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Abstract

Given the rapid pace with which genomics and other ‐omics disciplines are

evolving, it is sometimes necessary to shift down a gear to consider more

general scientific questions. In this line, in my presidential address I formulate

six questions for genetic epidemiologists to ponder on. These cover the areas of

reproducibility, statistical significance, chance findings, precision medicine and

related fields such as bioinformatics and data science. Possible hints at

responses are presented to foster our further discussion of these topics.
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Dear colleagues and friends, I have spent a long time
thinking about what to talk about today. From all the
presidential addresses in the past few years, I learnt that this
presentation should be on a high scientific level but must
not be boring. It should give useful guidance and set
standards for our research in genetic epidemiology, but
should at the same time be entertaining and inspiring.
Ideally, I would have liked to present you relevant messages
or recommendations concerning our discipline, but nothing
came to my mind. Therefore, I decided to turn the tables
and formulate six questions to you instead. I am convinced
that we, as a society of genetic epidemiologists, should
address these questions in the near future.

1 | THE REPRODUCIBILITY
CRISIS: P VALUES AND
SIGNIFICANCE THRESHOLDS

In 2016, Nature published the results of a survey on 1,576
scientists from different disciplines (Baker, 2016). It was
reported that 52% of the scientists believed that there is a
significant reproducibility crisis, 38% believed in a slight

crisis, and only 10% said that there was no crisis or did not
answer the question. Focusing on those who are usually our
collaborators, namely scientists from medicine or biology,
65% and 75%, respectively, reported to have failed to
reproduce someone else’s experiment, and 55% and 60%
had even failed to reproduce an experiment of their own.
Asked about how this situation could be improved, the
majority of scientists agreed with the statements of using a
“more robust experimental design” or “better statistics.”

The call for improving the use of statistical methods
was echoed in a number of publications that specifically
commented on the problematic use of p values and
significance thresholds (Nuzzo, 2014) and their common
misinterpretations. Based on that, the American Statis-
tical Association (ASA) took a drastic step by giving
explicit recommendations in their “statement on statis-
tical significance and p‐values” (Wasserstein & Lazar,
2016). This covers the three issues of misinterpretation,
overtrust, and misuses of p values.

Among the six principles they laid out, I would like to
highlight one, namely “Scientific conclusions and business
or policy decisions should not be based on only whether a
p‐value passes a specific threshold.” As the supplementary
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material, Greenland et al. (2016) gave details on common
misinterpretations of p values and related concepts, citing
Fisher (1956) on this specific point with “No scientific
worker has a fixed level of significance at which from year
to year, and in all circumstances, he rejects hypotheses; he
rather gives his mind to each particular case in the light of
his evidence and his ideas.” A number of comments on the
recommendations by the ASA were published subsequently
(e.g., Wellek, 2017, and accompanying comments), empha-
sizing the problematic use of the fixed threshold of 0.05 as
significance level.

We, therefore, see that a strict reliance on a fixed
threshold is found to be problematic. Given this general
background of the discussion in biostatistics, let me
briefly summarize the use of significance levels in genetic
epidemiology.

In classical linkage studies, we traditionally reject our
null hypothesis of no linkage if the logarithm of the odds
(LOD) score is greater than 3. This threshold was derived
by Morton in the context of the sequential probability ratio
test (Morton, 1955), that is, a sequential study design not
used for this purpose any longer. Later on, the same
threshold was further substantiated when the focus shifted
to genome‐wide linkage studies. Lander and Kruglyak
(1995) published their notable guidelines for statistical
significance, taking the multiple testing along the genome
into account. Assuming that an infinitely dense marker
map is used, they showed that a LOD score of 3.3 matches
a global significance level of 5%. For a typical marker map,
however, it was shown that this threshold again reduced
to a critical LOD score of 3. This paper elicited some
discussions. Specifically, Witte, Elston, and Schork (1996,
see also Elston, 1997) disputed the use of thresholds at all
by claiming “There is no longer much use for cutpoints,
except to provide investigators, referees and editors an
opportunity for mechanistic explanation of results under
the false guise of objectivity.” and “We would prefer that
one simply present P values and educate the reader in how
to interpret them, or else present posterior probabilities.”
However, this did not diminish the use of the LOD score
threshold for claiming statistical significance in the
following decades.

