
Chemical
Science

EDGE ARTICLE
A physics-aware
aSchool of Chemistry and Biochemistry,

Engineering, Georgia Institute of Technolo

E-mail: sherrill@gatech.edu
bMolecular Structure and Design, Bristol M

Princeton, New Jersey 08543, USA

† Electronic supplementary information (
SAPT0 decomposition of the DDE resu
slices of Fig. 6. SAPT0 interaction energie
216 validation set dimers and nine pro
https://doi.org/10.1039/d4sc01029a

Cite this: Chem. Sci., 2024, 15, 13313

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 14th February 2024
Accepted 9th July 2024

DOI: 10.1039/d4sc01029a

rsc.li/chemical-science

© 2024 The Author(s). Published by
neural network for protein–ligand
interactions with quantum chemical accuracy†
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Quantifying intermolecular interactions with quantum chemistry (QC) is useful for many chemical problems,

including understanding the nature of protein–ligand interactions. Unfortunately, QC computations on

protein–ligand systems are too computationally expensive for most use cases. The flourishing field of

machine-learned (ML) potentials is a promising solution, but it is limited by an inability to easily capture

long range, non-local interactions. In this work we develop an atomic-pairwise neural network (AP-Net)

specialized for modeling intermolecular interactions. This model benefits from a number of physical

constraints, including a two-component equivariant message passing neural network architecture that

predicts interaction energies via an intermediate prediction of monomer electron densities. The AP-Net

model is trained on a comprehensive dataset composed of paired ligand and protein fragments. This

model accurately predicts QC-quality interaction energies of protein–ligand systems at a computational

cost reduced by orders of magnitude. Applications of the AP-Net model to molecular crystal structure

prediction are explored, as well as limitations in modeling highly polarizable systems.
1 Introduction

Non-covalent interactions (NCIs) play a key role in the chemical
sciences. Although they are weaker than covalent bonds, the
presence (or absence) of NCIs can have profound effects on
chemical and biomolecular systems. For example, NCIs drive
DNA intercalation—the insertion of a molecule between
consecutive DNA base pairs—which is the mechanism of action
in anti-cancer drugs such as doxorubicin.1,2 Not only can an
understanding of NCIs provide mechanistic insights into
intercalation and other small molecule binding modes, careful
consideration of NCIs allows one to control the selectivity of
reaction catalysts,3 enhance electrochemical reaction kinetics,4

or optimize the properties of nanostructures.5

NCIs play a particularly important role in small molecule drug
design. The efficacy of a drug depends in part on the presence of
strong interactions with the target protein. Oen, preliminary drug
design efforts produce a promising but sub-optimal “lead”
compound. This lead compound is then iteratively revised in an
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attempt to enhance desired properties. Maximizing favorable
intermolecular contacts is a critical aspect of the lead optimization
process, and can be aided by in silico models of NCIs.

The strength of a protein–ligand interaction can be rigor-
ously quantied by using the tools of quantum chemistry to
compute an interaction energy. Quantum chemistry methods,
which seek to solve the many-body Schrödinger equation, are
subject to a well-established trade-off between computational
cost and accuracy. Highly accurate interaction energies can be
obtained from wavefunction-based methods such as coupled
cluster (CC) theory, but such calculations are oen too expen-
sive for all but the smallest systems. Less expensive methods
like density functional theory (DFT) yield slightly less robust
interaction energies. Simple, transferable force elds like GAFF
are orders of magnitude faster than any quantum chemistry
method, but force eld interaction energies are only semi-
quantitatively accurate.

One quantum chemistry method of particular interest for
studying protein–ligand interactions is symmetry-adapted
perturbation theory (SAPT), which yields not only an interac-
tion energy, but also its physically meaningful components:
electrostatics, exchange-repulsion, induction/polarization, and
London dispersion.6–8 These components provide additional
insight to help understand non-covalent interactions.9 The
fragment-based partitioning of SAPT10 was used to understand
substituent effects in protein–ligand interactions in factor Xa
inhibitors.11 However, models of the protein including only
nearby residues (∼200 atoms) still required many hours of CPU
time for the SAPT computations.
Chem. Sci., 2024, 15, 13313–13324 | 13313
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Recently, advances in machine learning (ML) have led to the
re-evaluation of this classic cost-accuracy trade-off. Models like
neural networks (NNs) are capable of expressing arbitrarily
complicated non-linear functions such as molecular potential
energy surfaces.12–16 Large datasets of quantum chemical
computations17–20 make it possible to parameterize general
atomistic NN potentials to quantum chemical accuracy,21–23 and
these potentials can be evaluated at near force eld computa-
tional cost. NN potentials can be used to improve the accuracy
of costly alchemical free energy predictions24 or to perform
reactive molecular dynamics simulations.25

The emergence of NN potentials has also beneted from
a number of architectural developments. The “message
passing” NN (MPNN) framework is tailored to the graph-like
structure of molecular geometries.26 Directional MPNNs addi-
tionally account for the relative orientation between neigh-
boring atoms in a molecule. The most data-efficient
architectures achieve this by employing locally equivariant
representations of atoms in molecules.27–33 In these equivariant
models, atomic environments are represented as tensorial
quantities which rotate with the local coordinate frame.

The locality of atomic environments used in NN potentials
allows these models to easily describe local interactions, which
include distortions of bonds, angles, and dihedrals, as well as
short-range non-covalent interactions. Unfortunately, a conse-
quence of this locality is that NN potentials are either indirectly
or explicitly unable to model the long-range interactions that
are essential to protein–ligand interactions.34 The lack of these
long-range effects has been demonstrated to affect the quality of
simulated properties of bulk water and small peptides,35 and
many ML methods have been developed to capture these long-
range interactions.36–38 In a recent work, we proposed an atomic-
pairwise NN framework for modeling NCIs, which we called AP-
Net.34 Extending this basic proof-of-concept, we now develop
a robust, chemically accurate AP-Net model for quantifying
arbitrary protein–ligand interactions. This is accomplished by
constraining the AP-Net architecture to respect the known
physics of intermolecular interactions.
2 Results
2.1 A physics-aware intermolecular architecture

In this work, we develop a physics-aware neural network
architecture specialized for modeling intermolecular interac-
tions. This architecture adheres to four physical principles:

1. Intermolecular interactions are fundamentally a function
of molecular properties, some of which, such as the electron
density, can be partitioned into atomic properties.

