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Abstract

Purpose: To diagnose glaucoma based on spectral domain optical coherence tomography (SD-OCT) measurements using
the ‘Random Forests’ method.

Methods: SD-OCT was conducted in 126 eyes of 126 open angle glaucoma (OAG) patients and 84 eyes of 84 normal
subjects. The Random Forests method was then applied to discriminate between glaucoma and normal eyes using 151 OCT
parameters including thickness measurements of circumpapillary retinal nerve fiber layer (cpRNFL), the macular RNFL
(mRNFL) and the ganglion cell layer-inner plexiform layer combined (GCIPL). The area under the receiver operating
characteristic curve (AROC) was calculated using the Random Forests method adopting leave-one-out cross validation. For
comparison, AROCs were calculated based on each one of the 151 OCT parameters.

Results: The AROC obtained with the Random Forests method was 98.5% [95% Confidence interval (CI): 97.1–99.9%], which
was significantly larger than the AROCs derived from any single OCT parameter (maxima were: 92.8 [CI: 89.4–96.2] %, 94.3
[CI: 91.1–97.6] % and 91.8 [CI: 88.2–95.4] % for cpRNFL-, mRNFL- and GCIPL-related parameters, respectively; P,0.05,
DeLong’s method with Holm’s correction for multiple comparisons). The partial AROC above specificity of 80%, for the
Random Forests method was equal to 18.5 [CI: 16.8–19.6] %, which was also significantly larger than the AROCs of any single
OCT parameter (P,0.05, Bootstrap method with Holm’s correction for multiple comparisons).

Conclusions: The Random Forests method, analyzing multiple SD-OCT parameters concurrently, significantly improves the
diagnosis of glaucoma compared with using any single SD-OCT measurement.
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Introduction

Early diagnosis of glaucoma is essential since glaucomatous

visual field (VF) damage is irreversible. In glaucoma, it is clinically

important to evaluate structural changes at the optic nerve head

[1–3] and damage to the retinal nerve fiber layer (RNFL) around

the optic disc [4–6], because measureable structural transformation

can precede measurable VF damage.

The development of spectral domain optical coherence

tomography (SD-OCT) has enabled imaging scans of the macular

retinal nerve fiber layer (mRNFL), the macular ganglion cell layer-

inner plexiform layer combined (GCIPL) [7,8] and the circumpa-

pillary RNFL (cpRNFL), which are all reported to be damaged

early on in the glaucomatous disease process. [7,9–15] Many

previous studies have investigated the performance of SD-OCT to

diagnose glaucoma using thickness measurements of these

structures, [7,9–15] usually by evaluating each measurement

individually. However, damage to these layers occurs concurrently

and in characteristic patterns. [16,17] Consequently, to improve

the diagnostic ability of SD-OCT for glaucoma, several mathe-

matical models have been constructed to analyze these different

structural measurements in combination. [18–20] For example,

Mwanza et al. analyzed multiple SD-OCT parameters using a

logistic regression model [18], while Burgansky-Eliash et al.

adopted a support vector machine classifier to analyze combined

measurements from time domain (TD)-OCT [19]; both models

were able to successfully improve the diagnosis of glaucoma.

Moreover, a recent study demonstrated the usefulness of decision

trees, analyzing multiple OCT parameters, to discriminate

between glaucoma and normal eyes [20].
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The decision tree classifier, a ‘pattern recognition’ method, is a

tree-like representation of a finite set of if-then-else rules [21]. One

well-known drawback of the method is the problem of ‘overfitting’,

which influences diagnostic accuracy. [22] Indeed, in a previous

study by our group, the decision tree method was found to

perform less accurately than the Random Forests method at

discriminating between perimetric and preperimetric glaucoma

eyes. [23] The Random Forests method [24,25], originally

proposed by Breiman in 2001, is more robust to the overfitting

problem, because it is composed of many different decision trees.

Each one developed using a different sample of data and as a

result, the prediction accuracy tends to be far improved over the

decision tree method [26].