Instead, fixed thresholds were defined with a similar
stringency for genome‐wide association studies (GWAs).
Here, we typically reject our null hypothesis of no
association if the p< 5 × 10−8. This threshold goes back to
Risch and Merikangas (1996) who assumed the presence of
100,000 genes with an average of five diallelic genetic
variants in each. Further assuming that both alleles are
tested separately, this led to about one million tests to be
performed for a GWA, and a Bonferroni correction for
multiple testing on this number to achieve a global
significance level of 5% resulted in a local significance level

of 5 × 10−8. Once GWAs were performed in practice, a
number of publications derived global significance levels
taking the number of single‐nucleotide polymorphisms
and linkage disequilibrium correctly into account
(The Wellcome Trust Case Control Consortium, 2007;
Dudbridge & Gusnanto, 2008; Duggal, Gillanders, Holmes,
& Bailey‐Wilson, 2008; Gao, Starmer, & Martin, 2008; Pe'er,
Yelensky, Altshuler, & Daly, 2008), thus leading to slightly
less drastic significance levels in the range of 5 × 10−7

(The Wellcome Trust Case Control Consortium, 2007) to
7.2 × 10−8 (Dudbridge & Gusnanto, 2008). However, these
were not widely adopted in practice, but a review on GWAs
identified two current practices. First, claims for genome‐
wide significance are mostly based on the local significance
level of 5 × 10−8 (Jannot, Ehret, & Perneger, 2015); and
second, whenever this strict threshold is not reached,
another, more liberal, threshold is used to select genetic
variants to take forward for further scrutiny. This is usually
defined ad hoc and without sound statistical justification.
This general strategy has recently been extended to other
situations with similar multiple testing challenges such as
genome‐wide interaction studies (Becker, Herold, Meesters,
Mattheisen, & Baur, 2011), sequencing‐based studies (Pulit,
de With, & de Bakker, 2017) or epigenome‐wide studies
(Saffari et al., 2018). It should be noted that these
publications provide statistically sound correction methods
for the respective multiple testing problems, helping to
enforce the reproducibility of the results (see Question #3).
On the downside, fixed thresholds are again suggested for
binary decisions. Therefore, I would like to pose my

Question #1: How do we deal with p values and
significance thresholds in genetic epidemiology?

Instead of providing answers to the questions, Table 1
shows possible cheat sheets that might assist in drafting
responses. In this case, we can refer to a number of current
recommendations from the literature (Ioannidis, 2018). For
example, Benjamin et al. (2018) recommended that the
usual threshold for statistical significance be generally
lowered from 5% to 0.5%, which has been dismissed by
others (e.g., Trafimow et al., 2018). In other publications, it
was suggested not to use p values anymore but rely on
alternative methods instead. Interestingly, there is a
Bayesian line of argumentation to justify the LOD score
threshold of 3, showing that under a number of assump-
tions, this threshold yields a false‐positive frequency of
about 5% (see also Khoury, Beaty, & Cohen, 1993). Also, a
number of approaches have been proposed for alternative
methods in genetic epidemiology more recently (e.g., Strug,
2018). Another recommendation is not to rely on thresholds
as such but to use and interpret p values differently as
“graded measures of the strength of evidence against H0”
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(Fisher, 1956) or as “measure of surprise: the smaller it is,
the more surprising the results are if H0 is true” (Amrhein,
Korner‐Nievergelt, & Roth, 2017). Finally, many researchers
have emphasized the need to accumulate evidence across
studies. This suggestion is appealing but leads back to our
starting point of the reproducibility crisis.