2. For the most part, intermolecular interactions are atomic-
pairwise additive.

3. Intermolecular interactions are decomposable into
different types of interactions (electrostatics, exchange-
repulsion, induction/polarization, and dispersion).

4. In the dissociative limit, intermolecular interactions obey
simple functional forms of molecular and atomic properties
and smoothly decay to zero.
13314 | Chem. Sci., 2024, 15, 13313–13324
In reference to the second principle, this physics-aware
architecture is designated AP-Net, short for atomic-pairwise
neural network. The AP-Net name was rst used in a previous
proof-of-concept study that differs signicantly from the
current work in applicability and complexity.34 The previous AP-
Net architecture shares the general paradigm of predicting
interaction energies in an atomic-pairwise framework, but the
previous model was limited by simple, ad hoc atomic feature
vectors whereas the model described in this work featurizes
atom pairs with an equivariant MPNN (Section 2.1.2). The
current AP-Net model is additionally differentiated by the
inclusion of an electrostatic force eld, a related atomic prop-
erty module (Section 2.1.1), and a much larger, more diverse
training set (Section 2.2).

A schematic of the current AP-Net architecture is provided in
Fig. 1. AP-Net enforces the four physical principles above via
a pair of independently trained NNs, which are respectively
referred to as the atomic property module and the interaction
energy module. These two NNs are used to predict protein–
ligand interaction energies through an intermediate prediction
of the electron density of both molecules via an atom-centered
multipole expansion. This physically motivated functional form
yields accurate, generalizable interaction energy predictions for
protein–ligand systems.

2.1.1 Atomic property module. The atomic property
module (Fig. 1A) is trained to predict properties of an atom
within a molecule, in accordance with the rst principle.
Specically, this network predicts an atomic decomposition of
the electron density in the form of an atom-centered multipole
expansion through second order. The atomic property module
is related to our previous Cartesian MPNN (CMPNN), which was
also used to predict atomic multipoles.39 Unlike the original
CMPNN model, in which predicted atomic multipoles were
approximately rotationally equivariant, the atomic property
module enforces rigorous rotational equivariance via the
directional hidden state scheme of ref. 27. In this scheme, the
hidden state vectors have an additional Cartesian dimension,
along which equivariance is preserved by a carefully designed
message and update function. The atomic property module also
conserves the total molecular charge, allowing the model to
handle neutral molecules and ions alike.40

2.1.2 Interaction energy module. The second neural
network constituting AP-Net, the interaction energy module
(Fig. 1B), is an equivariant graph neural network trained to
predict the interaction energy of a molecular dimer. This
interaction energy is predicted as a sum of atom-pair contri-
butions. Rather than directly predict the total interaction
energy, this module predicts the symmetry-adapted perturba-
tion theory (SAPT) decomposition of the interaction energy into
its components of electrostatics, exchange, induction, and
dispersion. The interaction energy module architecture is
described in detail in Section 3.1.2.

Most notably, instead of operating on only the dimer
geometry, the interaction energy module operates on the output
of the atomic property module—atom-centered multipoles
through second order and hidden-state vectors encoding
atomic environments—evaluated separately for each monomer.
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 An overview of the AP-Net architecture where (A) is the atomic propertymodule and (B) is the interaction energymodule. AP-Net predicts
the four physically meaningful components of a protein–ligand interaction: electrostatics (Eelst), exchange (Eexch), induction/polarization (Eind),
and London dispersion (Edisp).
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The output of the atomic property module is used by the
interaction energy module in two ways. First, the learned
representation of each atomic environment from the atomic
property module is incorporated into the corresponding atomic
environment in the interaction energy module. This shared
representation allows the interaction energy module to indi-
rectly utilize the monomer data used to train the atomic prop-
erty module. Second, the predicted atomic multipoles of the
atomic property module are used to evaluate a multipolar
electrostatic energy. The interaction energy module is then
trained to predict the interaction energy as a correction on top
of the multipolar electrostatic energy. Because the multipolar
electrostatic energy captures the leading long-range behavior of
intermolecular interactions, the interaction energy module is
effectively limited to predicting a much more local, medium-
and short-range quantity.

This strategy of combining two different methods is similar
to the correction-based concept of D-learning, in which one
Fig. 2 (A) Depiction of the Splinter dimer dataset. This dataset was co
Between 50 and 500 dimer configurations were generated for each pair
errors with respect to interaction energies (right) over 150 000 validatio
absolute interaction energies and mean absolute errors of the two sets

© 2024 The Author(s). Published by the Royal Society of Chemistry
reformulates a regression task as a small predicted correction
on top of a computationally affordable baseline result.41

However, unlike conventional D-learning use cases in quantum
chemistry, the baseline model, multipole electrostatics via
predicted multipoles, is as computationally affordable as the
machine learning correction.
2.2 Systematically-generated protein–ligand interactions

The Splinter dataset42 is a collection of approximately 1.7 million
systematically generated protein–ligand fragment dimers and
interaction energies computed using many-body SAPT based on
a Hartree–Fock (HF) representation of monomers (i.e. SAPT0).
These and all other SAPT computations carried out in this work
are performed in an aug-cc-pV(D+d)Z basis set (abbreviated aDZ),
which yields good error cancellation.43 The construction of this
dataset is illustrated in Fig. 2A. The Splinter dimers are not only
chemically diverse, they also were intentionally generated in
nstructed by exhaustively pairing small protein and ligand fragments.
of fragments. (B) Distribution of interaction energies (left) and AP-Net
n dimers of the Splinter dataset, in kcal mol−1. The respective mean
of distributions are labeled.

