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Background and Objective. When radiologists diagnose lung diseases in chest radiography, they can miss some lung nodules
overlapped with ribs or clavicles. Dual-energy subtraction (DES) imaging performs well because it can produce soft tissue
images, in which the bone components in chest radiography were almost suppressed but the visibility of nodules and lung
vessels was still maintained. However, most routinely available X-ray machines do not possess the DES function. Thus, we
presented a data-driven decomposition model to perform virtual DES function for decomposing a single conventional chest
radiograph into soft tissue and bone images. Methods. For a given chest radiograph, similar chest radiographs with
corresponding DES soft tissue and bone images are selected from the training database as exemplars for decomposition. The
corresponding fields between the observed chest radiograph and the exemplars are solved by a hierarchically dense matching
algorithm. Then, nonparametric priors of soft tissue and bone components are constructed by sampling image patches from the
selected soft tissue and bone images according to the corresponding fields. Finally, these nonparametric priors are integrated
into our decomposition model, the energy function of which is efficiently optimized by an iteratively reweighted least-squares
scheme (IRLS). Results. The decomposition method is evaluated on a data set of posterior-anterior DES radiography (503 cases),
as well as on the JSRT data set. The proposed method can produce soft tissue and bone images similar to those produced by the
actual DES system. Conclusions. The proposed method can markedly reduce the visibility of bony structures in chest
radiographs and shows potential to enhance diagnosis.

1. Introduction

Chest radiography is a widely used diagnostic imaging tech-
nique for lung diseases, such as tuberculosis, pneumonia,
and lung cancer, because this method is cheap, routinely
available, and relatively safe. However, overlying anatomical
structures, such as ribs and clavicles, make the reading and
interpretation of chest radiographs difficult for radiologists.
Such inaccurate analysis may cause serious decision-making
errors. Studies showed that approximately 30% of pulmonary
nodules in chest radiographs could be missed by radiologists,

and 82% to 95% of such missed nodules are partly obscured
by ribs and clavicles [1]. Therefore, suppression of ribs and
clavicles in chest radiographs would be potentially useful
for improving the detection accuracy of radiologists.

One method to reduce the visual clutter of chest radio-
graphs from overlying anatomy is DES imaging [2]. DES
radiography involves capturing two radiographs with the
use of two X-ray exposures at two different energy levels.
These radiographs are then combined to form a subtraction
image that highlights either soft tissue or bone components,
as shown in Figure 1. The soft tissue image can achieve
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improved visualization of pulmonary nodules because the
ribs and clavicles become invisible in this approach. DES
chest radiography exhibits many advantages over conven-
tional chest radiography in terms of facilitating image inter-
pretation. However, only a few hospitals use the DES system
because of the required specialized equipment.

Another method to remove or suppress the bone compo-
nents in chest radiographs is the image processing technique
that does not require specialized equipment for DES. The
commercial software ClearRead Bone Suppress (formerly
SoftView) of Riverain Technologies is such a tool for bone
suppression in chest radiographs. An early version of the
MTANN (massive training artificial neural network) model
for rib suppression proposed by Suzuki et al. [3] was evalu-
ated on 60 chest radiographs. Oda et al. [4] found that a com-
bination of rib-suppressed and original chest radiographs
could significantly improve the diagnostic performance of
radiologists over the use of chest radiographs alone for
the detection of small pulmonary nodules. Suppression of
bony structures in chest radiographs by using the image
processing technique can improve radiologist performance
in terms of nodule detection [5], as well as the performance
of computer-aided nodule detection (CAD) [6]. Previous
methods for bone suppression can generally be divided into

two categories: supervised and unsupervised methods. The
supervised methods treat bone suppression in chest radio-
graphs as a regression prediction problem, and the regressors
are trained or optimized by a DES training data set to esti-
mate the soft tissue or bone images [3, 7, 8]. The soft tissue
images are then reconstructed using the outputs of the
regressor with the local image features as the direct inputs
or by subtracting the outputs of the regressor from the chest
radiographs based on the prediction target of the regressor.
However, in the supervised methods, only local features
and information of the input chest radiographs can be used
to predict the soft tissue or bone images. The unsupervised
methods for bone suppression do not require the training
set, but these methods need segmentation and border loca-
tions of the bony structures as intermediate results [9, 10].
The bone-free images are reconstructed by the blind source
separation approach or from the gradient images modified
according to the intermediate results. The effectiveness of
unsupervised methods highly depends on the accuracy of
segmentation and border locations of bony structures.

Unlike the previous methods for the bone suppression
of chest radiographs, we proposed a supervised method by
treating the separation of soft tissue components from bone
components as an image decomposition problem. We

(a) (b) (c)

(d) (e)

Figure 1: An example of the processed DES training set: (a) the standard chest radiograph; (b) the processed DES soft tissue image; (c) the
processed DES bone image; (d) the soft tissue image directly obtained by the DES system; (e) the bone image directly obtained by the
DES system.
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attempted to use the information of whole chest radiographs
and the prior knowledge contained in the data set of real DES
radiographs to infer the soft tissue and bone images. The
decomposition of a single image is highly ill-posed, and the
effective prior or regularization is a critical factor for obtain-
ing the reasonable decomposed components. The general
image priors, such as smoothness [11] and sparsity [12, 13],
are too general to impose effective constraint on the solutions
of soft tissue and bone images. Considering the visual
characteristics of soft tissue and bone images, these images
are distinctly different from the images of other anatomical
positions or modalities. Soft tissue images are also distinctly
different from bone images, as well as from natural texture
images. Thus, we needed to construct specific priors of soft
tissue and bone images for the decomposition. Inspired by
the work of Tappen and Liu [14], we constructed nonpara-
metric priors of soft tissue and bone images in the kernel
density estimation framework. These nonparametric priors
are then integrated into a Bayesian maximum a posteriori
(MAP) model to estimate the soft tissue and bone images
for a given chest radiograph.

