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Characterization of Intracardiac Flow in the Right Ventricle
With Pressure and Volume Overload in Children
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Abstract

Background: Blood flow visualization using vector flow mapping
(VFM) holds potential as a novel indicator of right ventricular (RV)
function.

Methods: This study included 12 patients with atrial septal defect (ASD
group, mean (+ standard deviation) age: 6.2 & 1.5 years), six patients
with pulmonary hypertension (PH group, mean age: 6.8 +2.3 years), and
35 healthy, age-matched children (control group, mean age: 7.3 + 1.6
years). VFM data were obtained from the parasternal RV short-axis view.

Results: VFM images in the majority of the control group showed a
counterclockwise rotating vortex below the tricuspid anterior leaflet
and clockwise vortex below the septal leaflet in early diastole. In late
diastole, a clockwise vortex flow appeared at the RV apex to the out-
flow tract. In the ASD and PH groups, the formation of vortical flow
below the tricuspid valve was decreased. Late-diastolic vortices also
differed from the control group, with counterclockwise or no vortex
flow seen in this phase in these groups. Flow energy loss (EL), kinetic
energy (KE) and energetic performance index (EPI) were related to
RV systolic and diastolic functions. Mean EL over one cardiac cycle
(ELcycle) was significantly higher in the PH group than in the control
group (P=0.0471). KE of the RV inflow tract (KE-RVin) and outflow
tract (KE-RVout) were significantly lower in the PH group than in the
control and ASD groups (P < 0.05 each).

Conclusions: These results suggest that RV vortex formation may be
a factor in efficient ejection. EL, KE, and EPI may be applicable to
evaluate RV contractility and diastolic function.
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Introduction

Blood flow visualization using vector flow mapping (VFM)
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has been applied for clinical issues in various cardiovascular
diseases [1, 2]. Intracardiac flow studies provide clues to the
pathophysiological mechanisms by which abnormal turbulent
flow increases cardiac workload and deteriorates ventricular
functions. The intraventricular vortex and its energetic effi-
ciency affect patient outcomes [1, 2].

Previous VFM studies have focused on left ventricular
(LV) abnormal physiological vortices, potentially allowing for
predictive diagnosis of cardiac function. However, few stud-
ies have conducted VFM analysis of right ventricular (RV)
function [3-5]. RV dysfunction can be a major feature of right-
sided heart diseases, such as pulmonary hypertension, congeni-
tal heart disease, and cardiomyopathy, but can also be seen in
conditions secondary to LV dysfunction [6, 7]. Accurate meas-
urement of RV volume and function is the focus of many in-
vestigations using various modalities [8-11]. The most widely
employed clinical technique for RV morphological and func-
tional assessments is two-dimensional echocardiography [8,
10], but its accuracy is limited by the complex crescent-shaped
geometry of the RV [8, 9]. Cardiac magnetic resonance imag-
ing (MRI) offers many advantages. First, the lack of exposure
to ionizing radiation permits safe use in children and pregnant
women. Second, high-resolution and three-dimensional images
of the cardiac chambers and vessels can be produced [12-14].
However, MRI requires more patient cooperation, including
breath hold, than other tests. Installation and operation of MRI
equipment is costly, representing an important consideration
both for hospitals and patients. Further, repeated MRI scans can
be difficult to obtain. If VFM evaluation can accurately evalu-
ate RV dysfunction, this modality could be of significant utility
because of the ease of frequent clinical use.

We anticipated that flow in the normal RV, with its unique
configuration and contraction pattern, would differ from in-
traventricular flow in the LV. We thought that analysis of RV
blood flow patterns might be useful in determining the severity
of cardiac disease, predicting prognosis, and determining the
effectiveness of treatment. This study evaluated the change of
RV flow visualization under conditions of pressure and vol-
ume overload, comparing not only vortex flow direction, but
also energetic flow efficiency based on the quantitative evalu-
ation of flow energy loss (EL) and kinetic energy (KE) inside
the RV.