2 | THE REPRODUCIBILITY
CRISIS: METHODS
REPRODUCIBILITY

To think about the accumulation of evidence across
studies, it is worthwhile thinking about what we mean
by “reproducibility.” Useful definitions of this have
been given by Goodman, Fanelli, and Ioannidis (2016)
distinguishing between methods reproducibility, re-
sults reproducibility, and inferential reproducibility.
Of these, methods reproducibility means that experi-
mental and computational procedures are exactly
implemented as before, with the same results. To
achieve this, recommendations have been given to
journals proposing to check the reproducibility as part
of the publication process; and to funding agencies

stressing the importance to enforce respective pro-
grams (Stodden et al., 2016). More important in our
context, recommendations for researchers include the
sharing of data, code, and workflows, in open‐trusted
repositories (Stodden et al., 2016). Focusing on these, a
number of obstacles are obvious. For example, a recent
study on Wellcome trust researchers (van Den Eynden
et al., 2016) revealed five hurdles for the sharing of
data that (a) data may be disclosive and contain
confidential information; (b) third party rights and
participant permission need to be respected; (c) data
may be misused or misinterpreted; (d) sharing
data might jeopardize future publication opportu-
nities; and (e) time and effort are required to prepare
and deposit data. Additional barriers to share pro-
gramming code included (a) the time, funding, and
skills required to prepare code for sharing; and (b) the
challenge to make the code sustainable (van Den
Eynden et al., 2016).

Facing these obstacles leads to my

Question #2: How can we in genetic epidemiology ensure
methods reproducibility given the obvious hurdles? How much
effort do we want to invest to ensure methods reproducibility?

TABLE 1 Six open questions to genetic epidemiologists

No. Question Cheat sheet

1 How do we deal with p values and significance
thresholds in genetic epidemiology?

• Lower the threshold from 0.05 to 0.005
• Get rid of p values and use alternative methods
• Get rid of thresholds, but interpret p values as “graded
measures of the strength of evidence against H0”

• Rely on accumulation of evidence

2 How can we ensure methods reproducibility? • Provide (toy) free data
• Recognize simulation as science
• Acknowledge contributions, e.g., through citing shared code
• Enforce collaborations

3 What does results reproducibility mean to us? • Distinguish terms taking genetic heterogeneity into account
• Acquire more knowledge of population differences

4 How can we guard against the possible flood
of chance findings?

• Work against publication bias
• Introduce standard disclosure such as “We report how we
determined our sample size, all data exclusions (if any), all
manipulations and all measures in the study.”

• Preregister all studies, at least those not merely exploring
data

5 What is the role of genetic epidemiology in precision
medicine?

• Fill tracks with meaningful methods
• Take responsibility for your methods and results
• Think about how clinically useful your results are
• Communicate your methods and results

6 Are we all bioinformaticians/computational
biologists/data scientists? Do we differ from other
disciplines? If so, what makes us special?

• Know your special skills (e.g., study designs, family‐based
studies, population‐based research, evaluation of clinical
utility)

• Seize opportunities to learn from others since genetics
develops quickly
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On the cheat sheet (Table 1), it may be suggested to
always provide free data, even if these are just artificial
data sets, to allow others to use and check the code on.
Producing meaningful artificial data that is similar
enough to real‐life scenarios is extremely difficult, and
simulation of data should be recognized as a science in
itself (Chen et al., 2015; König et al., 2016). If data and or
code provided by others is used, acknowledging that
adequately is important. Finally, encouraging collabora-
tions from the beginning of projects might facilitate a
reciprocal check of the methods reproducibility.

3 | THE REPRODUCIBILITY
CRISIS: RESULTS
REPRODUCIBILITY

Further subdomains of reproducibility as defined by
Goodman et al. (2016) include results reproducibility,
meaning corroborating results in a new study with the
same experimental methods, and inferential reproduci-
bility, stating that knowledge claims are strengthened
through replication or reanalysis.