The key issue in estimating the nonparametric probabil-
ity density is sample selection. Given the assumption that if
the local features of the patches at the close anatomical posi-
tion in the chest radiographs are similar, the corresponding
patches in the soft tissue and bone images should also be
similar. We can search the nearest neighbors of unknown
patches in the soft tissue and bone images according to the
similarities among patches in chest radiographs. A simple
way for sampling is to build a large data set of patch triplets
(patches at the same spatial location of chest radiograph, soft
tissue image, and bone image) and then search the nearest
neighbors of each patch in a given chest radiograph to select
the corresponding patches of the soft tissue and bone as sam-
ples for density estimation. The size of the data set of patch
triplets should be large enough for accurate density estima-
tion. However, a very large data set would lead to a huge
computation cost of the nearest neighbor search for each
patch, and the information of spatial layout about chest
radiographs would be completely ignored. A more efficient
way to find the nearest neighbors of patches between two
images is the dense matching algorithms, such as SIFT Flow
[15], PatchMatch [13], and deformable spatial pyramid
(DSP) matching [16]. The corresponding relationship of sim-
ilar patches between two images can be represented by the
dense corresponding field or nearest-neighbor field. The
dense matching algorithms can use the spatial smoothness
prior of the corresponding fields to accelerate the search of
the nearest neighbors of image patches. The smoothness of
the corresponding fields can be ensured implicitly or explic-
itly, which is important to obtain more reasonable matching
of patches. In the current study, a hierarchically dense
matching algorithm is proposed to solve the corresponding
fields by integrating DSP and PatchMatch algorithms.

Given a large data set of DES radiographs, another issue
may occur regarding the selection of an effective subset of
images as exemplars to estimate the priors. Matching a given
chest radiograph to all chest radiographs in the training set
would be time-consuming. To alleviate this problem, we

selected several of the most similar images of the given chest
radiograph as exemplars. Similarities among the images are
defined based on their bag-of-words (BoW) histograms for
rapid search and selection. Other issues of our decomposi-
tion method, such as the normalization of chest radiographs
and optimization of decomposition energy function, are also
addressed. Our method can produce decomposition results
similar to those produced by the real DES system.

2. Methods

2.1. Image Data. The image data used in this study were col-
lected from two data sets. The first data set consisted of 503
posterior-anterior DES chest radiographies acquired with a
DES system (Revolution XR/d, GE) at Nanfang Hospital,
Guangzhou, China. The X-ray tube voltages for the two
exposures were 120 and 60 kV. The sizes of the chest radio-
graphs ranged from 2011 × 2011 pixels to 2048 × 2048 pixels,
and the pixel sizes ranged from 0.191mm to 0.195mm. The
images were stored in a DICOM format with a 16-bit
depth. The second one was the publicly available Japanese
Society of Radiological Technology (JSRT) data set. The
JSRT data set consisted of 247 standard posterior-anterior
chest radiographic images, among which 154 images con-
tained one pulmonary lung nodule, while the remaining
93 images contained no lung nodules. The nodule diame-
ters range from 5 to 60mm, and their intensities vary from
nearly invisible to very bright. All the images were scanned
from plain film radiographs (size: 2048 × 2048 pixels, pixel
size: 0.175mm).

We have collected 503 cases of DES chest radiographs
from the first data set. 403 cases were randomly selected to
construct the training set, and the remaining 100 cases were
considered the validation set. Each of the DES image triplets
in our collected data set included a standard CXR (denoted
by Y), a DES soft tissue image (denoted by S0), and a DES
bone image (denoted by B0). Given the sophisticated non-
linear postprocessing of the raw image data, the relationship
Y = S0 + B0 was not eventually satisfied. To build our decom-
position model, we need to process the DES images for exact-
ing the bone component B and soft tissue component S to
satisfy Y = S + B. The gradient G of the bone components
in Y were obtained as the transformed gradient field of Y
using cross projection tensors [17] from B0. The bone com-
ponent B in Y was ultimately reconstructed from G through
2D integration. The corresponding soft tissue component S
can be obtained as Y‐B. Finally, we constructed a training
set containing the standard DES CXRs, the processed DES
soft tissue, and bone images. The spatial resolution of images
was then rescaled by the factors 0.25 and 0.3 and cropped by
a rectangle centered at the images with a size of 512 × 512
pixels. An example of the processed training set is shown in
Figure 1. In Figure 1, you can see that the contrast was
enhanced in the processed DES soft tissue image compared
to the original. The bony component can be seen more
clearly in the processed DES bone image than the original.
For convenience, the processed DES soft tissue and bone
images are considered the DES images in the following.
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2.2. Overview of the Proposed Method. Figure 2 illustrates an
overview of the decomposition of a standard chest radio-
graph using the proposed method. A database of the image
triplets (chest radiographs and corresponding soft tissue
and bone images) of DES radiographs has been established
in advance. Given a standard chest radiograph as the input,
its soft tissue and bone components are then produced with
the following basic steps:

(1) Search and find the exemplars from the database of
DES radiographs according to the similarity between
the representations of the input chest radiograph and
the chest radiographs in the database

(2) Solve the dense corresponding fields between the
input image and the chest radiographs of exemplars
using a dense matching algorithm

(3) Construct the exemplar-based nonparametric priors
for unknown soft tissue and bone images

(4) Optimize an energy function and infer the soft tis-
sue and bone components under a Bayesian MAP
framework

The framework for the decomposition of a chest radio-
graph is similar to the method proposed by Tappen and Liu
[14] which was used to solve the face hallucination problem.
The image hallucination or superresolution could be treated
as an image restoration problem of missing high-frequency
components of the original image that need to be restored.
However, an image decomposition problem is more ill condi-
tioned and more difficult than face hallucination and image
superresolution. The method of Tappen and Liu cannot be
directly applied to the task of decomposition of chest radio-
graphs. We need to establish the decomposition model,
develop the efficient selection strategy of exemplars and
dense matching algorithm for large images, and design the
efficient optimization algorithm for the energy function of a
decomposition model.