Previous reports have indicated that the Random Forests

method is more accurate than other machine learning methods,

[27,28] and can cope with inter-correlation between multiple

explanatory variables, since each predictor is selected randomly for

each stage of the learning process, and thus each predictor has less

opportunity to compete against correlated predictors, [29] (unlike

standard regression approaches). This particular quality makes the

Random Forests method especially useful for diagnosing glaucoma

based on multiple OCT parameters, namely thickness measure-

ments of the cpRNFL, the mRNFL and the GCIPL, which are

correlated. Indeed the Random Forests method has been used to

explore interactions between different explanatory variables. [29–

31] Furthermore, there is considerable overlap in the distributions

of these OCT measurements between normal and glaucoma eyes

[32,33], and hence, a simple comparison of a measured OCT

parameter with a normative database will have rather limited

diagnostic ability.

The purpose of the current study was to investigate the ability of

the Random Forests method to discriminate between normal and

glaucoma eyes by concurrently analyzing cpRNFL, mRNFL and

GCIPL measurements, and compare the results with those

obtained using individual measurements of these structures.

Materials and Methods

The study was approved by the Research Ethics Committee of

the Graduate School of Medicine and Faculty of Medicine at the

University of Tokyo. Written consent was given by the patients for

their information to be stored in the hospital database and used for

research. This study was performed according to the tenets of the

Declaration of Helsinki.

Subjects
All of the following measurements were conducted either at the

University of Tokyo Hospital or the Tajimi Iwase eye clinic.

Subjects underwent complete ophthalmic examinations, including

biomicroscopy, gonioscopy, intraocular pressure measurement,

funduscopy, refraction and corneal radius of curvature measure-

ments using an automatic refractometer (ARK-900; NIDEK,

Tokyo, Japan), best-corrected visual acuity measurements and

axial length (AL) measurements (IOL Master; Carl Zeiss Meditec,

Dublin, CA), as well as imaging with SD-OCT and VF testing.

The glaucoma group in this study comprised 126 eyes of 126

subjects with open angle glaucoma (OAG) who were enrolled

between January 2009 and March 2010. Glaucoma was diagnosed

when the following findings were present: 1) presence of apparent

glaucomatous changes in the optic nerve head (ONH), according

to a stereo-fundus photograph, such as a rim notch with a rim

width #0.1, a vertical cup-to-disc ratio of .0.7 and/or a RNFL

defect (with its edge at the ONH margin greater than a major

retinal vessel) diverging in an arcuate or wedge shape, as

confirmed by a panel of glaucoma specialists (A.I., M.A., and

R.A.); 2) presence of glaucomatous VF defects, compatible with

glaucomatous ONH changes, fulfilling at least one of Anderson-

Patella’s criteria, i.e., a cluster of $3 points (3 non-edge points if

VF was tested with HFA 30-2 test program) in the pattern

deviation plot in a single hemifield (superior/inferior) with P,

0.05, one of which must have been P,0.01, a glaucoma hemifield

test result outside of normal limits, or an abnormal pattern

standard deviation with P,0.05 [34]; and 3) absence of other

systemic or ocular disorders including a shallow peripheral

anterior chamber that could affect the ONH and VF including

intraocular surgeries or refractive surgeries (except for uneventful

intraocular lens implantation). Patients aged 20 years or older and

eyes with refractive error $26.0 D and ,3.0 D were included. If

both eyes of a subject fulfilled the inclusion criteria, the eye with a

better data quality factor in the SD-OCT examination was

included in the study.

The normal group consisted of 84 eyes of 84 normal subjects.

Inclusion criteria were no abnormal findings except for clinically

insignificant senile cataract on biomicroscopy, gonioscopy and

funduscopy, and no history of ocular diseases that could affect the

results of SD-OCT examinations, such as diabetic retinopathy or

age-related macular degeneration. Other inclusion criteria were

age $20 years old, spherical equivalent refractive error $26.0 D

and ,3.0 D, and normal VF test results according to Anderson-

Patella’s criteria. [34] Eyes with anomalous discs including tilted

discs [35] were cautiously excluded.