Chem. Sci., 2024, 15, 13313–13324 | 13315
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variety of repulsive, optimized, and dissociated congurations.
Consequently, the interaction energies associated with the
Splinter dimers span a range of over 500 kcal mol−1.

A large fraction of the Splinter dataset was used to train the
interaction energy module of the AP-Net model. The perfor-
mance of AP-Net on 150K held-out validation dimers, which
were not used to t the model, is shown in Fig. 2B. AP-Net
predicts the SAPT interaction energies with a mean absolute
error (MAE) of only 0.20 kcal mol−1 and amaximum error of less
than 15 kcal mol−1. The interaction energy of over 97% of the
validation dimers is predicted within 1 kcal mol−1, a metric
commonly referred to as chemical accuracy.44 The individual
SAPT components of the interaction energy are predicted with
even greater accuracy than the total interaction energy. As
observed in previous efforts to predict the SAPT decomposition
with ML models, errors in electrostatics and exchange are
largest, followed by induction, and then dispersion.34,45

Dispersion is predicted particularly accurately, with a MAE of
only 0.02 kcal mol−1. It should be noted that the error in this
prediction is much smaller than errors inherent in the SAPT0
approximation or even the choice of nite basis set.
2.3 Crystallographic protein–ligand interactions

The ultimate goal of the AP-Net intermolecular potential is to
accurately predict interaction energies of realistic models of
protein–ligand systems. Therefore, it would not be sufficient to
only evaluate the model on dimers sampled from Splinter,
which are procedurally generated and come from the same
chemical space as the training data. For this reason, we devel-
oped a more diverse, realistic dataset of dimers, referred to as
SAPT-PDB-13K. The 13 216 dimers in SAPT-PDB-13K consist of
an entire ligand interacting with one or two capped amino
acids. The protein and ligand geometries are taken from crys-
tallographic Protein Data Bank (PDB) entries, making them
meaningful and practical test cases. An illustrative dimer from
the SAPT-PDB-13K dataset is shown in Fig. 3.
Fig. 3 An example dimer from the SAPT-PDB-13K dataset. A small
molecule inhibitor interacts with the nearest amino acid, a tyrosine, of
an Escherichia coli sliding clamp protein. This dimer was extracted
from PDB entry 4PNU.
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The diversity of the SAPT-PDB-13K dataset makes it a useful
test of AP-Net's generalization ability. Compared to the Splinter
dataset, SAPT-PDB-13K contains different, larger ligands that
span more charge states. Regardless, Fig. 4 shows that AP-Net
still accurately predicts the SAPT0 interaction energy decompo-
sition with a MAE of 0.74 kcal mol−1. In many ways, the predic-
tion errors on the SAPT-PDB-13K dimers resemble the prediction
errors on the held-out Splinter dimers. One notable difference is
in the prediction of the SAPT induction term. Interestingly, the
induction MAE is larger relative to the other three SAPT compo-
nents. It is also apparent from Fig. 4 that the predicted induction
energies have a slight positive bias for dimers with large, negative
induction energies. This observation is in line with the fact that
induction is an inherently many-body phenomenon, in contrast
to the atomic-pairwise additivity of AP-Net.46 The many-body
nature of induction—which can be thought of as mutual polar-
ization between three or more atoms combined with charge
transfer—becomes apparent in a few SAPT-PDB-13K dimers that
contain strongly interacting di- and tri-anions.

2.4 Relative interaction energies

AP-Net's performance on the Splinter and SAPT-PDB-13K data-
sets demonstrates the model's ability to accurately predict
interaction energies (DEint) of protein–ligand systems. A derived
quantity of interest is the relative interaction energy (DDEint),
dened as the difference in interaction energies between two
related dimers, such as those that differ by a change in a single
functional group. An example experiment is illustrated in Fig. 5.
Such single-point alchemical computations may be used to
guide the drug design process.

The results of nine DDEint experiments are listed in Table 1,
and a breakdown by SAPT component is included in the ESI.† In
each experiment, the DDEint of two related protein–ligand dimers
is calculated using both SAPT and AP-Net. Each pair of dimers is
constructed from an initial protein–ligand complex, taking
a portion of the ligand and its surrounding protein environ-
ment.47 The second dimer of each pair is characterized by
a change in a ligand functional group. In seven of the nine pairs,
a chlorine is replaced with a methyl group, and in 2O7N, a cyano
group is replaced with a bromine. The ligands of the 2Y5G/2Y5H
matched pair differ by a heterocycle rotation rather than an
atomic substitution. In all nine computational experiments, the
sign of the AP-NetDDEint matches the sign of the SAPT-computed
DDEint, meaning the AP-Net interaction energies are accurate
enough to predict whether each functional group substitution
stabilized or destabilized the protein–ligand interaction. SAPT0
computations on some of these complexes (∼200 atoms)
required as much as 1.5 days or more, running on 12 cores, while
the AP-Net computations ran in a few seconds each. This makes
in silico ligand design experiments of this type (with quantum-
mechanical accuracy) now feasible for routine and easy use.

2.5 Transfer learning to gold standard quantum chemistry

The SAPT0/aDZ level of theory used in the Splinter dataset has
been extensively benchmarked and strikes a good balance
between computational cost and accuracy.43 A more accurate
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 Correlation between AP-Net predicted interaction energies and computed SAPT0/aDZ interaction energies on the 13 216 dimers in the
SAPT-PDB-13K dataset.

Fig. 5 Example of an alchemical DDEint experiment. The chlorine
group of the P1 substructure of the Factor Xa inhibitor, BAY 59-7939, is
mutated to a methyl. The structure is extracted from PDB entry 2W26.