The aim of this study was to use VFM technology to estab-
lish reference values for RV flow dissipative EL in healthy sub-
jects, and under conditions of pressure and volume overload to
assess cardiac condition using transthoracic echocardiography
at the bedside in routine medical care. Further aims were to
establish reference values for KE and a relatively new index,
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energetic performance index (EPI), of the RV in children.
Materials and Methods

Patient characteristics

This was a single-center, prospective, observational study that
enrolled 15 patients with atrial septal defect (ASD group, mean
age + standard deviation (SD): 6.6 + 1.7 years (range: 3.5 - 10.0
years)) and seven patients with pulmonary hypertension (PH
group, mean age: 6.9 + 2.1 years (range: 3.8 - 10.0 years)). The
PH group comprised four patients with idiopathic pulmonary
artery hypertension, one patient with postoperative patent duc-
tus arteriosus, one patient with mitral stenosis and one patient
with developmental hypoplastic lung disecase. We selected pa-
tients with these conditions because they showed RV volume
and pressure overload. In these patients, cardiac catheterization
was performed within 3 days of echocardiographic examination.
We also enrolled 40 consecutive healthy, age-matched subjects
without any abnormalities evident on chest X-ray and electrocar-
diography or echocardiography (control group, mean age: 7.4 +
1.7 years (range: 3.0 - 10.0 years)). Data were collected between
November 2023 and July 2024. All protocols were approved by
the Institutional Review Board of Tokushima University Hospi-
tal and conformed to the ethical guidelines of the Declaration of
Helsinki (1975). This study was conducted in compliance with
all the applicable institutional ethical guidelines for care and
welfare. The parents of all subjects provided written, informed
consent for their children to participate in the study.

Echocardiography

Standard transthoracic echocardiography was performed using
a Vivid E95 echocardiography system with a 3S-RS and 6S-
RS probe (GE Healthcare, Chicago, IL, USA). All data were
obtained with the patient in the left lateral decubitus position
during end-expiratory apnea. Echocardiographic parameters
of RV function - tricuspid annular plane systolic excursion
(TAPSE), pulsed Doppler flow, tissue Doppler imaging, and
RV factional area change (RVFAC) - were assessed in accord-
ance with published guidelines [15].

VFM data were obtained by color Doppler imaging in the
parasternal short-axis view of the right ventricle. This view
shows the RV anterior wall and apex, RV outflow tract, pulmo-
nary valve, tricuspid valve and right atrium (RA). In this view,
RV inflow via the RA, intraventricular flow and RV outflow
can be observed simultaneously in one cross-section [15]. The
maximum velocity range of the color Doppler (Nyquist limit)
was set at 60 - 80 cm/s, and the color baseline was kept at 0
cm/s. The frame rate of color Doppler flow images was main-
tained at 20 - 30 frames/s [16-18].

Data acquisition

Stored cine-loop images were transferred to EchoPAC® (GE

Healthcare) and converted into HDF-5 files. These HDF-5 files
were imported into iTECHO® VFM software (Cardio Flow
Design, Tokyo, Japan) for analysis. The RV cavity-endocardial
border and pulmonary artery wall were manually traced on the
initial frame, and two-dimensional wall tracking was applied to
detect wall motion. If the aliasing phenomenon was observed in
the cine-loop images, aliased pixels were manually corrected.

Figure 1 shows representative images of VFM in a sub-
ject from the control group. Velocity vector fields were in-
dicated with yellow arrows, and streamlines were drawn to
clarify the vortex shape. In the present study, a vortex was
defined as a collection of streamlines that made a curved flow
and returned to a starting point after having moved some dis-
tance from the starting point. The presence and direction of
the vortex flow was determined as the consensus decision
of two echocardiography-savvy pediatric cardiologists. VMF
software iTECHO® provided the EL inside the RV and aver-
aged over three cardiac cycles.

Flow EL was defined with the following equation:

2 2 2
Energy loss = j,u {2(6_14) + 2(@) + [a_u +@] }dA
Ox oy oy Ox
where p indicates the viscosity of blood (0.004 Pa‘s) and A
is the area increment of the integral [19-21]. KE values were
calculated from vectors passing through the RV inflow tract
(RVin) or RV outflow tract (RVout) over one cardiac cycle and

averaged over three cardiac cycles [19-21]. KE was calculated
according to the following equation:

KE = I%pvz xvdL

where p indicates the blood density (1,060 kg/m3), v is the
velocity vector of the blood flow, and the integral represents
the line integral on the pulmonary and tricuspid valve annulus
(KE-RVin and KE-RVout, respectively).