VF testing was performed, within 3 months of the SD-OCT

examination, using the Humphrey Field Analyzer (HFA, Carl

Zeiss Meditec) with the SITA Standard strategy and the Gold-

mann size III target. VFs of the normal group were measured

using the 24-2 test program while VFs of the glaucoma group were

measured using either the 24-2 or 30-2 test program. Near

refractive correction was used as necessary. Unreliable VFs

defined as fixation losses greater than 25%, or false-positive

responses greater than 15% were excluded. [36] All of the

participants had previous experience in undergoing VF examina-

tions.

SD-OCT data acquisition
SD-OCT data were obtained using the 3D OCT-1000 (Topcon

Corp., Tokyo, Japan) in the normal group while patients in the

glaucoma group underwent imaging using either the 3D OCT-

1000 (68 eyes) or 3D OCT-2000 (Topcon Corp., Tokyo, Japan)

(58 eyes). The results obtained with 3D OCT-1000 are

interchangeable with those from 3D-OCT 2000, but scanning

speed in the latter instrument is 90% faster. All SD-OCT

measurements were performed after pupil dilation with 1%

tropicamide.

SD-OCT imaging was performed using the raster-scan protocol

in which data were obtained in a 6.066.0 mm square area

(5126128 pixels), centered on the point of fixation, in 2.5 seconds

with 3D-OCT 1000, or in a 7.067.0 mm square area, centered on

the point of fixation, in 1.3 seconds with 3D-OCT 2000. The

magnification effect was corrected according to the manufacturer-

provided formula (modified Littman’s equation) [37,38], which is

based on measured refractive error, corneal radius, and axial

length. Registration of fundus photographs and OCT images was

automatically confirmed using an OCT projection image (gener-

ated from 3D-OCT data by summing different retinal depth levels)

and localization of major retinal vessels.

A similar raster scan was then performed centered on the disc.

In this study, 7 points were manually determined on the optic disc

edge in a color fundus photograph simultaneously obtained by the
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non-mydriatic fundus camera function. The optic disc center was

determined in fundus photographs as the barycenter of the closed

spline curve fitted to the manually determined 7 points; the point

was then extrapolated in all OCT images thereafter.

Data obtained during apparent eye movements were discarded

and re-examined, and those with the best quality factor (given by

the SD-OCT apparatus based on signal intensity) were used in

each area. Further, images influenced by involuntary blinking or

saccade, indicated by breaks or shifting of the vessel or disc images

or a straight line across the fundus OCT image, respectively, or

those with quality factor ,60% were excluded.

Analysis of SD-OCT data
In the macular area, the fovea was automatically identified in

the acquired OCT image as the pixel with the thinnest retinal

thickness close to the fixation point, and the square area centered

on the fovea was first set and divided into 10610 equally-sized

grids. The analysis area consists of the inner 868 grids, excluding

the outermost units (grids 1–10, 11, 20, 21, 30, 31, 40, 41, 50, 51,

60, 61, 70, 71, 80, 81, 90–100: see Figure 1a). In some of the

OCT images obtained with 3D-OCT 1000, the analysis area was

found to have run off the edge of the 6.066.0 mm data acquisition

area, and such OCT images were excluded. The inner boundary

of the retina was the surface of the RNFL while the outer

boundary was retinal pigmentary epithelium. RNFL and GCIPL

were automatically segmented [39] and confirmed on all B-scan

images by an experienced examiner (H.H), and the thicknesses of

the mRNFL and GCIPL were determined at each pixel. The

thickness of each retinal layer in each grid was calculated as the

mean value of the thickness over all pixels contained in the grid

and the mean thickness of each layer over the whole analysis area

(4.864.8 mm area centered on the fovea) (mean mRNFL or

GCIPL), superior hemiretina (2.464.8 mm area) and inferior

hemiretina were also calculated.

RNFL thickness along a 3.4 mm diameter circle centered on the

disc barycenter was also obtained from the raster scan data and

cpRNFL thickness was calculated for the whole circumference of

the circle (360u- cpRNFL), the four cpRNFL sectors each

accounting for 90u (temporal, superior, nasal and inferior

quadrant; 90u-cpRNFL) and 12 cpRNFL sectors each accounting

for 30u (30u-cpRNFL, respectively); see Figure 1b.