Table 1 Difference in interaction energies (kcal mol−1) for alchemical
substitutions in nine protein–ligand complexes. The PDB entry of the
crystallographic structures from which each dimer pair was derived is
given

PDB entry SAPT0 DDEint AP-Net DDEint

2CJI −2.07 −1.67
2O7N +4.16 +4.26
2PR3 −1.03 −1.42
2UZT +0.17 +0.91
2W26 −2.00 −1.00
2Y5(G/H) −3.47 −3.65
3ENS −4.95 −2.94
4YFF +0.86 +0.38
4YHT −2.23 −2.97
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level of theory is coupled cluster with singles, doubles, and
perturbative triples [CCSD(T)]48 in the complete basis set (CBS)
limit. CCSD(T)/CBS is oen referred to as the “gold standard” in
quantum chemistry because of its reliability. Ideally, the AP-Net
model would be trained on CCSD(T)/CBS interaction energies
© 2024 The Author(s). Published by the Royal Society of Chemistry
for the Splinter dimers, but the steep O ðN7Þ scaling of this
method makes obtaining many such high-quality interaction
energies prohibitively expensive. An appealing solution from
the eld of machine learning is the process of transfer learning,
in which one leverages data associated with one task (predicting
SAPT0/aDZ interaction energies) to improve performance at
some other similar, usually data-limited task (predicting
CCSD(T)/CBS interaction energies).49 Generally, transfer
learning is realized by initially training some NN model on the
rst large dataset, and then re-training the same model on the
smaller, relevant dataset. This approach has been successfully
used in the development of atomic potentials.50

A transfer learning experiment was performed to assess the
practicality and data requirements of training a CCSD(T) quality
AP-Net intermolecular potential. This experiment was per-
formed with the DES370K dimer dataset.20 DES370K is similar
to the Splinter dataset in that it contains many small molecule
dimers. Unlike Splinter, DES370K contains interaction energies
computed at the CCSD(T)/CBS level of theory. Two separate “AP-
Net-CC”models were trained on the DES370K dataset to predict
CCSD(T)/CBS interaction energies. These models are referred to
as AP-Net-CC to differentiate them from the standard AP-Net
model, which is t to the SAPT decomposition. Because AP-
Net is constructed to separately predict the four SAPT interac-
tion energy components, all AP-Net-CC models are trained so
that the sum of the four predicted components matches the
CCSD(T)/CBS interaction energy. Therefore, any AP-Net-CC
model lacks the interpretability of an AP-Net model trained to
predict the SAPT decomposition. As a baseline, the rst AP-Net-
CC model was constructed with randomly initialized weights in
the interaction energy module. The second “pre-trained” AP-
Net-CC model was constructed with interaction energy
module weights taken from the original AP-Net model. Both AP-
Chem. Sci., 2024, 15, 13313–13324 | 13317
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Net-CCmodels used the same frozen atomic property module as
the original AP-Net model.

The accuracy of the two AP-Net-CC models as a function of
the amount of DES370K training data is shown in Table 2. The
pre-trained AP-Net-CC model outperforms the baseline AP-Net-
CC model, particularly in the low data regime. At 100 training
data points, transfer learning results in a nearly four-fold error
reduction (from 1.91 kcal mol−1 to 0.48 kcal mol−1). The accu-
racy of a pre-trained AP-Net-CC model with only 100 training
data points is similar to that of a baseline AP-Net-CC trained on
a few thousand data points. Transfer learning provides dimin-
ishing returns when more CCSD(T)/CBS data is available. The
pre-trained model is nearly equivalent to the baseline model
when 50K training points are used. These results demonstrate
that transfer learning is an economical approach for leveraging
the original AP-Net model, which was trained on the SAPT
decomposition of over 1.5 M dimers, to predict interaction
energies at more computationally expensive levels of theory. A
minimal amount of expensive, high accuracy CCSD(T)/CBS data
is required to ne-tune AP-Net from SAPT to this gold standard
quantum chemistry method.
2.6 Predicting interaction energy surfaces

The transfer learning approach applies not just between
different levels of quantum chemical theory, but also between
different regions of chemical space. In particular, one might
want to repurpose the AP-Net potential, which is parameterized
to model protein–ligand interactions in general, into an inter-
action energy model specialized for a particular dimer, which
may not even be a protein–ligand system. To explore the
usefulness of such a model, we examined the performance of
the previously described AP-Net-CC models on the interaction
energy surface of the hydrogen-bonded N-methylacetamide
(NMA) dimer. This dimer is a model system for peptide
bonding. SAPT0/aDZ and CCSD(T)/CBS interaction energies
were computed along a two-dimensional scan of the intermo-
lecular hydrogen bond length and angle of this dimer. The
Table 2 Mean absolute errors (kcal mol−1) of AP-Net-CC predicted
CCSD(T)/CBS interaction energies from the DES370K dataset. The AP-
Net-CC models are trained on varying amounts of randomly selected
data from the same dataset. Baseline models, which are trained from
scratch, are compared to a transfer learning scheme that starts with an
AP-Net model pre-trained on SAPT0/aDZ interaction energies

Training
dimers Baseline Pre-trained

100 1.91 0.48
200 1.64 0.47
500 1.22 0.40
1000 0.80 0.37
2000 0.56 0.33
5000 0.35 0.29
10 000 0.26 0.23
20 000 0.20 0.18
50 000 0.14 0.12
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intermolecular O/H bond length was varied from 1.5 Å to 3.0 Å
in 0.1 Å increments and the intermolecular O/ HN bond angle
from −90° to +90° in 1.5° increments. Fig. 6 shows these
reference interaction energy surfaces compared to predictions
of the AP-Net and two AP-Net-CC models. An additional one-
dimensional visualization of this surface is available in the
ESI.† The computed SAPT0/aDZ and CCSD(T)/CBS surfaces
differ by a small amount: the SAPT0/aDZ surface is overall lower
in energy than the gold standard reference method, with
a minimum energy of −8.43 kcal mol−1 at a hydrogen bond
length of 2.0 Å. The CCSD(T)/CBS surface has a minimum
energy of −7.28 kcal mol−1 at 2.0 Å.