2.3. Bayesian Framework for Decomposition of Chest
Radiographs. We expressed the decomposition of chest
radiographs in a Bayesian MAP inference framework. Given
a chest radiograph Y, the goal was to find a soft tissue image
S ∗ and a bone image B ∗ which maximize the posterior:

S∗,B ∗ = arg max
S,B

p S, B ∣ Y

= arg max
S,B

p Y ∣ S, B p S, B
1

Assuming that the bone image B and the soft tissue image
S were independent, then

S∗,B ∗ = arg max
S,B

p Y ∣ S, B p S p B , 2

where p S and p B were the probability density functions
(image priors) of the soft tissue and bone components,
respectively. The likelihood function p Y ∣ S, B expressed
the compatibility between the observed chest radiograph
and the decomposed soft tissue and bone components. Con-
sidering that we expected a chest radiograph Y to be decom-
posed as Y = S + B, p Y ∣ S, B is expressed as

p Y ∣ S, B = 1
Zd

exp −λ Y − S − B 2
2 , 3

where λ is a tuning coefficient and Zd is the normalization
constant to make p Y ∣ S, B a valid distribution.

2.4. Exemplar-Based Nonparametric Image Priors. The key
for successfully decomposing chest radiographs is the effec-
tive image priors p B and p S . As previously discussed,
the general image priors cannot work well in separating the
soft tissue component from the bone component. We formed
the nonparametric priors from the database of actual DES
radiographs. The image triplets in the database were denoted
as the set Yi, Si, Bi , i = 1, 2,⋯,N . The probability density

Decomposition resultInput chest radiograph

Data term
Optimization

Dense matching Prior terms
Database of DES radiography

Selection Sampling

PriorExemplars

Figure 2: Flowchart of the proposed method for decomposition of a chest radiograph.
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of a soft tissue image S in a form of kernel density estimation
can be written as

p S = 1
ZS

〠
N

i=1
K S, Si ; Ti , 4

where K S, Si ; Ti is a kernel function measuring the similar-
ity between S and Si, ZS is the normalization factor, and Ti is
a corresponding field which represents the pixel-to-pixel cor-
responding between S and Si. Using the corresponding field
Ti, the relationships of image patches were established to
align S and Si. For example, an image patch centered at x in
S (denoted as RxS) corresponded to the image patch centered
at x + Ti x in Si (denoted as Rx+Ti x Si).

If the Gaussian kernel is adopted as the kernel function
for density estimation, the prior p S can be formulated as

p S = 1
ZS

〠
N

i=1
exp −ηS〠

x∈S
RxS − Rx+Ti x

Si
2

2
, 5

where ηS is a hyperparameter. Similarly, the prior p B can be
written as

p B = 1
ZB

〠
N

i=1
exp −ηB〠

x∈B
RxB − Rx+Ti x

Bi

2

2
6

When there are many samples (e.g., N is large) in the
image database, it would be very expensive (and unneces-
sary) to construct the priors p B and p S using all samples.
To alleviate this problem, a small subset of samples should be
selected in the image database as exemplars. The above priors
estimated using the selected samples are regarded as
exemplar-based priors. The search and selection method for
the exemplars and the resolution of corresponding fields will
be described in the following subsections.

2.5. Preprocessing and Local Feature Descriptors of Chest
Radiographs. Due to the differences in acquisition condi-
tions and patients, the density and contrast vary within dif-
ferent chest radiographs, which were acquired by X-ray
digital radiography (DR) or computed radiography and
DES systems. These differences may affect the comparability
of image features. The preprocessing step of contrast nor-
malization is necessary to achieve consistency of chest
radiographs. We adopted the guided image filter [18] to
enhance the structural details and normalize the contrast
of chest radiographs.

A guided image filter is an edge-preserving smoothing
filter, which is effective and efficient in many computer
vision and graphic applications. The principle of the guided
image filter is that the input image is filtered through a guid-
ance image through utilizing the structures in the guidance
image. As a result, the output image maintained the overall
characteristics and gradients of the input image when the
input image is used as the guidance image. For a given chest
radiograph Y, its smoothed image by the guided image filter
with a large radius (e.g., 40 pixels) is used as a base layer Y0.

The detail layer is Yd = Y − Y0. The chest radiograph Y is
normalized as

Y⟵ Yn =
Yd − μd

σd
, 7

where μd and σd are the intensity mean and standard devia-
tion of Yd , respectively. Yn is the normalized Y. Given that
the bone images are rather homogeneous at the large scale,
the base layers of the bone images are very homogeneous.
Actually, the base layer of Y is almost identical to that of
the corresponding soft tissue image S apart from a global
intensity offset. Thus, the soft tissue image S is normalized
consistently to equation (7) without the loss of structural
details as

S⟵ Sn =
S − Y0 − μS

σd
, 8

where μS is the intensity mean of S − Y0 and Sn is the nor-
malized S. And the bone image B is normalized as

B⟵ Bn =
B − μB
σd

, 9

where μB is the intensity mean of B and Bn is the normalized
B. In this way, the chest radiographs exhibited consistent
contrast with the enhanced details, and the relationship
Y = S + B between the normalized images was also main-
tained. The normalized soft tissue/bone images by the use
of the proposed normalization procedure can be easily recov-
ered to their original form, and the details of corresponding
chest radiographs are enhanced.

In our proposed system, the image representations and
the corresponding image patches highly relied on the local
feature descriptors. Ideally, the descriptors should have high
discriminative power and invariance to image transforma-
tions. However, no single kind of dense local descriptor can
achieve these two goals very well. We combined three kinds
of dense descriptors to describe the local feature and the con-
textual information of chest radiographs. The first kind of
descriptor is the small raw image patch (e.g., 7 × 7 patch).
The raw image patches contain the important (normalized)
intensity information. The second kind of descriptor exhibits
the responses of the modified Leung-Malik (LM) filter bank
[19]. The modified LM filter bank consists of the first and
second derivatives of Gaussians at six orientations and four
scales resulting in a total of 48 filters, one Laplacian of Gauss-
ian filter and one Gaussian filter. The filter scales range from
1 to 32 pixels. The 50-dimensional filter bank responses are
normalized by Weber’s law, which can obtain the informa-
tion of small textural and large structures. The third kind of
descriptor is the dense SIFT (Scale-Invariant Feature Trans-
form) descriptor [20], which is extracted to characterize local
image structures and encode contextual information. For
each pixel in an image, its neighborhood (e.g., 16 × 16 block)
is divided to a 4 × 4 cell array. The gradient orientations in
each cell are quantized into eight bins. The obtained dense
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SIFT descriptors are 4 × 4 × 8 = 128 dimensional. The com-
bined descriptors are 277 (49 + 50 + 128) dimensional.
Finally, we set the different weight factors for the three
kinds of descriptor to balance their contributions and
reduce the dimensionality of combined descriptors through
principal component analysis (PCA) to alleviate computa-
tional burden.

