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Pneumococcal meningitis is a life-threatening disease characterized by an acute purulent infection affecting the pia mater, the
arachnoid, and the subarachnoid spaces. Streptococcus pneumoniae crosses the blood-brain barrier (BBB) by both transcellular
traversal and disruption of the intraepithelial tight junctions to allow intercellular traversal. During multiplication, pneumococci
release their bacterial products, which are highly immunogenic and may lead to an increased inflammatory response in the host.
Thus, these compounds are recognized by antigen-presenting cells through the binding of toll-like receptors. These receptors
induce the activation of myeloid differentiation factor 88 (MyD88), which interacts with various protein kinases, including IL-1
receptor-associated kinase-4 (IRAK4), which is phosphorylated and dissociated from MyD88. These products also interact with
tumor necrosis factor receptor-associated factor 6 dependent signaling pathway (TRAF6). This cascade provides a link to NF-
𝜅B-inducing kinase, resulting in the nuclear translocation of NF-𝜅B leading to the production of cytokines, chemokines, and
other proinflammatory molecules in response to bacterial stimuli. Consequently, polymorphonuclear cells are attracted from
the bloodstream and then activated, releasing large amounts of NO∙, O2

∙, and H
2

O
2

. This formation generates oxidative and
nitrosative stress, subsequently, lipid peroxidation, mitochondrial damage, and BBB breakdown, which contributes to cell injury
during pneumococcal meningitis.

1. Introduction

Pneumococcal meningitis is the most complex and seri-
ous infection of the central nervous system (CNS) that
is associated with neurological sequelae [1]. The host
immune response, through the production of cytokines and
chemokines and the migration of leukocytes, is the first line
of defense in response to bacterial infection [2]. In addition,
polymorphonuclear leukocytes produce nitric oxide (NO∙),
superoxide anion radicals (O

2

−∙), and hydrogen peroxide

(H
2

O
2

). O
2

−∙ and NO∙ can lead to the formation of perox-
ynitrite (ONOO), which is a strong oxidant [3]. This oxidant
exerts cytotoxic effects on endothelial cells [4], increases the
permeability of the BBB, induces the peroxidation of lipids,
and induces many other complex interactions that seem to be
involved in the pathophysiology of pneumococcal meningitis
[3].

The aim of this review is to summarize the current
knowledge of the relevant pathophysiological steps of pneu-
mococcal meningitis: (a) the crossing of the pneumococcus
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Figure 1: Mechanisms of microbial traversal of the BBB. S. pneumoniae crosses the BBB through transcellular traversal and paracellular
traversal.

through the BBB; (b) the activation of innate immune system
mechanisms; (c) the migration of leukocytes and (d) the
induction of oxidative and nitrosative stress in the context of
pneumococcal meningitis.

2. Microbial Traversal of
the Blood-Brain Barrier

The CNS is protected by a bony skull, the leptomeninges,
the blood-brain barrier (BBB), and the blood-cerebrospinal
fluid barrier [5]. The BBB is formed by microvascular
endothelial cells, astrocytes, and pericytes. This barrier acts
by controlling the exchange of substances into and out of
the brain [6] and thereby protects the brain from toxins and
pathogens [5]. S. pneumoniae crosses the BBB through both
transcellular traversal and paracellular traversal [6, 7]. In
transcellular traversal, the pathogen interacts with cell-wall
phosphorylcholine and the platelet-activating-factor (PAF)
receptor. In addition, the protein C (PspC) pneumococcal
surface binds to both the laminin receptor and the polymeric
Ig receptor (pIgR), which are located on brain microvascu-
lar endothelial cells [8]. Later, the pathogen transmigrates
through endothelial cells to the basolateral side without any
evidence of disruption of intercellular tight junctions [5, 6].

Paracellular traversal involves the penetration of bacteria
between barrier cells with or without evidence of tight-
junction disruption [6]. Both the host immune response and
bacterial virulence factors, such as pneumolysin, and the
ability of pneumococci to bind to fibronectin [9], vitronectin,
and collagen in the extracellular matrix, act together to
increase the permeability of the BBB [10, 11]. This interaction

facilitates the passage of the microorganism into the brain [1]
Figure 1.