The AP-Net predicted surface agrees with with the reference
SAPT surface. This is expected given the quantity and diversity
of data used to train the model. The baseline AP-Net-CC model
trained on only 100 data points poorly predicts the CCSD(T)/
CBS surface. This predicted interaction energy surface lacks
both a repulsive wall and a reasonable minimum. However,
using the same 100 points to repurpose the AP-Net model to the
CCSD(T)/CBS theory with transfer learning results in an excel-
lent prediction of the interaction energy surface. It's particularly
notable that these 100 dimers are randomly selected from the
DES370K dataset, and do not include NMA.
2.7 Ranking molecular crystal polymorphs

Intermolecular interactions largely govern the structure of
molecular crystals and other clusters, making these systems
a promising application of AP-Net outside of protein–ligand
interactions. A vast majority of molecular crystals are poly-
morphic, meaning that they can exist in multiple stable crys-
talline forms, with potentially different physical properties like
density, solubility, hygroscopicity, melting point, etc.51 In drug
development, thoroughly determining all polymorphs of a drug
candidate is a necessary procedure that is routinely guided by
computation. A common crystal structure prediction (CSP) task
is to screen and rank the most energetically stable putative
polymorphs of a target molecule.52 Using the many body
expansion (MBE), the energy of a crystal lattice can be recast as
approximately a sum of many dimer interaction energies.53 This
two-body contribution to the crystal lattice energy, hereaer
referred to as the crystal lattice energy, can therefore be
computed with any quantum chemistry method used for
interaction energies or predicted with AP-Net. Note that poly-
morph ranking must also account for monomer strain, zero-
point vibrational energy, and nite temperature and pressure.54

We performed a preliminary experiment to assess AP-Net at
ranking polymorphs of the 5-uorouracil crystal. 61 low-lying 5-
uorouracil crystal structures, one of which is the experimen-
tally observed form II, were taken from the work of Price.55 The
CrystaLattE program53 was used to reduce each crystal structure
into a set of unique dimers, from which the crystal lattice
energies were computed at the SAPT0/aDZ level of theory and
predicted with AP-Net. An intermolecular closest contact cutoff
of 15 Å was used to generate the dimers. The computed and
predicted crystal lattice energies are compared in Fig. 7.
Importantly, AP-Net reproduces the approximate ranking of the
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 (Top Right) Visualization of a two-dimensional interaction energy scan (kcal mol−1) for the NMA dimer, varying the hydrogen bond
distance (r) and angle (q). (Top Left) The NMA dimer interaction energy surface computed at the cheaper SAPT0/aDZ level of theory. (Bottom Left)
The NMA dimer interaction energy surface computed at the expensive CCSD(T)/CBS level of theory. (Top Center) The NMA dimer interaction
energy surface predicted by an AP-Net model trained on ∼1.7 million SAPT0/aDZ data points. (Bottom Center) The NMA dimer interaction
energy surface predicted by an AP-Net model trained on one hundred CCSD(T)/CBS data points. (Bottom Right) The NMA dimer interaction
energy surface predicted by an AP-Net model trained on ∼1.7 million SAPT0/aDZ data points and then re-trained with one hundred CCSD(T)/
CBS data points. All energies in kcal mol−1.

Edge Article Chemical Science
polymorphs. Form II is correctly predicted to be among the
lowest energy structures. The AP-Net ranking of form II happens
to be slightly better than that of SAPT0/aDZ due to fortuitous
errors in the interaction energies. The MAE of the AP-Net pre-
dicted crystal lattice energies relative to SAPT0 is 1.18 kJ mol−1,
which is smaller than the disagreement between many
quantum chemistry methods.56 Note that this result is in spite
of the fact that AP-Net was trained specically on protein–ligand
data, not 5-uorouracil homodimers or even ligand–ligand
dimers.

The 61 AP-Net crystal lattice energy predictions required less
than two CPU minutes, a nearly 30 000-fold savings over the
corresponding SAPT0/aDZ cost of 980 CPU hours. Because the
Fig. 7 (Left) The experimentally observed form II of the 5-fluorouracil c
crystal lattice energies. (Right) Relative crystal lattice energies as a funct

© 2024 The Author(s). Published by the Royal Society of Chemistry
cost of quantum chemistry computations scales poorly with
system size, AP-Net predicted crystal lattice energies of a larger
drug-like molecule would result in even more pronounced
savings relative to SAPT0/aDZ.
3 Materials and methods
3.1 Implementation

The AP-Net model was implemented using version 2.3 of the
TensorFlow Python package.57 The implementation and archi-
tectural details of the two constituent modules of the AP-Net
model are described below.
rystal. (Center) Comparison between computed and predicted relative
ion of density.

Chem. Sci., 2024, 15, 13313–13324 | 13319
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3.1.1 Atomic property module. The atomic property
module predicts charges, dipoles, and Cartesian quadrupoles of
all atoms in a molecule from the identities and coordinates of
the atoms and the total charge of the molecule via an equivar-
iant MPNN. Reference and predicted multipoles are written as
(q, m, q) and (q̂, m̂, q̂) respectively.

The initial environment of atom i in the MPNN is a simple
mapping or embedding of the integer nuclear charge (Zi) to
a vector (h0i ) as was proposed in SchNet.22 The mappings are
generated at uniform random for all Z corresponding to atomic
elements of interest: H, C, N, O, F, Na, P, S, Cl, and Br. An edge
between atoms i and j exists if the distance between the atoms is
less than a cutoff distance, rc, which is set to 5.0 Å. The edge
feature vector eij, is a simple encoding of the scalar distance jrijj
using a set of Bessel functions as described in the work of
Gasteiger, et al.:32

eij = [eij,1,.,eij,N], (1)

eij;n ¼
ffiffiffiffi
2

rc

s
sin

�
np

rc

��rij�����rij�� : (2)

The message sent from atom i to atom j at time step t $ 0 is an
outer product between concatenated hidden state vectors and
the edge vector:

mij
t = (h0i , hi

t, h0j , hj
t) × (1, eij). (3)