2.6. Search and Selection of Exemplars from Image Database.
Rapid search of similar images for an input image from a
database can be performed by comparing the global repre-
sentations of images. We used BoW image representation
[21] as the global representation of the chest radiographs.
The BoW image representation is analogous to the BoW rep-
resentation of text documents, which makes techniques for
text retrieval readily applicable to the problem of image
retrieval. The BoWmodel first needs to construct a codebook
containing visual words (cluster centers) by clustering invari-
ant descriptors on a given training data set and then exacts
the local descriptors of an input image that will be vector
quantized with respect to these visual words. Given a code-
book, an image is represented as a histogram formed by the
number of occurrences of each visual word on the sampled
local descriptors from the image. In this study, the codebooks
of local descriptors are generated by k-means clustering.
Since the difference between chest radiographs is subtle, a rel-
atively large codebook is needed. To further improve the
descriptive power of BoW histograms, a spatial pyramid
model is adopted to incorporate the spatial information of
images [22]. Specifically, the spatial pyramid includes two
levels: the entire image (level 0) and its four rectangular grid
cells (level 1). The BoW histograms of the entire image region
and the four subregions are concentrated as the global repre-
sentation of a chest radiograph.

Let H k denote the kth element of a concentrated his-
togram H. The image similarity measure of two images A
and B in the image search stage can be defined as histo-
gram intersection:

sim A, B = sim HA,HB =〠
k

min HA k ,HB k , 10

where the maximum of k is 5000. This similarity measure
refers to an approximate number of matches between the
local descriptors at two spatial levels in the two images.
Other histogram similarities or distance such as the Earth
Mover’s Distance can also be used [23]. The top M most
similar chest radiographs with the corresponding soft tis-
sue and bone images in the database to a given chest
radiograph in terms of similarity measure (equation (10))
are selected as exemplars for the estimation of priors.

2.7. Hierarchically Dense Matching of Chest Radiographs. To
construct the priors in equations (5) and (6), we determined
the dense corresponding fields and matched the pixels
between the input and the chest radiographs of selected
exemplars. Unlike the traditional dense matching problems
such as stereo or nonrigid interpatient registration, in which
the two images contain the same scene or objects, we

attempted to densely match intrapatient chest radiographs
containing different objects with varying appearances and
shape. The variations in chest radiographs can make match-
ing of the low-level image patches ambiguous.

To address the dense matching problem, several dense
matching methods have been proposed which typically
enforce both appearance agreement between matched pixels
and geometric smoothness between neighboring pixels, such
as SIFT Flow [15] and deformable spatial pyramid (DSP)
[16]. SIFT Flow relies on the pixel-level Markov random field
(MRF) model with a hierarchical optimization technique.
DSP matching uses a pyramid graph model that simulta-
neously optimizes match consistency ranging from an entire
image to coarse grid cells and to every single pixel. Typically,
DSP is faster than SIFT Flow because DSP only optimizes the
MRF energy in the coarse levels with direct local search in
the pixel-level layer. However, DSP uses the downsampled
local descriptors in the coarse grid cells that may cause the
wrong matching, which cannot be corrected well in the fol-
lowing local search. The PatchMatch algorithm computes
fast dense correspondences in another way [24]. For effi-
ciency, this algorithm abandons the global optimization that
enforces explicit smoothness on neighboring pixels. Instead,
it progressively searches for correspondences by a random-
ized search technique; a reliable match at one pixel subse-
quently guides the matching locations of its nearby pixels,
thereby implicitly enforcing geometric smoothness. Since
the PatchMatch algorithm can only determine a local opti-
mum because of the randomized search and the field prop-
agation strategy, the final correspondence field estimated
by PatchMatch highly relies on the initial estimation. The
PatchMatch algorithm also discards the prior knowledge
on the spatial layout of images, which starts at a totally
random initialization.

Matching two images should determine the most similar
local feature (match) from one image for each pixel to the
other image with the geometric constraint. However, the
effective geometric constraints are unclear. Intuitively, the
significant matching between chest radiographs should have
close appearance and should be located near the same ana-
tomical sites simultaneously. We performed dense matching
of chest radiographs in a hierarchical way similar to DSP
matching but without the need of energy optimization simi-
lar to the PatchMatch algorithm.

The input chest radiograph is divided into nonoverlap-
ping rectangular grid cells, and the chest radiographs in
the database are divided into overlapping cells with the
fixed step size analogous to the DSP matching algorithm.
The similarity between grid cells is defined as the intersec-
tion of the BoW histogram. The grid cells should be large
enough (e.g., 32 × 32 pixels) to estimate the reliable distri-
bution of visual words and identify their anatomical sites.
Given that all chest radiographs exhibit a similar spatial
layout like that of the clavicles located at the top of the
lung field and the hearts located between the left and right
lungs, the search for similar grid cells was limited in the
local regions of a 1/4 image area. By matching the grid
cells, we obtained a very coarse corresponding field T.
Using T with random permutation as the initial estimation
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of the corresponding field, we applied the field propagation
and local randomized search as the PatchMatch algorithm
to refine the corresponding field. More details of our hierar-
chically dense matching are described in Algorithm 1. The
corresponding fields of two chest radiographs found by the
proposed hierarchically dense matching and PatchMatch
algorithms are presented in Figure 3. Obviously, our
algorithm can achieve a smoother corresponding field. In

contrast, the corresponding field solved by the PatchMatch
algorithm lacks consistency due to its overrandomization.

Figure 3 illustrates a visualization of corresponding fields
by our proposed hierarchically dense matching and Patch-
Match algorithms. Figures 3(a) and 3(b) show two normal-
ized chest radiographs as the source image and target image
for dense matching, respectively. Figures 3(c) and 3(d) illus-
trate the visualization of the corresponding fields solved by

Input: Two image A (source image) and B (target image);
Dense local descriptors FA of A and FB of B.
Output: Corresponding field T.
1: Divide A to the non-overlapping cells of size w×w and obtain the BoW histograms Hi

A for each cell i.

