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Aims Deep learning (DL) has emerged in recent years as an effective technique in automated ECG analysis.
...................................................................................................................................................................................................
Methods
and results

A retrospective, observational study was designed to assess the feasibility of detecting induced coronary artery oc-
clusion in human subjects earlier than experienced cardiologists using a DL algorithm. A deep convolutional neural
network was trained using data from the STAFF III database. The task was to classify ECG samples as showing
acute coronary artery occlusion, or no occlusion. Occluded samples were recorded after 60 s of balloon occlusion
of a single coronary artery. For the first iteration of the experiment, non-occluded samples were taken from ECGs
recorded in a restroom prior to entering theatres. For the second iteration of the experiment, non-occluded sam-
ples were taken in the theatre prior to balloon inflation. Results were obtained using a cross-validation approach.
In the first iteration of the experiment, the DL model achieved an F1 score of 0.814, which was higher than any of
three reviewing cardiologists or STEMI criteria. In the second iteration of the experiment, the DL model achieved
an F1 score of 0.533, which is akin to the performance of a random chance classifier.

...................................................................................................................................................................................................
Conclusion The dataset was too small for the second model to achieve meaningful performance, despite the use of transfer

learning. However, ‘data leakage’ during the first iteration of the experiment led to falsely high results. This study
highlights the risk of DL models leveraging data leaks to produce spurious results.
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Introduction

Smith et al.1 noted ST-segment elevation (STE) as an electrocardio-
gram (ECG) feature following the ligation of coronary arteries in ca-
nine models in 1918. Since then, it has become the gold standard
bedside test for diagnosing transmural myocardial infarction (MI)
caused by acute complete thrombotic coronary occlusion
(ACTCO). The decision to activate the primary percutaneous coron-
ary intervention pathway is generally contingent upon its presence.2

The principal rationale for this practice can be summarized thus:
(i) STE is known to be very specific for acute MI3 and (ii) patients with
STE, on average, benefit from primary PCI where patients with non-
STEMI may not.4

However, STE’s sensitivity for acute MI may be as low as 50%5 and
there have been few large-scale studies evaluating alternative models
for predicting which patients will benefit from primary PCI.6

Furthermore, such attempts have principally focussed on extending
urgent revascularization to ‘high risk’ NSTEMIs, generally defined using
a very small number of hand-crafted features (sometimes just two or
three) and not incorporating ECG features.7,8 It could be argued that
such low-dimensional feature representations poorly express the
complex physiology of the patient with acute MI, and that an ap-
proach incorporating more relevant features might be more effective.

In the domain of atrial fibrillation (AF) detection, DL models have
been shown to match ‘expert level’ performance in the context of
ambulatory recordings.9 This is the highest possible performance one
could expect for a task where the gold standard diagnostic criteria
are based on expert interpretation of ECG data. In the domain of
acute myocardial ischaemia, on the other hand, it is possible to use
composite definitions that do not rely on ECG criteria but incorpor-
ate biochemical and angiographic data.3 Therefore, it is plausible that
a DL model could not only match but also outperform, existing gold
standard ECG criteria.

The aim of this study was to establish whether a DL algorithm can
detect ACTCO, as defined by angiographically proven acute coron-
ary occlusion, by leveraging more complex ECG features than a man-
ual approach would allow.

Methods

Data acquisition
ECG signals were downloaded from the STAFF III database
(Physionet).10–12 This contains a collection of ECGs taken from 104
patients undergoing prolonged intracoronary balloon inflation. The
records consist of nine lead ECGs at 1000 Hz (investigators can calculate
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the three augmented limb leads if they wish). 76 records contain baseline
ECGs obtained in a relaxing room prior to transfer to the theatre. The
inflations lasted an average of 262 s, with 84 lasting in excess of 5 min.
Annotations contain the time of balloon inflations and deflations, contrast
injection times and anatomical position of the balloons.

STAFF III remains one of the most valuable datasets for groups study-
ing the early ECG effects of prolonged, total coronary occlusion in
humans. It is the only publicly available dataset that contains angiographi-
cally proven acute coronary artery occlusion without pre-selecting sub-
jects based on ECG criteria nor chest pain.

Basic demographic information from the 76 STAFF III subjects
included as per the original inclusion criteria (described below) are
shown in Table 1.