The total, directionless message received by atom i at time-step t
is a sum over individual messages from all neighbors j:

mi
t ¼

X
j˛N ðiÞ

mij
t; (4)

and this quantity is used to update the total, directionless
hidden state of atom i:

hi
t+1 = Ut(mi

t), (5)

where Ut is a dense, feed-forward neural network. The predicted
charge of atom i, q̂i is determined from the hidden states
through all T time steps and a set of dense, feed-forward neural
networks:

q̂i ¼
X

0# t#T

Rtðhi tÞ: (6)

We set T = 3 in this work.
The displacement vector and displacement unit vector

between atoms i and j are simply:

rij = rj − ri, (7)

r̂ij ¼ rij��rij�� : (8)

A directional hidden state, xi
t, for predicting atomic dipoles is

determined, analogous to charges:

xi
t ¼

X
j˛N ðiÞ

r̂ij �Dt
�
mij

t
�
; (9)
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using a directional update function, D. Note that D itself has no
directional properties as it operates on the rotational invariant
(mij). The functional is named so because it is used to predict
a directional hidden state, xti which differs from hi

t in that is has
an additional Cartesian dimension. The Cartesian dimension of
the directional hidden state inherits the rotational equivariance
of the displacement vector r̂ij, which is then used to predict
a rotationally equivariant dipole vector:

bm i ¼
X

1# t#T

Rm
tðxi;m

tÞ: (10)

The dipole readout function Rm
t is made to be a simple linear

layer. This ensures rotationally equivariant atomic dipoles;
a readout function with non-linearites, such as a dense feed-
forward neural network, would not preserve the equivariance
of the hidden state vector xi

t. Also, the dipole hidden state at t =
0 isn't incorporated into the readout because a non-interacting
atom has no dipole. Quadrupoles are predicted analogously to
dipoles, with separate quadrupole hidden states, update func-
tions, and readout functions.

Lastly, the network architecture enforces conservation of
total molecular charge, Q:

q̂i)q̂i þ
Q�P

i q̂i
N

; (11)

and also that the Cartesian quadrupoles are symmetric and
traceless:

bQ)
1

2

�bQ þ bQ†
	
; (12)

bQ)bQ �
bQxx þ bQyy þ bQzz

3
I : (13)

3.1.2 Interaction energy module. The interaction energy
module predicts the SAPT decomposition of the interaction
energy (electrostatics, exchange, induction, and dispersion)
from a molecular dimer, which consists of two sets of atomic
identities and coordinates and two molecular charges. The
characters a, a0, b, and b0 will be used to index atoms in
monomers A and B, respectively. The interaction energy
components are predicted through learned, intermolecular,
atomic-pairwise partition:

DEint ¼

2666664
Eelst

Eexch

Eind

Edisp

3777775 ¼
X
a˛A

X
b˛B

2666664
Eab;elst

Eab;exch

Eab;ind

Eab;disp

3777775: (14)

The interaction energy module uses an MPNN architecture
similar to that of the atomic property module. Specically, the
message and update functions in this module are identical, but
have different weights.

maa
0 t ¼

�
ha

0; ha
t; ha0

0; ha0
t
	
�
�
1; eaa0

	
; (15)
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ma
t ¼

X
a
0˛N ðaÞ

maa
0 t; (16)

ha
t+1 = Ut(ma

t). (17)

In addition to the rotational invariant hidden state vector
ðh˛R f Þ, a directional, rotationally equivariant hidden state
vector ðx˛R 3f Þ is also updated throughout the message
passing:

xa
tþ1 ¼

X
a
0˛N ðaÞ

r̂
aa

0 �Dt
�
m

aa
0 t
	
; (18)

using another feed-forward neural network, Dt. The hidden
states from each iteration are concatenated, and a pair feature
vector is then created from all hidden state vectors for each
intermolecular (a, b) pair:

ha = (h0a,.,ha
T), (19)

xa=(x0a,.,xTa ), (20)

pab = (q̂a, q̂b, ha, hb, r̂ab$xa, r̂ba$xb). (21)

Note that this pair feature vector uses the predicted atomic
charges from the atomic property module, which is separately
applied to both monomers in the dimer. Also, the rotationally
equivariant vectors x are incorporated in a rotationally invariant
way by projection onto the intermolecular unit vector. Four
dense feed-forward NNs are used to predict the four SAPT
components from the pair feature vectors:

Eab,comp = jrabj−p[Rcomp(pab) + Rcomp(pba)], (22)

where comp is one of the four SAPT components (electrostatics,
exchange, induction, dispersion). The pair energies are
inversely scaled by the interatomic distance raised to the p
power, where p is xed at 3 across all interaction types; the key
consideration was to enforce asymptotic decay of the interac-
tion energy. The output is also symmetrized over the order of
the two atoms. Finally, in the case of electrostatic energies, the
neural network predictions are corrections on top of multipolar
(mtp) electrostatics computed from the charges, dipoles, and
quadrupoles predicted by the atomic property module:

Eab,elst ) Eab,elst + Eab,mtp. (23)

The predicted interaction energy, though dened as a sum of
atom-pair interaction energies, is still a many-body quantity
(where “body” refers to atoms). This is a consequence of using
a MPNN to featurize each atom with its local atomic environ-
ment. In contrast, AP-Net produces a strictly two-body dimer
interaction energy (where “body” refers to molecules).
3.2 Training data and procedure

The AP-Net model is trained in a two step procedure. All code
used to train this model is present in the AP-Net GitHub
repository.58 First, the atomic property module is trained on
© 2024 The Author(s). Published by the Royal Society of Chemistry
a dataset of molecular monomers and computed atomic
multipoles. This was done with our previous dataset of 46 623
mostly drug-like fragments and corresponding atomic multi-
poles computed from HF/cc-pVDZ wavefunctions and parti-
tioned with the minimal basis iterative stockholder (MBIS)
scheme.59 Because the dataset lacks non-neutral monomers and
monomers representing protein systems, it was further
expanded to include monomers present in the Splinter dataset.
6550 additional computations were performed on randomly
selected monomers from the Splinter dataset, totaling 53 173
monomers. The 53 173 monomers were then randomly split
into training and validation subsets of 47 855 and 5318
monomers.