3. Innate Immune Mechanisms of
the Pneumococcal Meningitis

After S. pneumoniae reaches the subarachnoid space, it mul-
tiplies rapidly and releases compounds, such as cell wall frag-
ments, lipoteichoic acid, teichoic acid, pneumolysin, and pep-
tidoglycan [1]. These compounds are highly immunogenic
and may elicit an inflammatory response in the host. These
immunogenic molecular determinants are better known as
pathogen-associated molecular patterns (PAMPs) [12, 13].
These PAMPs are recognized by different sensors of the innate
immune system called pattern recognition receptors (PRRs)
[14]. These PRRs comprise toll-like receptors (TLRs), NOD-
like receptors (NLRs), and DNA sensors [14, 15]. At present,
there are 13 members of the TLR family described in humans
and 10 described in mice. These members are separated
into two broad categories. One category is expressed at the
cell surface for extracellular ligand recognition. The other
category is localized in the endosomal compartment for
the recognition of pathogen nucleic acids [16]. Microglia
express all TLRs identified to date, whereas astrocytes only
express TLR1, TLR2, TLR3 and TLR9. Neurons only express
TLR3, TLR7, TLR8, and TLR9, and oligodendrocytes only
express TLR2 and TLR3 [15, 17]. TLR2 is activated by
pneumococcal cell wall compounds, lipoteichoic acid, and
lipoproteins. TLR4 is activated by pneumolysin, and TLR9
is activated by pneumococcal DNA containing CpG motifs
within endosomes [14, 15]. TLR2, TLR4, and TLR9 transduce
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their signals through a common intracellular adapter protein
known as myeloid differentiation factor 88 (MyD88) [14, 18].
Of note, the deficiency of this intracellular adapter protein
in children increases their susceptibility to invasive pneu-
mococcal infections, includingmeningitis [19]. MyD88 inter-
acts with a protein kinase, IL-1 receptor-associated kinase-
4 (IRAK4) [1, 20]. The IRAK4 dependent, TLRs, and IL-
1Rs are vital for childhood immunity to pyrogenic bacteria,
which are mainly invasive pneumococcal infections [21].
After IRAK has been phosphorylated, it is dissociated from
MyD88 and interacts with tumor necrosis factor receptor-
associated factor 6 dependent signaling pathway (TRAF6)
[22]. TRAF6 stimulates the transforming growth factor 𝛽-
activated kinase (TAK1), which is a MAPKKK. Thus, TAK1
activates IKK (Inhibitor of IkB kinase), which results in the
destruction of IkB and the subsequent activation and nuclear
translocation of NF-𝜅B [23, 24]. NF-𝜅B comprises a closely
related family of transcription factors, which play a key
role in the expression of genes involved in the development
of accessory cell and leukocyte populations, inducing the
expression of many proteins implicated in inflammation and
in the immune response [25]. NF-𝜅B is also a transcriptional
activator of various genes implicated in neuronal pathogen-
esis and in the production of cytokines and chemokines
[20, 26]. The nucleotide-binding-oligomerization-domains-
NOD-like receptors (NLRs) are also involved in the recog-
nition of S. pneumoniae by the innate immune system. The
family members consist of intracellular receptors, such as
inflammasome-forming proteins (NLRPs), NLRP1, NLRP3,
and NLRP6, which mediate the assembly of inflammasome
complexes leading to the activation of procaspase-1. The
second group of NLRs includes intracellular recognition
receptors, such asNOD1/CARD4 andNOD2/CARD15.These
receptors mediate the assembly of complexes that activate
MAPK and NF-𝜅B signaling pathways, and they are involved
in the detection of cell wall peptidoglycan [27, 28]. NLRP3
(cryopyrin) and AIM2 (absent in melanoma 2) inflamma-
somes are activated by pneumolysin and bacterial DNA.
These inflammasomes use an adapter molecule, known as
apoptosis-associated speck-like protein (ASC), which is a key
component of multimeric protein complexes that mediate
inflammation and host defenses [29]. NLRP3 and AIM2
promote caspase-1 activation and the subsequent conversion
of pro-IL-1𝛽 into mature IL-1𝛽 in pneumococcal meningitis
[30]. Furthermore, pneumolysin activates the NLRP3 inflam-
masome and promotes the production of the proinflamma-
tory cytokines independently of TLR4 [31], Figure 2.