The Random Forests method was used to discriminate

glaucoma eyes from normal eyes using the 151 OCT measure-

ments listed in Table 1. In this study, 10,000 decision trees were

grown in the Random Forests. The leave-one-out cross validation

method was performed and the area under the receiver operating

characteristic curve (AROC) was calculated by changing the cut-

off value of the probability of glaucoma (as indicated by the

proportion of 10,000 decision tree votes in the Random Forests).

[40] In leave-one-out cross validation, a single eye was used as

validation data and the remaining eyes were used as training data;

this procedure was repeated such that each eye in the original

sample was used only once as validation data. In other words, for

each individual, only the data from all other subjects (n = 209 in

210) was used to produce a diagnosis. For comparison, AROCs

were also derived using the 151 individual OCT measurements.

Using all subjects (n = 210), significant (P,0.05) OCT param-

eters in the Random Forests were calculated by randomly

permuting the variable at each decision tree and observing the

decrease in the number of correct classifications [25].

All statistical analyses were carried out using the statistical

programming language R (ver. 2.15.1, The R Foundation for

Statistical Computing, Vienna, Austria) and Medcalc version

11.4.2.0; MedCalc statistical software, Mariakerke, Belgium). The

R package ‘‘randomForest’’ was used to carry out the Random

Forests analysis. The AROC was used to evaluate the clinical

usefulness of each classifier, as suggested in a previous paper. [41]

Comparison of multiple AROCs was carried out using DeLong’s

method. [42] Holm’s method [43,44] was used to correct P values

for the problem of multiple testing. Partial AROCs with specificity

above 80 and 90% were also compared using the bootstrap

method. [45,46] The optimum cut-off point in the ROC was

calculated using Youden’s method [47].

Results

Subject characteristics are given in Table 2. Thickness of the

360u-cpRNFL, mean mRNFL and GCIPL were significantly

smaller in the glaucoma group compared with the normal group

(P,0.001, unpaired t-test). Significant inter-group differences in

MD and refractive error were also observed (P,0.001, P = 0.002,

respectively, unpaired t-test). There were no significant differences

Figure 1. Macular area centered on the fovea (666 mm) and mRNFL and GCIPL grids, and the RNFL thickness along a 3.4-mm
diameter circle centered on the disc barycenter. a: Macular area centered on the fovea (666 mm) and mRNFL and GCIPL grids. The mRNFL and
GCIPL grids at the most outer circumference (sectors 1–10, 11, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90–100: colored in grey) were
excluded from analysis. If a subject’s left eye was measured, recorded data were mirror-imaged to reflect those in the right eye. b: RNFL thickness
along a 3.4-mm diameter circle centered on the disc barycenter. T: temporal, TS: temporal-superior, ST: superior-temporal, S: superior, SN: superior-
nasal, NS: nasal-superior, N: nasal, NI: nasal-inferior, IN: inferior-nasal, I: inferior, IT: inferior-temporal, TI: temporal-inferior.
doi:10.1371/journal.pone.0106117.g001
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between right/left eye and male/female ratios (P = 0.067 and 0.89,

respectively; chi-square test).

The Random Forests classifier in this study was built using

10,000 decision trees – with this number of trees the error rate was

saturated and thus increasing the number of trees in the forest will

not improve diagnostic accuracy (results not shown).

The AROCs obtained using thickness measurements of 360u-
cpRNFL, superior and 90u-cpRNFL, and 12 30u-cpRNFL, mean

mRNFL and GCIPL, superior and inferior hemiretina mRNFL

and GCIPL are shown in Table 3. The AROCs obtained using

each of the 64 grids for mRNFL and GCIPL ranged between 52.8

[CI 44.9–60.7] to 94.3 [CI: 91.1–97.6] %, and between 56.3 [CI:

48.4–64.2] to 91.2 [87.3–95.1] %, respectively (Table 3); the

largest AROC for an mRNFL grid (grid number 82) was 94.3 [CI:

91.1–97.6] % and the largest AROC for a GCIPL grid (grid

number 62) was 91.2 [CI: 87.3–95.1] %; see Figure 2a and b.