The atomic property module was constructed with three
message passing iterations. Each dense feed-forward neural
network in the module is composed of three hidden layers with
256, 128, and 64 neurons. The ReLU activation function is
applied aer each hidden layer, followed by an appropriately
sized linear operation aer the last hidden layer. The edge
feature vectors are constructed from 8 Bessel functions and
a radial cutoff of 5 Å. Training was performed to minimize the
sum of the mean squared errors of the atomic charges, dipoles,
and quadrupoles:

L ¼ 1

Na

XNa

a

ðqa � q̂aÞ2 þ jma � bmaj2 þ
���qa � bqa���2 (24)

where a indexes atoms in a batch of molecules. The atomic
property module was trained for 500 epochs with a batch size of
16 molecules. Weights were optimized with the Adam optimizer
using a learning rate of 5 × 10−4. The weights of the epoch with
the lowest validation MSE are used in the nal AP-Net model.

In the second step of training, the interaction energy module
is trained on the Splinter dimer dataset to predict SAPT
decomposed interaction energies. The interaction energy
module requires atomic multipoles as an input, which were
obtained from the atomic property module. The architecture of
the MPNN in this module is identical to that of the atomic
property module. Intermolecular atom pair readouts are per-
formed with an 8 Å cutoff. This means that the interaction
energy of atom pairs within this cutoff is predicted with a full
neural network inference; the interaction energy of atom pairs
outside of this cutoff is only accounted for by multipolar elec-
trostatics. The asymptotic decay coefficient (p) was set to three.
Random training and validation subsets of 1.5M and 150K
dimers are taken from the 1.66M dimers in the Splinter dataset.
The module is optimized to minimize the MSE of the individual
SAPT components:

L ¼ 1

Nd

XNd

d

X4

c

�
Ec;d � Êc;d

	2

; (25)

where c is one of four SAPT components (electrostatics,
exchange, induction, and dispersion) and d indexes dimers in
the batch. The MPNN was trained using a batch size of 16
dimers and the Adam optimizer with a learning rate of 5× 10−4.
Training was performed for 50 epochs, and the weights of the
epoch with the lowest validation MSE are used in the nal AP-
Chem. Sci., 2024, 15, 13313–13324 | 13321
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Net model. An ensemble of ve randomly initialized AP-Net
models were trained on the same data to reduce uncertainty,
and all predictions presented in this work are the average
prediction of the ensemble.
3.3 SAPT-PDB-13K dataset preparation

The SAPT-PDB-13K test set of 13 216 dimers was prepared to
consist of diverse, drug-like molecules paired with mono- and
dipeptides extracted from crystallographic structures deposited
in the PDB. The following procedure was followed to ensure that
ligands were structurally diverse and drug-like: ligand mole-
cules were extracted from the PDBbind 2019 rened set of 4852
complexes,60,61 imported into Maestro 2021-3,62 assigned
charges and bond orders with LigPrep63 and clustered using the
spectral clustering utility with default settings, which provided
133 representative ligands. An additional 600 ligands were
visually selected which further added structural diversity and
represented the full range of elements compatible with the AP-
Net model (H, C, N, O, F, Na, P, S, Cl, and Br). The corre-
sponding 733 PDB protein/ligand complexes were subjected to
renement using the Schrodinger Protein Prep64 tool with
default settings. Dimers consisting of ligands and proximal
mono- and dipeptides were created, wherein the N- and C-
termini were capped with acetyl and N–Me groups, respec-
tively. Visual inspection led to removal of erroneous structures
(e.g., presence of hypervalent carbons or otherwise non-physical
geometries) and duplicates. SAPT0/aug-cc-pV(D+d)Z interaction
energies of the 13 216 dimers were computed with Psi4 and
made available in the ESI.†
4 Discussion

The AP-Net potential developed in this work is a robust,
physically-motivated NN intermolecular interaction model. In
contrast to the many general purpose ML potentials which
predict a total energy, the AP-Net potential predicts interaction
energies. As a consequence of this specialization, AP-Net is
constructed to adhere to known physical priors of intermolec-
ular interactions, such as their approximate atomic pairwise
nature and distance decay. An additional physical prior is
captured by AP-Net's unique two-component architecture.
Rather than simply predict atom-pair contributions to the
interaction energy, AP-Net is constructed to predict monomer
electron densities (in the form of atom-centered multipoles),
evaluate a long-range electrostatic interaction energy from the
predicted multipoles, and then predict atom-pair corrections to
this evaluated energy.

This two-component architecture confers a number of
advantages to the AP-Net model. Because of the multipolar
electrostatic force eld, the AP-Net model produces electrostatic
interaction energies that are asymptotically exact at the target
level of theory using a relatively small amount of multipole
training data. An analogous pure-NN model would need to be
trained on an intractable number of dimer interaction energies
to reach the same level of accuracy. This case of long-range
electrostatics illustrates a weakness of NN models, which is
13322 | Chem. Sci., 2024, 15, 13313–13324
that unnecessary exibility can be a detriment to data efficiency.
AP-Net's architecture effectively limits the exibility of the
functional form at long-range where the physics is known,
allowing the modeling capacity to be applied to the more
difficult short-range interactions. In addition to improving the
data efficiency of the model, concentrating on short-range
intermolecular interactions improves the computational effi-
ciency of the AP-Net model. Neural network inferences, which
are more expensive than force eld evaluations, are only
required for pairs of interaction atoms within a relatively short
distance threshold (8 Å).