2: Divide B to overlapping cells of size w×w with step size s and obtain the BoW histograms Hj
B of each cell j.

3: Determine the most similar cell centered at (xB, yB) in B for each cell cA in A.
4: Set T(x, y)=(xB, yB) ((x, y)∈cA) for each cell cA in A and random permute of T.
5: Update T by field propagation as PatchMatch algorithm using the local descriptors FA and FB.
6: Update T by locally randomized search using the local descriptors FA and FB.
7: Repeat steps 5 and 6 a fixed number of times or until convergence.

Algorithm 1: Hierarchically dense matching.

(a) (b)

(c) (d)

Figure 3: Visualization of corresponding fields.
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our hierarchically dense matching and PatchMatch algo-
rithms, respectively. Corresponding fields in Figures 3(c)
and 3(d) are displayed with the same color mapping.

2.8. Optimization of Decomposition Energy Function with
Exemplar-Based Priors. The MAP estimation of the soft tis-
sue image S and the bone image B can be rewritten as

S∗,B ∗ = arg min
B,S

E S, B , 11

where

E S, B = − log p Y ∣ S, B − log p S − log p B
= Ed S, B + Ep S + Ep B ,

12

where Ed and Ep are the data and prior terms, respectively.
Ignoring the constant, we obtained

Ed S, B = λ Y − S − B 2
2, 13

pcEp S = − log〠
x

exp −ηS 〠
M

i=1
RxS − Rx+Ti x

Si
2

2

14

The prior in equation (14) can be considered induced
from the density estimated by image-level samplings. As
for patch-level samplings, the prior term Ep S can be
reformulated as

Ep S = −〠
x

log〠
M

i=1
exp −ηS RxS − Rx+Ti x

Si
2

2
15

Compared to equation (14), the form of equation (15)
is more flexible, hence adopted in our final decomposition
model. Analogously, we can modify the prior term Ep B .

The gradients of E S, B with respect to S and B can
be derived easily, and the energy function E S, B can be
minimized by a gradient descent algorithm. However, the
gradient descent algorithms usually need many iterations to
converge. We proposed an iteratively reweighted least-
squares (IRLS) [25] scheme to efficiently minimize the
energy function E S, B by generating a sequence St , Bt via

St+1, Bt+1 = arg min
B,S

λ Y − S − B 2
2

+ ηS〠
x

〠
M

i=1
ws

x,i RxS − Rx+Ti x
Si

2

2

+ ηB〠
x

〠
M

i=1
wb

x,i RxB − Rx+Ti x
Bi

2

2
,

16

where the weights are

ws
x,i =

exp −ηS RxSt − Rx+Ti x
Si

2

2

∑M
j=1exp −ηS RxSt − Rx+T j x

Sj
2

2

,

wb
x,i =

exp −ηB RxBt − Rx+Ti x
Bi

2

2

∑M
j=1exp −ηB RxBt − Rx+T j x

Bj

2

2

17

The solution St+1, Bt+1 can be obtained by solving the
following linear equations:

λ + ηS〠
x

RT
x Rx S + λB = λY + ηS 〠

M

i=1
〠
x

wx,iR
T
x Rx+Ti x

Si,

λS + λ + ηB〠
x

RT
x Rx B = λY + ηB 〠

M

i=1
〠
x

wb
x,iR

T
x Rx+Ti x

Bi

18

Since wx,iR
T
x is the operation to rearrange the weighted

patches into an image and RT
x Rx is just a diagonal matrix,

the linear equations can be easily solved element-wise. The
initial solution of S and B can be obtained by substituting
the two prior terms by their quadratic upper bound using
Jensen inequality.

2.9. Algorithm Summary. The DES image triplets in an estab-
lished database are denoted as the set Yi, Si, Bi , i = 1, 2,
⋯,N , which were preprocessed and normalized by the use
of the approach described in Section 2.5. A PCA projection
matrix P for local descriptors and a BoW codebook D were
learned on the samples of local descriptors from the database.
For each (normalized) chest radiograph Yi in the database,
the dense local descriptors Fi, the spatial pyramid representa-
tion Hi, and the BoW histograms of the subregions were
computed by the use of P and D in advance.

The proposed decomposition procedure of a new chest
radiograph Y can be summarized as follows:

Step 1. Preprocess and normalize the input chest radiograph
Y according to equation (7). Let Y0 denote the base layer of
Y. μd and σd are the intensity mean and standard deviation
of Y − Y0, respectively. The normalized Y is computed as
Y⟵ Yn = Yd − μd /σd .

Step 2. Compute the dense local descriptors F of Y by the use
of the PCA projection matrix P.

Step 3. Compute the spatial pyramid representation H and
the BoW histograms of subregions of Yn by use of the
codebook D.
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Step 4. Select the topM most similar chest radiographs in the
database in terms of similarity measure (equation (10)) as the
exemplars of Y.

Step 5. Solve the dense corresponding field Tk between Y and
Yk using Algorithm 1 for each exemplar k k = 1, 2,⋯,M .

Step 6. Construct the nonparametric priors for unknown soft
tissue image S and bone image B according to equations (5)
and (6).

Step 7. Optimize the energy function in equation (12) by the
use of the IRLS scheme, and solve the soft tissue image S and
bone image B.

Step 8. Rescale the soft tissue image S and bone image B, and
compensate the base layer of the soft tissue image S as
S⟵ σdS + Y0 + μd , B⟵ σdB.

The final decomposition results of the input chest radio-
graph Y are S and B obtained in Step 8.

2.10. Experimental Settings. The experiments were conducted
on a PC with a duo Intel Xeon CPU (3.2GHz) and 16GB
RAM. The implementations were performed using Matlab
2016a with a VLFeat toolbox [26].