Intraventricular flow EL was caused by turbulent flow.
The dissipated energy itself was generated by ventricular wall
motion. The ratio of EL to the energy generated by ventricular
muscle work is therefore essential to assess ventricular perfor-
mance [2]. However, ventricular muscle work itself is difficult
to assess noninvasively. EPI was thus defined as KE/EL inside
the ventricle, to estimate flow energy efficiency [19-21]:

_ KEcycle

EPI = .
ELcycle

Statistical analysis

Continuous variables are expressed as mean and SD or as
median with the fifth - 95th or 25th - 75th percentiles, as
appropriate. Discrete variables are presented as frequency
(percentage). Statistical significance was determined us-
ing Student’s #-test, the Mann-Whitney U test or two-factor
mixed-design analysis of variance, and the Kruskal-Wallis
test, as appropriate. The Tukey-Kramer test was performed
for further analysis if a significant difference was confirmed.
Fisher’s exact test was used to determine whether differences
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Figure 1. Representative RV flow sequence during phases of cardiac cycle in a control group subject. (a-c) Visualization of
VFM images in early diastole, late diastole, and systole. Yellow lines and arrows indicate the direction of flow, and line length
is proportional to the velocity of flow. (d-f) Streamline and vorticity during the cardiac cycle. Clockwise (CW) vortices are shown
in blue, counterclockwise (CCW) vortices in red. Note the presence of CW (blue) and CCW (red) vortices during early-diastolic
filling below the septal and anterior leaflets, respectively. The CW vortex below the septal leaflet moves apically to the outflow
tract region during late diastole, persisting further during isovolumic contraction. CW vortex is shown in this location. Ejection is
characterized by accelerating this vortex flow towards the RV outflow tract. (g-i) Schematic diagrams of the vector flow mapping
display during each phase of the cardiac cycle. RV: right ventricular; VFM: vector flow mapping.

between expected and observed frequencies were significant.
Correlations between VFM parameters and echocardiograph-
ic measurements were evaluated using Pearson’s correlation
coefficients.

All statistical data were calculated using Prism version
10.0 (GraphPad Software, San Diego, CA, USA) and JMP
version 16 (SAS Institute, Cary, NC, USA) software installed
on a desktop computer. Values of P < 0.05 (two-sided) were
considered statistically significant.

Intra-observer variability was assessed by one investiga-
tor (YH) who conducted measurements on the same patients
with an interval of 8 weeks, and inter-observer variability was
assessed by a second investigator (YH) who was blinded to
previous results and performed the same measurements on 10
randomly selected participants. Intra- and inter-observer agree-
ments were assessed using intraclass correlation coefficients.
In addition, agreement between investigators was tested using
Bland-Altman analysis by calculating bias (mean difference)
and 1.96 SDs around the mean difference.

Results
Patient characteristics

Among all participants, five, three, and one subjects with in-
adequate echocardiographic images were excluded from all
subsequent analyses in the control, ASD, and PH groups, re-
spectively. Suboptimal images were judged because of echo-
cardiographic images in which the entire RV free wall was not
depicted, inadequate frame rate or Nyquist limit for appropriate
color flow. Accordingly, the study group included 35 healthy
children (mean age: 7.3 + 1.6 years (range: 3.0 - 9.9 years)),
12 patients with ASD (mean age: 6.2 + 1.5 years (range: 3.5 -
10.0 years)) and six patients with PH (mean age: 6.8 + 2.3 years
(range: 3.8 - 9.5 years)) (Table 1). No significant differences
were seen in sex, age, weight, height, body surface area, heart
rate, blood pressure or QRS duration among the three groups.
As expected, RVFAC and TAPSE were significantly lower in
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the PH group than in the control and ASD groups (P < 0.0001
each). Left ventricular end-diastolic dimension (LVEDD) and
left ventricle ejection fraction (LVEF) were significantly lower
in the PH group than in the control and ASD group (LVEDD: P
< 0.05 each; LVEF: P < 0.0001, each). Table 1 summarizes the
clinical, echocardiographic, and hemodynamic data of subjects.

Vortex formation

VFM vortex analysis was separated into systole (ejection pe-
riod), early diastole (early to mid-diastole) and late diastole
(late diastole to isovolumic contraction). Figures 1 and 2 show
representative examples of VFM images of the RV from the
control and PH groups, respectively.