Ethical considerations
No ethical issues were identified with this study, as it involved open data
from an anonymized, publicly available database. This decision was ratified
by the heads of research governance at two of the participating academic
centres (Ulster University and Southern Health and Social Care Trust).

Inclusion/exclusion criteria
Initially, only records that included relaxing room ECGs were deemed eli-
gible, as these were used as the non-ischaemic samples. Records where
balloon inflations lasted less than 90 s were excluded as they contained
insufficient ischaemic samples.

Several subjects underwent multiple inflations in different anatomical
locations. Only data from the first inflation was used due to concerns that
‘hangover’ electrical effects from previous inflations may confound
results.

The study was executed and written up following completion of this
initial protocol. However, following a conversation with a group who
have worked extensively with the STAFF III database (including its cre-
ator), it was pointed out that the 28 patients excluded because they had
no ECG from the relaxing room could be included if the beginning of
their theatre ECG (taken prior to catheter insertion) was used as an alter-
native baseline.

It was decided that the experiment should be re-run with the inclusion
criteria thus amended. It was also felt that standardizing the baseline ECG
acquisition by using pre-catheterization theatre ECGs for all patients
would be more methodologically sound.

Algorithm design
The model was a 34-layer convolutional neural network (CNN) with re-
sidual connections culminating in a fully connected layer with a single,
sigmoid-activated output node. Researchers from the Stanford Machine
Learning Group have identified this architecture as being particularly
well-suited to processing ECG signal data,9 and our group has previously
presented work using similar models for automated detection of atrial

fibrillation (AF).13 The model was initiated using weights from the AF
task, on the assumption that many ECG features learned during arrhyth-
mia analysis would improve generalisation in the setting of ischaemia de-
tection. This is known as ‘transfer learning’ and can allow DL models to
train for complex tasks on relatively small datasets.14

During the training process, ECG signals were split into 1-s segments.
Each ECG window was reshaped into a 9000-dimensional vector (9 leads
� 1000 Hz � 1 s). The loss was calculated using binary cross-entropy,
where non-ischaemic samples were labelled 0, ischaemic traces 1.

Model evaluation
The model was evaluated using a five-fold cross-validation (CV)
process, whereby each of five versions of the model was trained on data
from 80% of the patients and tested on data from the remaining 20%. The
experiment was subsequently repeated using a 10-fold CV process
whereby data was split into 80% training, 10% validation and 10% test
sets. This was to ensure the five-fold CV process did not encourage
overfitting.

Testing was undertaken using one 10-s trace for each patient taken
from the baseline ECG (non-ischaemic examples) and one 10-s trace for
each patient taken 60 s into balloon occlusion of a coronary artery (posi-
tive examples). Ten seconds was chosen because it is the standard length

....................................................................................................................................................................................................................

Table 1 (First iteration) Demographic details, including subgroups defined by anatomical location of balloon inflation.

Patient characteristics All patients LMS LAD Diag LCx RCA

Male, n (%) 51 (67.1) 2 (100) 11 (52.4) 2 (100) 10 (62.5) 26 (74.3)

Female 25 0 10 0 6 9

Age, mean years (range) 60 (32–100) 62 (55–70) 61 (40–85) 53 (53–54) 65 (32–100) 58 (38–80)

Diag, diagonal branch; LAD, left anterior descending; LCx, left circumflex; LMS, left main stem; RCA, right coronary artery.
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Figure 1 (First iteration) – Performance metrics of each classifier
across the whole dataset.
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.of printed 12-lead ECGs used to diagnose STEMI and would facilitate a
fair comparison with cardiologist-labelled benchmarks.

The input vector for the model comprised a tensor of shape [batch
size, 10, 9000]. The final dimension comprised one second of samples for
each of nine leads at 1000 Hz concatenated into a 9000-dimensional vec-
tor (the augmented limb leads were not explicitly calculated for the
model). The penultimate dimension represented the 10 s of the ECG.

Benchmarks
Three consultant cardiologists were given all of the test traces in a ran-
dom order and asked to label them as showing either no signs of ischae-
mia, non-specific ischaemic changes, or STE. These results were used as a
basis for comparison with the DL model performance as described
below.