4. Leukocyte Migration

Pneumococcal compounds are proinflammatory mediators
that induce an innate immune response that activates NF-
𝜅B and subsequently triggers the production of proinflam-
matory cytokines and chemokines and the expression of co-
stimulatory molecules [32]. In response, neutrophils leave
the blood and migrate to sites of infection. Sialyl-LewisX on
leukocytes binds to selectins P and E on endothelial cells.This
binding becomes stronger when CXCL-8 binds to its specific
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Figure 2: Innate immune system inpneumococcalmeningitis infec-
tion. The majority of TLRs utilize a common intracellular adapter
protein known as myeloid differentiation factor 88 (MyD88): it
activates IRAK, which is phosphorylated and dissociated from
MyD88. Thus, it interacts with the tumor necrosis factor receptor-
associated factor 6 dependent signaling pathway (TRAF6). TRAF6
stimulates to the transforming growth factor 𝛽-activated kinase
(TAK1). TAK1 activates the IKK (Inhibitor of I𝜅B kinase), resulting
in the destruction of IkB and subsequently, NF-𝜅B activation result-
ing in the nuclear translocation of NF-𝜅B. This cascade provides a
link toNF-𝜅B-inducing kinase, resulting in the nuclear translocation
of NF-𝜅B, which induces the production of cytokines, chemokines,
and others proinflammatory molecules in response to bacterial
stimuli.

receptor on neutrophils, which triggers the production of
integrin LFA-1 and CX3 (mac-1). Inflammatory cytokines,
such as TNF-𝛼, are also necessary to induce expression of
adhesion molecules ICAM-1 and ICAM-2. The link between
endothelial cells and ICAM-1 allows the passage of neu-
trophils along a gradient of chemoattractants substances [33,
34], Figure 3. Consistent with the polymorphonuclearmigra-
tion, as explained previously, TNF-𝛼 is produced mainly
in the first 6 to 24 hours after pneumococcal meningitis
induction [35]. Patients with bacterial meningitis also have
increased the levels of TNF-𝛼 in the CSF early in the course of
the disease [36]. In bacterial meningitis, approximately 90%
of the migrating leukocytes are neutrophilic granulocytes
[37]. However, blocking the accumulation of leukocytes in
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Figure 3: Leukocyte migration. Leukocytes leave the blood and migrate to sites of infection. Sialyl-LewisX on leukocytes binds to selectins
P and E on endothelial cells. This binding becomes stronger when CXCL-8 binds to its specific receptor on neutrophils, triggering the
production of integrin LFA-1 and CX3 (mac-1). Inflammatory cytokines, such as TNF-𝛼, are also necessary to induce expression of the
adhesion molecules ICAM-1 and ICAM-2. The interaction between endothelial cells and ICAM-1 allows the passage of neutrophils along
a gradient of chemoattractants substances.

cerebrospinal fluid augments bacteremia and lethality in
experimental pneumococcal meningitis [38].

Initially, phagocytized pathogens are internalized in the
phagosome. The phagosome is acidified by fusion with
lysosomes, becoming a phagolysosome. In this period, high
amounts of reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) are formed [39].The relevant antimicrobial
systems of phagocytic cells are the NADPH phagocytic
oxidase and inducible nitric oxide synthase (iNOS) pathways,
which are expressed in neutrophil andmacrophage cells [40].
Macrophages and neutrophils produceNO∙, O

2

−∙, andH
2

O
2

.
NO∙ is produced by iNOS

2

, andO
2

−∙ is produced byNADPH
oxidase. O

2

−∙ and NO∙ can lead to the formation of ONOO−
[3], which is a strong oxidant that exerts cytotoxic effects on
endothelial and vascular smooth muscle cells [4]. Moreover,
chemical and enzymatic reactions produce a variety of toxic
chemical agents; O

2

−∙ is converted by the enzyme superoxide
dismutase (SOD) into H

2

O
2

[38, 39]. H
2

O
2

can kill the
microorganisms and also be converted by the peroxidase
enzyme in the presence of Fe2+ into hypochlorite (OCl−) and
hydroxyl radicals (∙OH), which are microbicides [3, 39, 41].