For the control group, the majority (33 of 35 subjects,
94%) demonstrated two early-diastole vortices at the anterior
and septal tricuspid valve leaflets (Table 2). Two subjects (6%)
in the control group demonstrated a single vortex at the septal
leaflet and no vortex at the anterior leaflet. All these vortices
at the septal leaflet were clockwise, and vortices at the anterior
leaflet showed counterclockwise rotation. Nine of 12 patients
(75%) had vortices at the septal leaflet, and 11 of 12 (92%)
had vortices at the anterior leaflet in early diastole in the ASD
group. Three of six patients (50%) had vortices at the septal
leaflet and two of six (33%) had vortices at the anterior leaflet
in the PH group. The PH group showed a lower frequency of
vortices under the tricuspid valve than the control and ASD
groups (P =0.0262 and P < 0.001, respectively).

In late diastole, 31 of 35 subjects (91%) in the control group
had clockwise vortices in the RV apex to RV outflow tract. Pa-
tients in the ASD and PH groups showed a lower frequency of
vortices (P <0.0001). In the PH group, three patients (50%) dem-
onstrated counterclockwise vortices, and three patients (50%)
did not show vortices in end-diastole. In the ASD group, two pa-
tients had counterclockwise vortices, six patients had clockwise
vortices, and four patients had no vortices. Notably, these results
in the ASD and PH groups contrasted with those of the control
group, which showed a completely different rate and direction of
vortex flow. Representative VFM images from the PH group are
shown in Figure 2. No coordinated or consistent vortices were
observed in systolic and ejection phases in any groups.

EL

Mean systolic EL (ELsys), mean diastolic EL (ELdia) and mean
EL over one cardiac cycle (ELcycle) in each group are present-
ed in Figure 3. No significant difference in ELsys was seen be-
tween the control, ASD and PH groups. As for ELdia measure-
ments, the PH group showed significantly higher values than the
control group (P = 0.0046). No significant difference was seen
between control and ASD groups. ELcycle was significantly
higher in the PH group than in the control group (P =0.0471).

KE

KE-RVin was significantly lower in the PH group than in the

ASD group (P = 0.0036) (Fig. 4a). Further, KE-RVout was sig-
nificantly lower in the PH group than in the ASD group (P =
0.0069) (Fig. 4b). No significant differences were evident be-
tween control and ASD groups or between control and PH groups
in the evaluation of KE-RVin and KE-RVout, respectively.

EPI

EPI-RVin was significantly lower in the PH group than in the
control group (P = 0.0088) or ASD group (P = 0.0024) (Fig.
4¢). No significant difference was evident between ASD and
control groups. EPI-RVout was also significantly lower in the
PH group than in the control group (P =0.0196) or ASD group
(P=0.0487) (Fig. 4d).

Relationship between energetic parameters and hemody-
namic variables

We evaluated the relationship between energetic parameters
obtained from VFM and other echocardiographic parameters
(Table 3). ELdia and ELcycle showed significant correlations
with tricuspid E/A. KE-RVin correlated significantly with
the tricuspid E wave. KE-RVout correlated significantly with
RVFAC and TAPSE. EPI-RVin correlated significantly with
RVFAC, TAPSE, and tricuspid E wave. EPI-RVout correlated
with RVFAC and TAPSE.

Reproducibility

VFM for a total of 10 patients (control group =4, ASD group
= 3, PH group = 3) were analyzed by two independent ex-
aminers to evaluate intra- and inter-observer variability (Table
4). The intraclass correlation coefficients (ICCs) for intra- and
inter-observer variability were relatively lower for the ELsys
than for ELdia and ELcycle. ICCs for intra- and inter-observer
variability were relatively higher for KE-RVin and KE-RVout
than EL and EPI parameters. Bland-Altman analysis revealed
minimal physiological and clinical bias, as well as substantial
agreement for reproducibility.

Discussion

The present study showed detailed dynamics of blood and vor-
tical flow in the RV during one cardiac cycle using VFM. Fur-
ther, this study offers the first demonstration of the feasibility
of assessing changes in vortex and energetic kinetics in RV
pressure and volume overload in children. The majority of the
control group demonstrated the sustained presence of two vor-
tices at the septal and anterior leaflets in early diastole, and one
vortex at the RV apex to the outflow tract in late diastole. VFM
images in normal subjects showed counterclockwise rotating
vortex flow below the tricuspid anterior leaflet and clockwise
vortex below the septal leaflet in early diastole. In late diastole
to isovolumic systole, clockwise rotating vortex flow appeared
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Table 1. Clinical Characteristics in Each Group

