as for powering population genomic queries, are

myriad. For example, we are exploring using the GBWT for add-

itionally scoring read mappings by the number of recombinations of

the underlying haplotypes they induce, using the model described by

Rosen et al. (2017).

Our experiments with the TOPMed dataset suggest we are al-

most there. We can build a 2.16 GiB chromosome 17 index for

54 035 diploid samples in 4.3 days. Extrapolating from this, it

should take 13–14 days and 76 000 CPU hours to build an 80–90

GiB whole-genome index. See Table 3 for further details. While

GBWT merging uses more CPU hours than the other phases, GBWT

construction for super-batches requires five times more memory per

CPU core, so its actual cost may be higher.

We can probably improve the resource usage with a better choice

of batch/super-batch sizes and other construction parameters. For

wall-clock time, the main bottleneck is the sequential VCF parsing,

Table 2. GCSA2 indexes for simplified 1000 GP graphs

GCSA2 index 64-mers

Graph Pruning Constr Size Shared Haplotype Recomb

Pruned-128 3.1 h 25.6 h 36.3 GiB 27.0 G 3.11 G 11.4 G

Pruned-256 3.3 h 25.5 h 30.0 GiB 27.0 G — —

Unfolded-256 3.7 h 29.0 h 34.0 GiB 27.0 G 3.46 G —

Note: For each graph, we give the pruning time in hours, construction time

in hours and index size in GiB. We also show a comparison of unique 64-mer

content versus pruned-256, including the number of 64-mers shared with

pruned-256, the number of additional (real) haplotype 64-mers over pruned-

256 and the number of additional (spurious) recombination 64-mers over

pruned-256. The G suffix indicates billions.

Table 3. Estimated resource usage of whole-genome TOPMed

GBWT construction

Chr 17 Chr 2

Phase Jobs Cores Time Memory Time Memory CPU hours

Parsing 1 1 42 h 39 GiB 5–6 d 128 GiB 1500

Construction 22 2 15 h 33 GiB 2 d 100 GiB 23 000

Merging 1 32 46 h 102 GiB 5–6 d 320 GiB 51 500

Note: For each phase (VCF parsing, GBWT construction for super-batches,

GBWT merging), we give the number of jobs per chromosome, number of

CPU cores per job, time (in hours or days) and memory usage (in GiB) per job

for chromosome 17 (measured) and chromosome 2 (estimated) and estimated

CPU hours for building a whole-genome index.
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which takes 40% of the total construction time. Improvements to

this may involve integrating the parsing into VG graph construction,

parsing multiple graph regions in parallel, or switching to a more ef-

ficient input format.

Storing the text identifiers for locateðÞ queries is another bottle-

neck. When the number of samples increases, the product of locateðÞ
time and the space taken by the stored text identifiers increases lin-

early. In the 1000 GP dataset, storing the identifiers at one out of

1024 positions takes roughly as much space as the GBWT itself.

With the TOPMed dataset, we achieve similar proportions by stor-

ing the identifiers at one out of 16 384 positions, making locateðÞ 16

to 22 times slower. There is a theoretical proposal for supporting

fast locateðÞ queries in space proportional to the size of the run-

length encoded BWT (Gagie et al., 2018). While there has been

some progress in building the proposed index for large datasets

(Kuhnle et al., 2019), scaling it up to TOPMed scale is still an open

problem.

We used the haplotype information in the GBWT to simplify VG

graphs for k-mer indexing. This allowed us to prune the k-mers cor-

responding to recombinations more aggressively, while still having

all k-mers from the haplotypes in the index. CHOP, the other

haplotype-aware graph indexing approach, can only use short-range

haplotype information in read mapping. Because VG graphs are

connected, we can use the long-range information in the GBWT for

mapping long reads and paired-end reads. We will investigate this in

a subsequent paper.
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