The weight coefficients for the three kinds of local
descriptors were set to achieve the same variance for each
dimension of the combined descriptors. To accelerate the
image search and matching procedures, the dimensionality
of the combined descriptors was reduced to 60 by PCA,
whereas about 98% of variation of the descriptors was
maintained. The codebook for BoW representations was
generated by k-means clustering on the samples of local
descriptors from the training data set. The size of each
BoW codebook was set to 5000. The codebook was used
to compute the BoW histograms for both the image search
and hierarchical dense matching. To perform the hierarchi-
cally dense matching algorithm, the size w of subregion was
set to 32 × 32 pixels, and the iteration number of corre-
sponding field propagation and locally randomized search
was set to 5. The size of sampling patches for constructing
the priors from the actual soft tissue and bone images was
set to 5 × 5 pixels.

We used a case-wise procedure to construct the
exemplar-based priors and evaluate the performance of the
decomposition results. The top M most similar cases to the
testing chest radiograph among the training set were then
selected as the exemplars. The maximum value of M was
set to 7 in the experiments.

In the energy function of image decomposition, four
parameters, namely, λ, ηS, ηB, and the number of exemplars
M, were considered. λ is in the range of [10−1 to 106], and
ηS is in the range of [10−6 to 0.5]. ηB was set as 2 × ηS. A large
value of ηS would lead to numerical problems. The effect of
different parameters was investigated in the following sub-
sections. The average computation time of our decomposi-
tion procedure using the unoptimized implementation is
135.8 seconds when the number of selected exemplar images

is 5. Most of the computation time is spent in the stage of
hierarchically dense matching, and it is dependent on the size
of the image and the number of selected exemplars.

The decomposition performance of the soft tissue and
bone was quantitatively evaluated using the following mea-
sures: The root mean squared error (rmse) is used to evaluate
the reconstruction error of the estimated soft tissue/bone
image relative to the actual (normalized) soft tissue/bone
image, which is defined as

rmse = 1
n
〠
x

Ẑ x − Z x 2, 19

where Ẑ is a reconstructed soft tissue/bone image, Z is the
corresponding “ground truth” image, x denotes the pixel
locations in Z, and n is the number of pixels in the image
Z. A smaller value of rmse indicates a better estimation of
the ground truth. The quality of bone suppression is also
evaluated using the bone suppression ratio (bsr) which is
defined as [10]

bsr = 1 − ∑x Ŝ x − S x
2

∑x Y x − S x 2 , 20

where Ŝ is an estimation of the actual soft tissue image S
and Y is the testing chest radiograph. bsr = 1 indicates per-
fect performance.

If the bone component is treated as a type of structural
noise, then the bone suppression procedure of the chest radio-
graph is considered denoising or filtering. A well-known
denoising performancemeasure called the structural similarity
image measure (ssim) [27] can be also used to evaluate the
quality of the decomposed soft tissue and bone images. The
intensity ranges of images are rescaled into the range of [0 to
255], and the default setting parameters in the implementation
(https://ece.uwaterloo.ca/~z70wang/research/ssim/) of ssim
are used to compute the values of ssim.

3. Experimental Results

3.1. Effect of Hyperparameters. We varied the values of the
four parameters λ, ηS, ηB, and M to investigate their effect
and to determine the proper settings. Figure 4 shows the
average measures of decomposition performance at differ-
ent λ with fixed ηS (ηS = 10−5) and fixed M (M = 5). The
exemplar images were selected as described in Subsection
2.5. When the value of λ is large, the optimization of the
energy function tends to make substantial contributions of
the data term to the decomposed images. We observed that
larger λ leads to better decomposition in terms of three
performance measures. However, when the parameter λ
becomes very large, the decomposition results can be
extremely arbitrary and meaningless because of ignoring
the use of the prior terms. An appropriate value of λ accord-
ing to the experimental results is 100.

Figure 5 shows the average measures of decomposition
performance at different ηS with fixed λ (λ = 100) and fixed
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M (M = 5). From Figure 5, we observed that the lower values
of ηS and ηB led to better decomposition. In fact, the optimi-
zation of the log-sum-exp function tends to average the
matched patches of each position when ηS and ηB have a
low value. As the value of ηS and ηB increases, the optimiza-
tion of the log-sum-exp function more closely approximates
the min operation and the decomposed images looks sharper.
However, the log-sum-exp functions with the large values of
ηS or ηB also introduce artifacts in the decomposed images
and results in worse decomposition performance. Based on
these results, the parameters λ and ηS were set to 100 and
10−5 in the subsequent experiments, respectively.

The number of exemplarsM is another crucial parameter
for decomposition performance. Figure 6 shows that decom-
position performance was improved significantly by increas-
ing the number of exemplars. However, the computation cost
of image matching and energy optimization would exponen-
tially increase when many exemplars were used to construct
the prior terms. As shown in Figure 6, the improvement in
performance is relatively small when the number of exem-
plars is over 5. The number of exemplars M was set to 5 in
subsequent experiments if M was not specified.

Some examples of decomposition results are illustrated in
Figures 7–10. Figures 7 and 8 can be enlarged and viewed on
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Figure 4: The effect on decomposition performance of parameter λ (weight of the data term).
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Figure 5: The effect on decomposition performance of parameter ηS for kernel density estimation.
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the screen for a better comparison. We observed that the ribs
and clavicles are suppressed substantially and the visibility of
the soft tissue is maintained in the reconstructed soft tissue
images. Visually, the reconstructed soft tissue image and
the actual image are similar. Comparing the reconstructed
bone images with the actual bone images, some bone edges
are more obscure where the bone edges are weak in the
observed chest radiograph. In Figure 8, typical motion arti-
facts in the actual DES bone images were observed. Our
decomposition method can reduce the motion artifacts to
some extent, as shown in Figure 8(d), because of the smooth-
ing effect of the weighted average of sampling patches. The
use of the actual DES soft tissue and bone images with
motion artifacts as the ground truth may lead to an overesti-
mated reconstruction error. Figures 9 and 10 show examples

of decomposition results using different numbers of exem-
plars (M = 1, 3, and 5). Visual improvement of the estimated
soft tissue and bone images is observed when more exem-
plars are used. Some block artifacts can be observed in the
reconstructed soft tissue and bone images using fewer exem-
plars. These block artifacts were generated because of dissim-
ilar patches in the exemplar chest radiographs for some
patches in the input chest radiograph or mismatches between
the patches. The selection of similar images as exemplars or
using more exemplar images could ensure that each patch
in the input chest radiograph has some possible similar
patches in the exemplar images and could reduce the block
artifacts and reconstruction error. As shown in Figure 9(c),
the reconstructed soft tissue image is very similar to the cor-
responding DES soft tissue image shown in Figure 9(d), and

(a) (b) (c) (d) (e)

Figure 7: Decomposition results of a chest radiograph without motion artifacts: (a) the right lung field of a chest radiograph; (b) the
decomposed soft tissue image; (c) the actual DES soft tissue image; (d) the decomposed bone image; (e) the actual DES bone image.