Control (n = 35) ASD (n=12) PH (n=6) P value
Physical data
Sex (male/female) 19/16 5/7 4/2 0.5796
Age (years) 73+1.6 62+1.5 6.8+£23 0.1458
Weight (kg) 24.1+72 21.0+10.8 223+15.3 0.5854
Height (cm) 122.1+10.3 119.2+12.3 120.9+17.1 0.7546
BSA (m?) 0.92+0.12 0.84 +£0.25 0.87+£0.19 0.3283
HR (beats/min) 75+13 74+ 13 84+ 15 0.2735
Systolic blood pressure (mm Hg) 88+ 6 84 +7 85+ 10 0.1743
Diastolic blood pressure (mm Hg) 47+6 48 +£8 44 £11 0.5291
QRS duration (ms) 88+ 5 93 £12 92 +18 0.2079
Echocardiographic data
LVEDD (mm) 35.8+£3.0 349+49 30.2 +6.02 0.0078
LVFS (%) 39.8+£5.6 373+5.5 31.8+7.7° 0.0098
LVEF (%) 66.5+5.3 63.6+10.3 52.3 +£8.1° <0.0001
RVFAC (%) 50.5+5.3 46.5+9.3 23.5+8.3¢ <0.0001
TAPSE 24.1+£7.2 26.1 £8.2 18.1 £5.2¢ <0.0001
Transmitral flow (m/s)
E 0.95+0.14 0.83+0.21 0.66 +0.184 0.0004
A 0.41+0.07 0.48 +£0.13 0.51+0.18 0.0273
Transtricuspid flow (m/s)
E 0.71£0.13 0.68 +£0.22 0.48 £0.182 0.0079
A 0.33 £0.06 0.51 £0.12° 0.66 +0.17¢ <0.0001
Catheterization data
Qp/Qs - 2.31+0.53 - -
RVEDV (% of normal) - 187 + 37 - -
RVEDP (mm Hg) - 59+24 9.9+5.9 -
RVEF (%) - 63+ 18 - -
RVSP (mm Hg) - 24.5+7.6 57.6 £19.6 -
mPAP (mm Hg) - 126 +3.6 392+ 14.7 -
Treatment Furosemide 7 Epoprostenol 2 -

Macitentan 3 -
Tadalafil 3 -

Furosemide 3 -

Spironolactone 7

Spironolactone 3 -

ap < 0.05 vs. control group and ASD group; PP < 0.05 vs. control group; °P < 0.0001 vs. control group and ASD group; 9P < 0.001 vs. control group. BSA:
body surface area; HR: heart rate; LVEDD: left ventricular end-diastolic dimension; LVFS: left ventricular fractional shortening; LVEF: left ventricular ejec-
tion fraction; mPAP: mean pulmonary arterial pressure; Qp/Qs: pulmonary-to-systemic blood flow ratio; RVEDV: right ventricular end-diastolic volume;
RVEDP: right ventricular end-diastolic pressure; RVEF: right ventricular ejection fraction; RVFAC: right ventricular fractional area change; RVSP: right
ventricular systolic pressure; TAPSE: tricuspid annular plane systolic excursion; ASD: atrial septal defect; PH: pulmonary hypertension.

at the RV apex to the outflow tract location. During the systolic
phase, clockwise vortex flow was used to eject from the RV
outflow tract to the pulmonary artery. The formation of such
vortex flow was observed to efficiently induce smooth ejection
from the RV to the pulmonary artery.

Conversely, in almost half of PH cases, no formation of

vortical flow below the tricuspid valve was found. This may be
related to the lower velocity of RV inflow in the PH group. In
the ASD group, the incidence of vortex flow at the septal leaflet
of the tricuspid valve was lower than that of the control group.
In addition, fewer cases showed vortical flow below the septal
leaflet than below the anterior leaflet in the ASD group. The en-
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Figure 2. Representative RV flow sequence during phases of the cardiac cycle in a PH group patient. (a-c) Visualization of VFM
images in early diastole, late diastole, and systole. Yellow lines and arrows indicate direction of flow, and line length is propor-
tional to the velocity of flow. (d-f) Streamline and vorticity during the cardiac cycle. Clockwise (CW) vortices are shown in blue
color, counterclockwise (CCW) vortices in red. Note that no vortices are present during early-diastolic filling below the septal and
anterior leaflets. ACCW vortex is shown apical to the outflow tract region during late diastole. (g-i) Schematic diagrams of vector
flow mapping during each phase of the cardiac cycle. RV: right ventricular; VFM: vector flow mapping.