This physically-motivated AP-Net is applied to the chal-
lenging and consequential problem of modeling protein–ligand
interaction energies. A useful AP-Net model is made possible by
the Splinter dataset: a comprehensive and diverse collection of
1.66M protein–ligand dimers and SAPT0 interaction energies.
The trained AP-Net accurately reproduces the SAPT decompo-
sition of interaction energies well within chemical accuracy in
the great majority of cases. More importantly, generalizability to
larger models of protein–ligand dimers is observed, with good
agreement between AP-Net and SAPT0 for substituent effects for
∼200-atom model systems where SAPT0 results can still be
obtained. While the SAPT0 computations require many hours,
the AP-Net results run in seconds. These ndings suggest that
the AP-Net model is an immediately practical tool for drug
design research when quantum-level accuracy is desired for
protein–ligand interaction energies, as was helpful in previous
studies by our group on factor Xa inhibitors.11

This AP-Net model is not without shortcomings. One
apparent deciency is the underestimation of strong induction
interactions, which occurs for a few select realistic protein–
ligand dimers of the SAPT-PDB-13K dataset. These dimers
represent an edge case where the non-local, many-body nature
is poorly captured by the atomic-pairwise architecture of AP-
Net. Efficiently modeling this non-pairwise additivity likely
requires a model architecture with an appropriate inductive
bias. In the same way that the current AP-Net model fuses
classical long-range multipole electrostatics with a NN-
predicted short-range correction, a future AP-Net model might
benet from incorporating a classical Thole-type induction
model as is done in polarizable ab initio force elds like
AMOEBA.65,66 This could be incorporated by training the atomic
property module to predict atomic polarizability tensors.
Another potential limitation arises from using a framework of
interacting monomers to predict intermolecular interaction
energies. This framework is largely incompatible with reactive
chemistry, where the formation or dissolution of bonds changes
the denition of monomers. Modeling reactive chemistry with
an intermolecular potential can be done with the empirical
valence bond (EVB) approach,25,67 but it might be easier to
simply train a NN potential to the total system energy.

Because of the high accuracy of AP-Net relative to SAPT0, the
development of future models will likely target training data
computed at a higher level of quantum chemistry theory.
Additional AP-Net model development, whether targeting new
levels of theory or new types of dimers, can benet from transfer
learning from the current, general, protein–ligand model. This
© 2024 The Author(s). Published by the Royal Society of Chemistry
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approach greatly reduces training data requirements. Surpris-
ingly, the protein–ligand AP-Net model can be used for
modeling ligand–ligand interaction energies accurately enough
to rank polymorphs of the 5-uorouracil crystal, an application
far outside of the original intention of the AP-Net model. This
result illustrates one of many potential future AP-Net use cases,
and it also points towards the possibility of a universal inter-
action energy potential.
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G. De Fabritiis, F. Noé and C. Clementi, ACS Cent. Sci.,
2019, 5, 755–767.

17 R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. v. Lilienfeld,
Sci. Data, 2014, 1, 140022.

18 S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky,
K. T. Schütt and K.-R. Müller, Sci. Adv., 2017, 3, e1603015.

19 J. S. Smith, R. Zubatyuk, B. Nebgen, N. Lubbers, K. Barros,
A. E. Roitberg, O. Isayev and S. Tretiak, Sci. Data, 2020, 7,
134.

20 A. G. Donchev, A. G. Taube, E. Decolvenaere, C. Hargus,
R. T. McGibbon, K.-H. Law, B. A. Gregersen, J.-L. Li,
K. Palmo, K. Siva, M. Bergdorf, J. L. Klepeis and
D. E. Shaw, Sci. Data, 2021, 8, 55.

21 J. S. Smith, O. Isayev and A. E. Roitberg, Chem. Sci., 2017, 8,
3192–3203.

22 K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko
and K.-R. Müller, J. Chem. Phys., 2018, 148, 241722.

23 K. Yao, J. E. Herr, D. Toth, R. Mckintyre and J. Parkhill,
Chem. Sci., 2018, 9, 2261–2269.

24 D. A. Rufa, H. E. B. Macdonald, J. Fass, M. Wieder,
P. B. Grinaway, A. E. Roitberg, O. Isayev and J. D. Chodera,
bioRxiv, 2020, DOI: 10.1101/2020.07.29.227959.

25 J. P. Stoppelman and J. G. McDaniel, J. Chem. Phys., 2021,
155, 104112.

26 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and
G. E. Dahl, Proceedings of the 34th International Conference
on Machine Learning, Sydney, NSW, Australia, 2017, pp.
1263–1272.

27 V. G. Satorras, E. Hoogeboom and M. Welling, Proceedings of
the 38th International Conference on Machine Learning, 2021,
pp. 9323–9332.

28 T. E. Smidt, Trends Chem., 2021, 3, 82–85.
29 M. Geiger and T. Smidt, arXiv, preprint, arXiv:2207.09453,

2022, DOI: 10.48550/arxiv.2207.09453.
30 S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa,

M. Kornbluth, N. Molinari, T. E. Smidt and B. Kozinsky,
Nat. Commun., 2022, 13, 2453.
Chem. Sci., 2024, 15, 13313–13324 | 13323

https://github.com/zachglick/apnet
https://doi.org/10.5281/zenodo.11493604
https://doi.org/10.5281/zenodo.11493604
https://doi.org/10.1101/2020.07.29.227959
https://doi.org/10.48550/arxiv.2207.09453


Chemical Science Edge Article
31 I. Batatia, D. P. Kovacs, G. Simm, C. Ortner and G. Csanyi,
Adv. Neural Inf. Process. Syst., 2022, 11423–11436.

32 J. Gasteiger, J. Groaa and S. Günnemann, International
Conference on Learning Representations, 2020.

33 S. Takamoto, S. Izumi and J. Li, Comput. Mater. Sci., 2022,
207, 111280.

34 Z. L. Glick, D. P. Metcalf, A. Koutsoukas, S. A. Spronk,
D. L. Cheney and C. D. Sherrill, J. Chem. Phys., 2020, 153,
044112.

35 D. Rosenberger, J. S. Smith and A. E. Garcia, J. Phys. Chem. B,
2021, 125, 3598–3612.

36 K. K. Huguenin-Dumittan, P. Loche, N. Haoran and
M. Ceriotti, J. Phys. Chem. Lett., 2023, 14, 9612–9618.

37 M. Konrad and W. Wenzel, J. Chem. Theory Comput., 2021,
17, 4996–5006.

38 I.-B. Magdău, D. J. Arismendi-Arrieta, H. E. Smith, C. P. Grey,
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