(a) (b) (c) (d) (e)

Figure 8: Decomposition results of a chest radiograph with motion artifacts: (a) the left lung field of a chest radiograph; (b) the reconstructed
soft tissue image by use of our method; (c) the actual DES soft tissue image; (d) the reconstructed bone image by use of our method; (e) the
actual DES bone image with obvious motion artifacts.
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the bone components of the corresponding chest radiograph
shown in Figure 9(e) are substantially suppressed. In fact, the
ssim index between Figures 9(c) and 9(d) is 0.915. A high
ssim index indicates that most of the structures and details
of the ground truth image are contained in the reconstructed
image. Comparing Figure 9(c) with Figure 9(a), the bone
component in Figure 9(c) is suppressed more completely
than that in Figure 9(a). The decomposed bone image
shown in Figure 10(c) looks clearer compared to that in
Figure 10(a), which looks a little messy with fewer exemplars.
With more exemplars, the reconstructed bone images show
clearer rib edge and are more similar to the DES bone image
shown in Figure 10(d).

We used our decomposition method to process the chest
radiographs in the JSRT database which is the most com-
monly used database of chest radiographs for computer-
aided detection and processing techniques [28]. Since the
corresponding ground truth of the soft tissue and bone
images of the JSRT database is unknown, the publicly avail-
able bone suppression results provided by Horvath [28] using
the gradient modification method were used to be qualita-
tively compared with the results of our method. Figure 11
shows the decomposition results of two chest radiographs
from the JSRT database. Visually, the reconstructed soft

tissue images of our method are more natural. When it is
close to the thoracic edge, the soft tissue image reconstructed
by the gradient modification method produced the shadows
apparently. The two methods had advantages and disadvan-
tages. The results of the gradient modification method
depend on the segmentation of ribs and clavicles, which
might be insensitive to the types of acquisition equipment
of chest radiographs. However, the shadows of bones, which
were not segmented, could not be removed. The results of
our method depend on the appearance of the chest radio-
graphs. Even if the images in the JSRT database are the
scanned films and the number of DES exemplar is limited,
our method could work well in most cases.

3.2. MAP Decomposition versus Locally Weighted Regression.
Compared with the decomposition method that minimized
the MAP energy function using the exemplar-based prior
term, a more simple and direct method for estimating soft
tissue and bone images is the weighted regression, which is
analogous to label transfer [29]. Considering the sampling
patches pi, i = 1,⋯,M from the exemplar images based
on the corresponding fields as the nearest neighbors, a soft
tissue or bone image patch can be estimated by locally
weighted regression as p̂ =∑M

i=1wipi, where the weight wi is

(a) M = 1, rmse = 0 46 (b) M = 3, rmse = 0 44 (c) M = 5, rmse = 0 41

(d) Ground truth (e) Chest radiograph

Figure 9: The reconstructed soft tissue images using the different numbers of exemplars. From left to right, the numbers of used exemplars
(M) are 1, 3, and 5, respectively. rmse is the root mean squared error of the reconstructed soft tissue image. (a–c) are the reconstructed soft
tissue images. (d) corresponds to the ground truth. The corresponding standard chest radiograph is (e).
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(a) M = 1, rmse = 0 46 (b) M = 3, rmse = 0 44 (c) M = 5, rmse = 0 41

(d) Ground truth (e) Chest radiograph

Figure 10: The reconstructed bone images using the different numbers of exemplars. From left to right, the numbers of used exemplars (M)
are 1, 3, and 5, respectively. rmse is the root mean squared error of the reconstructed soft tissue image. (a–c) are the reconstructed bone
images. (d) corresponds to the ground truth. The corresponding standard chest radiograph is shown in (e).

(a) (b) (c) (d) (e)

Figure 11: Decomposition results of two chest radiographs from the JSRT data set: (a) the original chest radiographs (“JPCLN063” and
“JPCNN071”); (b) the reconstructed soft tissue images by the use of our method; (c) the bone-suppressed images by the use of the
gradient modification method; (d) the reconstructed bone images by the use of our method; (e) the estimated bone structures by the use
of the gradient modification method.
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defined based on the matching error of the local descriptor.
The result of locally weighted regression can be considered
the minimum mean square estimation of the soft tissue or
bone image patch. The entire soft tissue/bone image is recon-
structed by rearranging all of the estimated patches. The
locally weighted regression method is similar to the kNN
regression method proposed by [7]. The main difference is
the search method of kNN and the local descriptor used.

The mean and standard deviation of performance
measures for MAP decomposition and locally weighted
regression are listed in Table 1. From the results shown in
Table 1, our method is significantly superior to the locally
weighted regression. rmse is computed on the normalized soft
tissue and bone images. The MAP decomposition method
yields a lower rmse and a higher bone suppression ratio than
the locally weighted regression. The values of the ssim of the
reconstructed soft tissue images by two methods are 0.927
and 0.846, respectively. The high ssim indicates that the detail
structures in the DES soft tissue image are preserved by two
decomposition methods. Since the intensity variations of
soft tissue images are significantly larger than those of bone
images, the ssim of the reconstructed bone image is lower
than the ssim of the reconstructed soft tissue images.