Table 2. Vortex Flow Appearance Rate

Control (n = 35) ASD (n=12) PH (n = 6) P value
Early to mid-diastole
Anterior leaflet 33 (94%) 11 (92%) 3 (50%) 0.0262
CW 0 (0%) 0 (0%) 0 (0%)
CCW 33 (94%) 11 (92%) 3 (50%)
Septal leaflet 35 (100%) 9 (75%) 2 (33%) <0.0001
CwW 35 (100%) 9 (75%) 2 (33%)
CCW 0 (0%) 0 (0%) 0 (0%)
Late diastole
Apex to RVOT 31 (91%) 8 (67%) 3 (50%) 0.0433
CwW 31 (91%) 6 (37%) 0 (0%)
CCW 0 (0%) 2 (17%) 3 (50%)
Systole
Entire RV 0 (0%) 0 (0%) 0 (0%) >0.9999

CC: clockwise rotation; CCW: counter-clockwise rotation; RV: right ventricle; RVOT: right ventricular outflow tract; ASD: atrial septal defect; PH:
pulmonary hypertension.
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Figure 3. Comparison of energy loss between groups. Mean systolic energy loss (ELsys) (a), mean diastolic energy loss (ELdia)
(b) and mean energy loss over one cardiac cycle (ELcycle) (c) obtained from VFM in each group are shown. Boxes show distribu-
tion (25th and 75th percentiles; central line, median). Vertical lines represent the range between the fifth and 95th percentiles. *P
=0.0046 vs. control; TP = 0.0471 vs. control. VFM: vector flow mapping; ASD: atrial septal defect; PH: pulmonary hypertension.

larged RV chamber in the ASD group might not be effective for In late diastole, a clockwise-rotating vortex was shown
vortex formation. Further, additional ASD shunt flow toward the in 91% of the control group. In the ASD group, both clock-
tricuspid annulus flow might interfere with vortex formation. wise and counterclockwise vortices were observed. In the PH
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Figure 4. Comparison of kinetic energy and energetic performance index between groups. Kinetic energy of the RV inflow tract
(KE-RVin) (a), kinetic energy of the RV outflow tract (KE-RVout) (b), energetic performance index of the RV inflow tract (EPI-
RVin) (c) and energetic performance index of the RV outflow tract (EPI-RVout) (d) obtained from VFM in each group are shown.
Boxes show distribution (25th and 75th percentiles; central line, median). Vertical lines represent the range between the fifth and
95th percentiles. *P = 0.0331 vs. control and P = 0.0036 vs. ASD; TP = 0.0233 vs. control and P = 0.0069 vs. ASD; **P = 0.0088
vs. control and P = 0.0024 vs. ASD; #P = 0.0196 vs. control and P = 0.0487 vs. ASD. VFM: vector flow mapping; ASD: atrial septal

defect; PH: pulmonary hypertension.
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Table 3. Correlation Between Energetic Parameters and Other Hemodynamic Variables

Variables RVFAC TAPSE Tricuspid E Tricuspid A Tricuspid E/A
P value r P value r P value r P value r P value

ELsys 0.24 0.161 0.14 0.361 0.11 0.321 0.08 0.634 0.16 0.832
ELdia -0.17 0.663 -0.21 0.556 0.22 0.116 0.11 0.543 -0.32% 0.041
ELcycle 0.24 0.561 0.15 0.761 0.13 0.312 -0.02 0.809 -0.41%* 0.029
KE-RVin 0.31 0.062 0.26 0.072 0.46* 0.012 0.11 0.797 -0.21 0.356
KE-Rvout 0.39% 0.021 0.38* 0.031 0.16 0.398 0.05 0.351 -0.15 0.65

EPI-Rvin 0.41%* 0.034 0.39* 0.034 0.39* 0.043 0.19 0.36 0.16 0.69

EPI-Rvout 0.46%* 0.022 0.43* 0.019 0.23 0.321 0.13 0.75 -0.19 0.054

*Statistically significant. ELcycle: mean energy loss over one cardiac cycle; ELdia: mean diastolic energy loss; ELsys: mean systolic energy loss; EPI-
RVin: energetic performance index in the right ventricular inflow tract; EPI-RVout: energetic performance index in the right ventricular outflow tract;
KE-RVin: kinetic energy in the right ventricular inflow tract; KE-RVout: kinetic energy in the right ventricular outflow tract; RVFAC: right ventricular
fractional area change; TAPSE: tricuspid annular plane systolic excursion.