Statistical analysis
The accuracy of each classifier was calculated by dividing the number of
correct labels with the total number of ECGs labelled. The consensus
opinion of the three cardiologists regarding both non-specific ischaemic
changes and STE was taken to be the current gold standard in clinical
practice. This was evaluated against the DL model’s accuracy using the

Chi-square test. For each classifier sensitivity, specificity, positive predict-
ive value (PPV), and F1 score (see equation 1 below) were calculated.

2� Sensitivity � PPVð Þ � Sensitivityþ PPVð Þ

Equation 1 – the F1 score

A receiver operating characteristic (ROC) curve was plotted for the
DL model and area under the ROC (AUROC) calculated.

Interrogating the model
Attention heatmaps were generated using selective input masking. The
fully trained model was shown each ECG in the test set with 50 ms seg-
ments ‘blanked out’ (by substituting voltage values for zero). The greater
the difference between the original prediction and the new prediction,
the higher the value assigned to the masked part of the ECG on the heat-
map. The process was repeated until a value had been assigned to each
50 ms window of each ECG.

Results

First iteration of the study using
original inclusion and exclusion criteria
The results of ECG analysis by ST-elevation criteria (as defined
by consensus opinion among the three cardiologists), individual ana-
lysis by each expert using a combination of both STEMI criteria and
non-specific ischaemic changes, consensus opinion among the
experts using both STEMI criteria and non-specific ischaemic changes,

0.0

0.2

0.4

0.6

0.8

1.0

Sensi�vity Specificity PPV Accuracy F1 score

Figure 2 (First iteration) Results from the five-fold cross-valid-
ation process of the deep learning model across the whole dataset
(averages and 95% confidence intervals).

....................................................................................................................................................................................................................

Table 2 (First iteration) Classifier concordance calculated using McNemar’s test

STEMI Cardiologist 1 Cardiologist 2 Cardiologist 3 DL model

STEMI — 0.193 0.126 0.699 0.177

Cardiologist 1 0.193 — 0.856 0.238 0.009

Cardiologist 2 0.126 0.856 — 0.201 0.004

Cardiologist 3 0.699 0.238 0.201 — 0.065

DL model 0.177 0.009 0.004 0.065 —

Statistically significant results (P < 0.05) in bold.

Figure 3 (First iteration) ROC curve for the DL model (AUROC
= 0.860). The dotted black line represents the ROC for a binary
classifier based on random chance where AUROC = 0.5.

130 R. Brisk et al.



Figure 4 (First iteration) An example heat map for an ischaemic example, obtained selectively masking input data to establish which parts of the
ECG the model relies on most to make its prediction.

Effect of confounding data features 131



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
and analysis by the DL model are shown in Figure 1. The DL model
had both the highest accuracy (0.803) and the highest F1 score
(0.814). Classification using the STEMI criteria produced the highest
specificity (0.947). Cardiologist 3 achieved the highest sensitivity
(0.842).

The confusion matrices used to calculate these results are included
in Appendix 1. As previously noted, the DL model’s results were cal-
culated by taking the mean results of each cycle of the five-fold CV
process. Confidence intervals (95%) for these results are shown in
Figure 2.

The difference in accuracy between the DL model and the consen-
sus cardiologist opinion for any type of ischaemic change was eval-
uated using the Chi-square test and found to be significant using a
threshold of 0.05 (P = 0.0469). Marginal homogeneity was evaluated
using McNemar’s test. Results are shown in Table 2.

Figure 3 shows the receiver operating characteristic (ROC) curve
for the DL model. Area under the ROC (AUROC) was 0.860.

Results were reproducible using a 10-fold CV process as described
in the methods section.

Attention heatmaps appeared to show that the model was primar-
ily focussing on the latter part of the QRS complex or the ST-T seg-
ment. (See Figure 4 for an example.)

Second iteration of the study using
amended inclusion and exclusion criteria
Following amendment of the inclusion criteria, so that baseline sam-
ples were obtained from theatre ECGs, 99 patients were included in
the second run of the experiment. The model was retrained using
the same five-fold CV process, the same data sampling methods and
the same hyperparameters as the first run.