But what, exactly, does it mean to corroborate results in a
new study in genetic epidemiology? For the replication of
genetic associations, standards have been established in 2007
by a dedicated working group that are well adapted in the
field (Chanock et al., 2007). Among the criteria listed, it is
stated that a “similar population” is assumed for replication.
Given the nature of genetic data, this raises the question of
the definition of a “similar population.”

In this context it may be helpful to distinguish
between two scenarios (Igl, König, & Ziegler, 2009;
König, 2011): In the first scenario, the second sample that
is assessed to reproduce the results is drawn from the
same population as the original sample, and there is only
random variation between the samples. If the results can
be corroborated, we may term this “replication.” In the
second scenario, the populations differ systematically, for
example, through ethnic differences. If in this case, we
fail to reproduce the original findings, this does not
necessarily mean that replication failed, because discor-
dant results can be due to the differences in the
underlying populations. If, however, we are able to
reproduce the results, the associations are more general-
izable, and we may term this “validation.” Keeping this
in mind may be helpful, but in specific situations, it may
not be obvious whether the populations of original and
second samples are similar enough to expect replication.

When underlying genetic associations are used to
construct polygenic risk scores, a number of recent examples
show that the distribution of the scores widely differ between

populations from different continents. This has been
demonstrated, for instance, for polygenic risk scores for
schizophrenia (Curtis, 2018), type 2 diabetes, and coronary
heart disease (Reisberg, Iljasenko, Läll, Fischer, & Vilo,
2017). As a consequence, applying genetic risk cut‐offs
derived from one population to individuals from another
population is virtually useless, even taking different pre-
valence rates into account. These differences between
continents are rather obvious; to what degree this is also
true for populations that are seemingly more similar because
they are from the same continent, remains to be investigated.

Therefore, given that specification of a similar
population may not be straightforward, let us pose the
following

Question #3: What does results reproducibility mean to us?

On the cheat sheet, it might be helpful to always be
precise in what to expect taking genetic stratification and
heterogeneity into account. This emphasizes that we
probably need to understand possible population differ-
ences even in seemingly similar populations much better
than we do now.

4 | THE REPRODUCIBILITY
CRISIS: CHANCE FINDINGS

We see that in some instances, we may not be able to
reproduce a finding of a genetic association because our
populations were not sufficiently similar. In other instances,
reproducibility may be compromised by chance findings, and
a number of specific problems have been described that lead
to false‐positive results (Forstmeier, Wagenmakers, & Parker,
2017). These include first the seeking for novelty, meaning
that there is a preference for new and unexpected results.
Another problem has been coined “hypothesizing after the
results are known” or “HARKing” as opposed to defining
hypotheses before performing the actual study in a
transparent way. Related to that are the various flavors of
multiple testing that include using multiple analysis
strategies, modeling, and testing. Obviously, these problems
are aggravated if study methods and results are reported only
selectively.

In genetic epidemiology, multiple testing has long been
an issue. The challenge of false‐positive findings in
candidate gene association studies has been described
frequently (Ioannidis, Ntzani, Trikalinos, & Contopoulos‐
Ioannidis, 2001). However, it has been acknowledged that
the problem of false‐positive genetic association results has
been remedied by the introduction of GWAs, where the
multiplicity is well‐controlled and sample sizes are usually
large by now (Ioannidis, 2018).
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A similar challenge is faced in classical epidemiolo-
gical association studies, where a multitude of nongenetic
risk factors are being investigated for association with
disease‐relevant phenotypes. For this problem, it has
been claimed that the risk of false‐positive classical
association results may be reduced by using Mendelian
randomization studies, given that these can evaluate the
causality of the investigated risk factors.