group, half of cases had a counterclockwise vortex, and half of
cases had no vortex flow at all in this phase. We speculated that
clockwise vortex flow is advantageous for smooth ejection
toward the pulmonary artery. In cases with RV pressure and
volume overload, we thought that vortex flow in the RV might
not be effectively utilized. In many cases, formation of a late-
diastole clockwise vortex at the apex seems to be established
by a change in position of the early-diastole clockwise vortex
below the septal leaflet. In the ASD and PH groups, the inci-
dence of a clockwise vortex at the septal leaflet was lower than
that in the control group. This might be why the clockwise vor-
tex in late diastole was less frequently seen in the ASD and PH
groups. A counterclockwise vortex at the anterior leaflet was
dominant in these groups. We considered that, for this reason,
vortex flow at the RV apex during late diastole to isovolumic
systole was counterclockwise. Cases were also noted in which
uniform vortex flow was not observed at this time phase. In
contrast to the left ventricle, in which vortex formation con-
tributes to the redirection of blood flow and the efficiency of
ejection [22, 23], intraventricular RV flow has been reported

Table 4. Intra- and Inter-Observer Reproducibility

to be relatively streamlined, following a smooth curved septal
path from the inlet to outlet channels [4, 24, 25]. Previous re-
ports have demonstrated that RV geometry theoretically allows
for easy intraventricular transit of blood that does not require
sustained vortex formation [4, 24, 25]. RV flow during sys-
tole and diastole therefore appears largely streamlined. Only
transient vortex rings reportedly develop below the tricuspid
orifice and dissipate quickly. However, our investigation first
confirmed that efficient vortex flow is observed in the RV cav-
ity. Further, in cases with RV pressure and volume overload,
the direction and rate of formation of vortical flow in the right
ventricle were altered, affecting effective ejection. We have
no data to show that as the vortex decreases, the ejection of
blood decreases. Whether there is a proportional relationship
between vortex flow and blood ejection, and whether this can
be quantified, has not been clearly demonstrated in this study.
Further study would be necessary in future.

Diastolic and single cardiac cycle EL (ELdia and ELcy-
cle, respectively) were significantly elevated in the PH group.
However, no significant difference in systolic EL was evident

Intra-observer variation

Inter-observer variation

Bland-Altman bias

Bland-Altman bias

ICC (95% CI) P value (95% LOA) ICC (95% CI) P value (95% LOA)
ELsys 0.866 (0.558 - 0.992) 0.0012  0.285(-1.21 to 1.78) 0.875(0.612 - 0.977) 0.0011 0.680 (-2.61 to 3.97)
ELdia 0.962 (0.843 - 0.991) <0.0001 0.154 (-1.91 to 2.21) 0.99 (0.721 - 0.983) 0.0001 -0.161 (-2.94 t0 2.62)
ELcycle 0.917 (0.571 - 0.969) 0.0011 0.612 (-1.70 to 2.90) 0.895 (0.607 - 0.975) 0.0005 0.265 (-1.25 to 1.78)
KE-RVin 0.976 (0.857 - 0.993) <0.0001 -0.175 (-2.95 to 2.60) 0.946 (0.782 - 0.987) <0.0001 0.281 (-2.21 t0 2.77)
KE-RVout  0.962 (0.843 - 0.991) <0.0001 -0.452 (-2.50 to 1.60) 0.944 (0.721 - 0.975) <0.0001 0.221 (-2.21t0 1.77)
EPI-RVin 0.919 (0.590 - 0.969) 0.0114  0.049 (-2.50 to 2.60) 0.895 (0.607 - 0.975) 0.0015 -0.223 (-2.21 to 1.77)
EPI-RVout  0.899 (0.592 - 0.959) 0.0012  -0.309 (-2.90 to 2.28) 0.899 (0.617 - 0.979) 0.0005 -0.182 (-2.26 to 1.79)