Accuracy was 0.555 (standard deviation 0.08, 95% confidence
interval 0.505–0.605). F1 score was 0.533 (standard deviation 0.17,
95% confidence interval 0.433–0.633). The experiment was repeated
in case the stochastic nature of the DL approach has resulted in par-
ticularly poor results, but there was no change.

The results provide a case study that clearly demonstrates that a
DL model that, under certain conditions, Maya achieve high accuracy
scores due to its ability to also exploit confounders and data leakages.
This explains why the results in iteration 1 are superior to the results
in iteration 2. The high performance in iteration 1 is likely due to the
DL model detecting ‘noise’ as opposed to detecting ischaemia.

Discussion

This single centre, retrospective, observational study of 104 patients
investigated the ability of a DL model to predict hyperacute myocar-
dial ischaemia from ECG recordings. The first iteration, which
obtained non-ischaemic samples from resting room ECGs, appeared
to have an ability to detect ischaemia. The second iteration, which
obtained non-ischaemic samples from inside theatres, was negative.
In the first iteration, the model appeared to outperform a panel of
three cardiologists with statistical significance. On the latter occasion,
the model performed at the level of a random chance classifier. The
likely explanation for the discrepancy in results is that the first model
learned to associate background electrical noise in theatre with is-
chaemic samples during the first run of the experiment. Background

electrical activity in cardiac theatres is known to manifest on ECGs
(including noise in the 100 Hz range from fluoroscopy).15 And given
that the ‘ischaemic’ ECGs exhibited this noise, the algorithm was able
to discriminate between ischaemia and non- ischaemia by simply
detecting the noise in the ‘ischaemic’ ECGs. This is referred to as data
leakage or a confounding factor.

During the second run, all samples were acquired in theatre and
the model’s true ability to discern causative (as opposed to purely
correlative) links within the data was revealed. The hypothesis had
been that transfer learning from an arrhythmia detection task may
allow the model to glean generalizable insights from a small dataset16

but the results demonstrate that this was not the case.
This experiment is not the first study showcasing how DL models

can leverage confounding factors within the data to produce spuri-
ously high performance: a number of similar occurrences have been
described in healthcare and other domains.17–20 Deep learning is cur-
rently receiving much attention in the domain of automated ECG in-
terpretation, as it is in the fields of cardiac imaging, coronary
evaluation, and heart failure.21 It is, therefore, particularly important
that the cardiology community be aware of its pitfalls as well as its
strengths.

We acknowledge that this was a highly speculative experiment at
increased risk of spurious results due to a small study cohort and
retrospective, observational setting.22 We also recognize that neither
cross-validation nor any other approach to validation guarantees
against such an outcome, and agree with recent calls for more ML
and DL applications to be in evaluated prospective, multi-centre clin-
ical trials.23–25 However, it must be noted that even DL algorithms
trained on huge datasets and extensively validated by world-leading
technical experts can behave in surprising, unacceptable and some-
times catastrophic ways.26,27 In addition, such tools may not integrate
well into current clinical practice, where transparency is highly
prized.28,29

It is our conclusion that AI in the medical domain must always re-
tain a degree of ‘explainability’ in order to facilitate human oversight
and supervision. This does not necessarily require an exhaustive ac-
count of a DL model’s logic, which is encoded by the state of millions
of coefficients within a complex computing graph14 and may be im-
possible to explain in human terms. Rather, we propose that it falls to
the clinical community to stipulate a set of minimum requirements
for what we determine to be acceptable transparency in future car-
diac DL applications.

In summary, DL continues to show significant promise and has
many potential applications in modern medical practice.30 However,
it remains a nascent technology and further work is needed in the
field. We particularly advocate future research that will support the
development of standardized frameworks for acceptable transpar-
ency of these applications and we look forward to future discussions
of this issue.
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Appendix

Appendix 1 (First iteration) The confusion matrices from the overall

classification task.

......................................................................................................
STEMI Predicted: YES Predicted: NO

Actual: YES 39 37

Actual: NO 4 72

Cardiologist 1

Actual: YES 58 18

Actual: NO 33 43

Cardiologist 2

Actual: YES 59 17

Actual: NO 36 40

Cardiologist 3

Actual: YES 67 9

Actual: NO 35 41

DL model

Actual: YES 66 10

Actual: NO 20 56
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