Basically, in Mendelian randomization studies (Davey
Smith & Ebrahim, 2003; Grover, Del Greco, Stein, &
Ziegler, 2017; Ziegler, Mwambi, & König, 2015), one or a
number of genetic variants are identified that can act as
instrumental variables for the risk factor in that they are
associated with the risk factor but have no direct effect on
the disease. Since these are genetic variables, they have two
distinct advantages: First, the alleles of the variants are
distributed randomly at conception, so that, in effect, the
predisposition for the risk factor is distributed randomly,
thus approximating an experimental setting. Second, since
genetic variants are stable from conception on, they always
precede other possibly confounding factors. This allows any
relationship between these genetic variants and disease to
be interpreted as evidence for causality of the risk factor on
the phenotype, if the following assumptions are fulfilled: (a)
The genetic variants are associated with the risk factor; (b)
There is no association between the genetic variants on the
one hand and confounders of the relationship between risk
factor and the disease on the other; (c) Conditioning on the
risk factor and possible confounders, there is no direct
association between the genetic variants and the disease. In
summary, this study design is an extremely interesting
approach to investigate causality. However, it does not
protect against the production of false‐positive results,
because, again, any number of risk factors can be
investigated as long there is genetic data that can be used
as an instrumental variable. If we want to control the
multiplicity of hypotheses, we would have to define the
entire space of risk factors, analogously to considering the
entire genome in a GWA. Instead, current practice tends to
do the opposite. For example, preliminary results of a
systematic review on Mendelian randomization studies for
neurodegenerative disorders show that more than 80% of
the publications only report the investigation of one single
risk factor (Grover, Del Greco M., & König, 2018),
resembling the pick of single candidate genes in the pre‐
GWAs era.

This leads me to my

Question #4: How can we guard against the possible flood
of chance findings?

It should be noted that this certainly does not
only pertain to Mendelian randomization studies with

multiple risk factors, but is a more general issue based on
the problems mentioned above.

The first item on the cheat sheet (Table 1) is a hard
nut to crack. To work against the publication bias,
researchers need to try to publish null findings, and
reviewers and editors should acknowledge the scientific
soundness, not necessarily the novelty of data. An
interesting suggestion was to introduce a standard
disclosure to all publications along the lines of “We
report how we determined our sample size, all data
exclusions (if any), all manipulations and all measures
in the study.” (Simonsohn, Nelson, & Simmons, 2014).
More strictly, it has been recommended to preregister all
studies, at least for those that want to go beyond merely
exploring the data. If it has to be stated in advance
which data are assessed and how the data is analyzed,
which is standard in clinical trials, cherry‐picking and
selective reporting of seemingly interesting data will be
more difficult. In that vein, it has already been shown
that preregistration leads to the report of more null
findings, thus can be an effective measure against
publication bias (Allen & Mehler, 2018; Warren, 2018).
Further advantages of this, but also the challenges, are
succinctly described in the recent literature (Nosek,
Ebersole, DeHaven, & Mellor, 2018).

5 | HOT TOPICS: PRECISION
MEDICINE

For the two remaining questions, I would like us to look
forward, where it is important to consider where to put
genetic epidemiology in the landscape of newly evolving
topics, the first of these being precision medicine.

The general idea of precision medicine is that large‐
scale data is assessed in patients and nondiseased
subjects on different levels of assessment including
genomics and other ‐omics sources (see Figure 1; König,
Fuchs, Hansen, von Mutius, & Kopp, 2017). This wealth
of data that may fulfill the criteria of big data is then
processed on different tracks with different dedicated
purposes. First, the data may be mined to detect
previously unknown disease subtypes. Second, diagnostic
and prognostic models may be developed and validated,
and third, treatment response may be predicted. Preci-
sion medicine in this definition is a process, because
validated categories and models are fed back to the
phenotyping stage to define the subsequent assessment of
subjects. In order for precision medicine to be successful,
validated models need to be disseminated and commu-
nicated, providing accessible and easy‐to‐use algorithms
for clinical practice.
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Given this definition of precision medicine leads to my

Questions #5: What is the role of genetic epidemiology in
precision medicine?