Data are shown as mean with range in parentheses. Cl: confidence interval; ICC: intraclass correlation coefficient; LOA: limits of agreement defined
as the mean difference + 1.96 SD of the difference. ELcycle: mean energy loss over one cardiac cycle; ELdia: mean diastolic energy loss; ELsys:
mean systolic energy loss; EPI-RVin: energetic performance index in the right ventricular inflow tract; EPI-RVout: energetic performance index in
the right ventricular outflow tract; KE-RVin: kinetic energy in the right ventricular inflow tract; KE-RVout: kinetic energy in the right ventricular outflow
tract; SD: standard deviation.
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between the three groups. Diastolic blood flow turbulence might
be prone to arise and dominate compared to the systolic phase in
RV dynamics. KE-RVin and KE-RVout were significantly lower
in the PH group. Further, EPI-RVin and EPI-RVout were also
significantly lower in the PH group. On the other hand, these
parameters in the ASD group were higher compared with the
control group, although no significant differences were shown.
These results indicate that RV pressure overload would have
more influence on RV blood flow KE than volume overload.
However, these results might derive from the selection and dif-
ferences in severity between the ASD and PH groups.

In several articles regarding RV functional assessment us-
ing VFM, four-chamber view images were used for the obser-
vation of flow dynamics and vortices in the right ventricle [3,
5]. The present study evaluated VFM with sectional images
in which the RV inflow tract, apex, and RV outflow tract can
be observed in a single cross-section. Since echocardiographic
VFM evaluation is performed in a two-dimensional image, we
considered that the cross-sectional image, in which the main
dominant blood flow from the inflow to the outflow tract can
be observed, should be selected for the observation of vortical
flow, calculation of EL, and evaluation of mechanical consid-
erations. Although we considered this as the most appropriate
cross-sectional view to discern the dominant intraventricular
RV flow, the most suitable echocardiographic view and appro-
priate methods need to be confirmed for RV VFM analysis.
Comparison with results from four-dimensional flow cardio-
vascular magnetic resonance is therefore needed [26, 27].

The present study demonstrated that diastolic and cycle EL
correlated negatively with tricuspid E/A. KE-RVin correlated
positively with the tricuspid E wave. These results indicate that
diastolic function might be related to these parameters. Further,
KE-RVout, EPI-RVin and EPI-RVout correlated with values of
RVFAC and TAPSE. These results might show parameters in-
dicating RV systolic function. Detailed relationships between
these energetic parameters and hemodynamic indices need to be
elucidated in a study of a large group of patients.

Study limitations

The sample cohort was relatively small, but we compared
VFM images and parameters between patient groups and
healthy, age-matched individuals, revealing distinctive differ-
ences in each group. Obtaining appropriate echocardiographic
images was difficult, and since RV VFM analysis requires the
entirety of the RV free wall, this may be challenging for pa-
tients with significant RV dilation. Additional limitations in-
cluded inadequate frame rate and the Nyquist limit for appro-
priate color flow estimation. Lower acquisition frame rates in
data would have been less sensitive to rapid changes in blood
flow characteristics. In cases of RV pressure and volume over-
load, the direction and rate of formation of the vortex flow in
the RV were altered, with the result that the effective ejection
volume was affected. However, there are no data showing that
a decrease in vortex decreases blood ejection volume. Whether
or not there is a significant correlation between vortex flow
and blood ejection was not clearly demonstrated in this study.

Further, as VFM is limited by the two-dimensional imaging
plane, the measurement of EL and KE do not account for three-
dimensional flow turbulence in the RV cavity. This limitation
may have diminished some of the correlations between VFM
parameters and hemodynamic indices in this study. Lastly, the
clinical significance of our findings requires further investiga-
tion. Future studies need to focus on the longitudinal evalu-
ation of patients to characterize changes in intracardiac flow
dynamics following treatment.

Conclusions

VFM images in normal subjects showed counterclockwise
rotating vortex flow below the tricuspid anterior leaflet and
clockwise vortex below the septal leaflet in early diastole. In
late diastole to isovolumic systole, clockwise rotating vortex
flow appeared at the RV apex to the outflow tract location.
During the systolic phase, clockwise vortex flow was used to
eject from the RV outflow tract to the pulmonary artery. The
formation of such vortex flow was observed to efficiently in-
duce smooth ejection from the RV to the pulmonary artery. In
the ASD and PH groups, the formation of vortical flow below
the tricuspid valve was decreased. Late-diastolic vortices also
differed from the control group, with counterclockwise or no
vortex flow seen in this phase in these groups. Vortex flow
formation changes in the right ventricle have pathological im-
plications. RV vortex formation may be necessary for efficient
ejection. EL, KE, and EPI appear potentially applicable to
evaluate RV contractility and diastolic function.
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