The decomposition results of a chest radiograph by the
use of the MAP model and the locally weighted regression
method are shown in Figure 12. The soft tissue images and
bone images reconstructed by the MAP model in Figure 12
are visually much closer to the ground truth than that by
the locally weighted regression method. And the reconstruc-
tion errors (rmse) of the soft tissue image estimated by the
MAP model and the locally weighted regression are 0.41
and 0.44, respectively. Actually, the optimization of the
MAP energy function with the data term tends to satisfy
the constraint Y = S + B and utilizes more information on
the input chest radiograph to reduce the reconstruction error
and generate higher fidelity results. By contrast, the locally
weighted regression cannot ensure that Y − S − B 2 can be
minimized definitely. Thus, the locally weighted regression
can only yield worse estimation of the soft tissue and bone
images than the MAP decomposition.

4. Discussion

In our MAP decomposition model, the prior terms are ren-
dered in the log-sum-exp format. For small values of the
parameter ηS or ηB, the prior terms can be considered the
approximations to the averaging function of quadratic errors
between image patches. From the experimental results, we
observed that the small values of the parameter ηS or ηB could
lead to better decomposition results of the chest radiograph
in terms of the three performance measures. The optimal
values of ηS and ηB can be dependent on the data set and
the performance measures. It is interesting to investigate
the other forms of the prior term using other kernel functions
for density estimation or the robust loss functions as prior
terms for decomposition. Combining the exemplar-based
priors, the general image priors, such as total variation [11]
and sparsity [30], would be helpful in further improving the

decomposition model. Additionally, some methods on image
quality improvement can be considered to further enhance
the algorithm performance, such as convolution network-
based processing [31], fuzzy similarity-based method [32],
and sparse coding-based processing [33–35].

The basis of our method is the database of DES radio-
graphs, which is used to estimate image priors. In theory,
the estimation accuracy of image (patch) prior probability
depends on the samples. However, even the soft tissue and
bone components cannot be separated perfectly through
using a DES system. Furthermore, a few motion artifacts
are present in the soft tissue and bone images of two-
exposure DES as a result of cardiac motion and breath. The
soft tissue and bone components were also not successfully
separated in the regions with motion artifacts. In this work,
we acquired enough DES radiographs from Nanfang Hospi-
tal, Guangzhou, China, which is useful for that similar
patches, for a patch in the source chest image can be found
in the selected exemplars of the training set more possibly.
From the experimental results, larger λ (weight of the data
term) can lead to better decomposition in terms of the three
performance measures. The data term had substantial contri-
butions to decomposition performance, and the MAP
decomposition model was effective for the separation of bone
images from the chest radiographs. But this does not indicate
that the prior terms are not helpful for decomposition since
the decomposition results can be extremely arbitrary and
meaningless without the prior terms. Actually, the decom-
posed soft tissue image S and bone image B only tend to sat-
isfy the constraint Y = S + B when the parameter λ becomes
very large.

One bottleneck of our method is the large computation
cost mainly because of dense matching between chest radio-
graphs. Although the local descriptors and BoW histograms
of the images in the database have been computed off-line
and restored, the running time of our method (135.8 s per
image of 512 × 512 pixels) is still longer than that of MTANN
regression (1.63 s per image of 512 × 512 pixels). Actually,
with the popularity of convolutional neural networks
(CNN), we also proposed a cascade architecture of CNN
(called CamsNet) [36] to improve the results of our MAP
model and reach a better result.

The ultimate goal of decomposition or bone suppression
of chest radiographs is to improve the performance of radiol-
ogists in diagnosing lung diseases. But this ultimate goal can-
not be realized directly. Considering that the usefulness of
DES soft tissue images had been proved, our decomposition

Table 1: The average performance of MAP decomposition and
locally weighted regression on the validation set with 100 standard
chest radiographs. bsr denotes the bone suppression ratio. rmse-S
and ssim-S denote the root mean squared error (rmse) and the
structural similarity image measure (ssim) for the reconstructed
soft tissue, respectively.

Method bsr rmse-S ssim-S

MAP decomposition 0.715 0.414 0.927

Weighted regression 0.704 0.441 0.846
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method is aimed at producing the decomposition results
similar to the DES soft tissue and bone images as possible.
A very small reconstruction error (e.g., rmse) and a very
high bone suppression ratio may indicate indirectly the use-
ful decomposition results. However, preserving the details in
the abnormal regions and enhancing the contrast of the nod-
ules are important. The data (fidelity) term in the MAP
decomposition model can provide a trade-off to balance
structure preserving and smoothing. It would be helpful to
integrate some general image priors, such as total variation,
sparsity, or low rank for bone images with the MAP model.
The decomposed bone image would be smoother, and more

details of the input chest radiograph would be maintained in
the decomposed soft tissue image. The detectability of nod-
ules in the decomposed soft tissue images can be further
improved by designing the decomposition energy functions
using a certain probability of abnormality detection or opti-
mizing the local descriptors for reducing the mismatches of
image patches in abnormal regions. And a more specific
nodule detection algorithm should be also developed for
the decomposed soft tissue images. Furthermore, the useful-
ness of our decomposition results for improving the perfor-
mance of radiologists in diagnosing lung diseases will be
investigated in the future.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 12: Comparison of the decomposition results through the MAP model and the locally weighted regression method: (a) the
reconstructed soft tissue image through the locally weighted method; (b) the decomposed soft tissue image through the MAP model;
(c) the DES soft tissue image of (g); (d) the reconstructed bone image through the locally weighted method; (e) the decomposed bone
image through the MAP model; (f) the DES bone image of (g); (g) the standard chest radiograph.
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5. Conclusions

We presented a decomposition method of chest radiographs
using the exemplar-based nonparametric priors of soft tissue
and bone images. Using the real DES radiographs as the
exemplars of a chest radiograph for decomposition, the
nonparametric priors of the soft tissue and bone images
were estimated on the samples of image patches, which
were sampled based on dense matching of chest radiographs.
Integrating the nonparametric priors into a MAP model,
the soft tissue and bone images were reconstructed by min-
imizing the energy function with the proposed efficient
optimization algorithm. Our method could produce soft tis-
sue and bone images like the real DES system but only
needed a single conventional chest radiograph as the input.
Experiments on synthetic DES radiography and the JSRT
database showed that our method could be used to sup-
press the bone structures in the chest radiographs, which
would be potentially useful for radiologists to diagnose lung
diseases in chest radiographs.
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