Currently, genetic epidemiology already participates in
the process of precision medicine by providing methods
and models (López de maturana, Pineda, Brand, Van
Steen, & Malats, 2016; Milani, Leitsalu, & Metspalu, 2015;
Thomas, 2017) mostly for the development and validation
for diagnostic and prognostic models using genomic data
(Table 1). However, it might not always be obvious that by
providing methods along these tracks, we also participate
in finally providing algorithms for clinical practice, and
responsibility for this should be acknowledged. Thinking
about how useful results may be for patients and
nondiseased individuals may also be necessary. Finally,
precision medicine is only successful if models are
communicated not only to medical co‐operation partners
but also to patients, and methodological researchers may
contribute to that by making approaches and results as
understandable and transparent as possible.

6 | HOT TOPICS:
BIOINFORMATICS,
COMPUTATIONAL BIOLOGY,
AND DATA SCIENCE

Finally, a number of novel disciplines have been emerging
over the past years that are more or less closely related to
our discipline of genetic epidemiology. For instance,
computational biology has been defined as “The develop-
ment and application of data‐analytical and theoretical
methods, mathematical modeling and computational simu-
lation techniques to the study of biological, behavioral, and
social systems” (Huerta, Haseltine, Liu, Downing, & Seto,
2000), which might in many practical applications show
overlap with genetic epidemiological work. Similarly, the
same report defines bioinformatics as “Research, develop-
ment, or application of computational tools and approaches
for expanding the use of biological, medical, behavioral or
health data, including those to acquire, store, organize,
archive, analyze, or visualize such data” (Huerta et al., 2000;
see also Luscombe, Greenbaum, & Gerstein, 2001). At last,
data science “seeks to contextualize and establish best

FIGURE 1 Process of precision medicine. In the deep phenotyping stage, information on patients is gathered on different levels. The color
shading indicates that the more voluminous and complex the data set becomes, the more likely it is to meet the presupposition for precision
medicine and Big Data. Data is then forwarded for further analysis to tracks 1–3. In Track 1, data is preprocessed including variable selection and
mined for unknown structure. In Track 2, variables from the previous stages may be used to develop and validate diagnostic and prognostic
models. Clinical relevance of these models may be investigated in studies showing the effect of the implementation of the models or by forwarding
the models to track 3. In Track 3, specific models are developed and validated that aim at predicting treatment response partly building on
previously developed models. Results from tracks 1–3 are fed back to the deep phenotyping stage to define subsequent assessment of patients.
Models from Tracks 2 and 3 need to be disseminated and communicated providing accessible and easy‐to‐use algorithms for clinical practice.
Reproduced with permission of the ©ERS 2018: European Respiratory Journal, 2016, 48, 664–673. DOI: 10.1183/13993003.00436‐2016
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practices for harnessing the recent and continuing advances
in computing infrastructure, data processing, and analysis.
(…) These infrastructures are necessary to access, analyze,
and rapidly manage cross‐scale big data in biomedical
research…” (Zhu & Zheng, 2018).

Obviously, the borders between these disciplines and
our field are blurred. Thus, without going into details,
this again puts us into the position to sharpen our scope
(Ziegler & König, 2014), leading to my

Question #6: Are we all bioinformaticians /computational
biologists /genetic data scientists now? Or do we differ from
the other disciplines? If so, what makes us special?

And I really do not have good hints to answer this, but I
think that it is good to know our special skills. Thankfully,
the comments and tweets after my presentation reminded
me of “Genetic Epidemiology with a capital “E”” (Thomas,
2000, 2012), and being proficient in study designs,
population‐based research, family‐based methods, and
evaluation of individual risk as well as clinical utility, just
to name a few, is likely to be part of the answer. Looking
beyond our specific current scope, we should keep in mind
how quickly our field is developing, and so seize the
opportunity to learn from others.
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