5. Oxidative Stress in the Context of
Pneumococcal Meningitis

During pneumococcal meningitis, RNS and ROS are pro-
duced by resident immune cells of the brain as part of the host
response to invasive bacterial infections [1, 42]. Furthermore,
ROS are produced in greater quantities in neutrophils than
in macrophages; however, macrophages produce more RNS
than neutrophils [43]. S. pneumoniae also produces H

2

O
2

,
which interacts withNO∙ formingONOO− [44, 45]

.

ONOO−
can damage neurons and glial cells by lipid peroxidation
and cell membrane destabilization; it can also cause DNA
disintegration and subsequent poly (ADP-ribose) polymerase
(PARP) activation, which leads to cell energy reduction and

cell death [2]. In pneumococcal meningitis, adjuvant therapy
with anONOO− scavenger reduces the number of CSF leuko-
cytes concentrations and reduces the brain concentrations of
IL-1𝛽 and MIP-2 [46]. This reduction is associated with a
decrease of the number of leukocytes in the CSF, suggesting
the involvement of ROS/RNS andproinflammatory cytokines
and chemokines in the attraction of leukocytes from the
blood into the subarachnoid space [3]. ONOO− can con-
tribute to the development of meningeal inflammation and
increase the production of IL-8.This chemokine is equivalent
to rat MIP-2; it is a chemoattractant and is involved in
the migrations of leukocytes in pneumococcal meningitis
[47]. In addition, treatment with a monoclonal antibody
that binds with IL-8 attenuates pleocytosis in experimental
pneumococcal meningitis in rabbits [48].

In vitro, the production of cytokines by human mononu-
clear cells was regulated by ONOO−. This activation was
mediated via the transcription factor NF-𝜅B by a mechanism
that may involve nitration or dephosphorylation of I𝜅B-a
which leads to NF-𝜅B translocation and release of TNF-𝛼
[49].

One of the major and first pathologies during pneu-
mococcal meningitis is the breakdown of the BBB. In an
animal model, the BBB breakdown occurred at 12 hours after
pneumococcal meningitis induction [50], subsequent to the
cytokine production [35]. ROS andRNShave been implicated
as mediators of the BBB breakdown [3], suggesting that the
increase of the BBB permeability appears to be related to the
presence of NO∙ and O

2

−∙ [51]. Furthermore, treatment with
antioxidant prevented BBB disruption [41, 46].

Neurological sequelae from pneumococcal meningitis
are estimated to occur in 30 to 52% of surviving patients
[1, 52]. This damage has been demonstrated in a bacterial
meningitis animal model; in this model, the surviving ani-
mals showed memory and learning impairment, depressive-
like-behaviors, and anxiety-like symptoms [53]. In addition,
coadjuvant treatment with antioxidants prevented cognitive
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impairment and oxidative stress in the brain of the survivor
rats of the bacterial meningitis animal model [54]. ROS and
RNS are related to these cognitive sequelae because of the
cellular damage that they cause. The nervous system is a
unique network of diverse cell types, comprising multiple
proteins, lipids, and carbohydrates, and has important inter-
actions with all major organs in the body [55]. Thus, the
brain becomes particularly vulnerable to oxidative damage
due to its high oxygen consumption, the abundance of iron,
relatively low expression of antioxidants levels [55], and
high presence of the polyunsaturated fatty acids [3]. H

2

O
2

and pneumolysin produced by pneumococcus can cause
neuronal cell death through mitochondrial damage [45, 56],
leading to the release of apoptosis-inducing factor (AIF)
into the cytosol and subsequently inducing apoptosis by a
caspase-independent pathway [56]. Furthermore, leukocytes
activate the tumor suppressor protein (p53) and the ataxia
telangiectasia-mutated (ATM) kinase, which induce mito-
chondria to release cytochrome-c. Cytochrome-c, Apaf-1,
and dATP/ATP are needed to form the apoptosomewhich is a
special protein complex. Subsequently, apoptosome activates
the caspase-9, that results in the activation of caspase-3 and
apoptosis [56, 57]. The formation of ROS can cause direct
damage through lipid peroxidation and carbonylation. Lipid
peroxidation can be increased in serum [58] and in the CSF
of children with bacterial meningitis [59].

6. Conclusion

Understanding the interactions between the complex
immune network, composed of cytokines, chemokine,
leukocytes, and oxidative stress, and bacterial virulence
factors may help to establish more effective therapeutic
strategies for CNS infections and, therefore, a better outcome
for affected subjects.
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