Among cpRNFL-, mRNFL- and GCIPL-related OCT parame-

ters, the largest AROCs were 92.8 [CI: 89.4–96.2] % (360u-
cpRNFL), 94.3 [CI: 91.1–97.6] % (grid number 82, mRNFL) and

91.8 [CI: 88.2–95.4] % (lower hemiretina GCIPL); see Table 3.

The AROC obtained using the Random Forests method was 98.5

[CI: 97.1–99.9] %, which was significantly larger than any

AROCs obtained using a single OCT parameter. (P,0.001,

DeLong’s method after correction of P values for multiple testing

using Holm’s method [43,44]); see Figure 3. The optimum

discrimination of the Random Forests method, using Youden’s

method, was at a sensitivity of 92.9% and specificity of 96.0%; this

corresponded to a cut-off voting rate of 55.3%, where a proportion

larger than this indicates a diagnosis of glaucoma [47].

Sensitivities at specificities of 80% and 90% were 100 and

98.8%, respectively for the Random Forests method; correspond-

ing partial AROCs were 18.5 [CI: 16.8–19.6] and 14.4 [11.1–

17.3] %. For the best single OCT parameter, sensitivities at

specificities of 80% and 90% were 98.8 and 80.1%, respectively;

corresponding partial AROCs were 8.5 [7.1–9.6] and 5.0 [CI:

2.5–7.4] %. Partial AROCs were significantly larger for the

Random Forests method compared with the single best OCT

parameter (P values = 0.018 and 0.005, respectively, after correc-

tion for multiple testing using Holm’s method [43,44]).

For the Random Forests method, 83 of the 151 OCT

measurements were significant predictors. Significant predictors

included 360u-cpRNFL, mean, superior and inferior hemiretina

mRNFL, mean, superior and inferioror hemiretina GCIPL, grid

mRNFL in the inferior and superior temporal areas, grid GCIPL

Table 1. SD-OCT parameters used in the Random Forests method.

SD-OCT parameters

cpRNFL
(17 in total)

Total
4 quadrants (superior, temporal, nasal, inferior quadrant)
12 (temporal, temporal-superior, superior-temporal, superior, superior-nasal, nasal-superior, nasal, nasal-inferior, inferior-nasal, inferior,
inferior-temporal, temporal-inferior) sectors

mRNFL
(67 in total)

Total
2 sectors (superior and inferior hemiretina)
64 grid

GCIPL
(67 in total)

Total
2 sectors (superior and inferior hemiretina)
64 grid

SD-OCT: spectral domain optical coherence tomography, cpRNFL: circumpapillary retinal nerve fiber layer (RNFL), mRNFL: macular RNFL, GCIPL: ganglion cell layer- inner
plexiform layer combined, P value: comparison between glaucoma and normal groups (unpaired t-test for numerical data and chi-square test for categorical data).
doi:10.1371/journal.pone.0106117.t001

Table 2. Characteristics of the study participants.

Glaucoma group Normal group p value

Eye (right/left) 68/58 65/19 0.067

Age, y (mean 6 sd) 60.1613.1 52.6615.6 ,0.001

Gender (male/female) 53/73 47/37 0.89

MD, dB (mean 6 sd)
[range]

–5.665.2
[–23.2 to 1.8]

–0.461.3
[–3.5 to 2.1]

,0.001

Refractive error, diopters
(mean 6 sd) [range]

–0.7961.3
[–2.9 to 2.0]

–0.2361.2
[–2.8 to 2.6]

0.002

cpRNFL, mm
(mean 6 sd) [range]

80.3613.6
[49.0 to 114.3]

102.468.3
[81.9 to 121.5]

,0.001

mRNFL, mm
(mean 6 sd) [range]

24.867.0
[4.9 to 43.4]

36.063.9
[28.0 to 46.3]

,0.001

GCIPL, mm
(mean 6 sd) [range]

61.465.7
[43.7 to 74.8]

70.164.3
[61.2 to 82.1]

,0.001

sd: standard deviation, MD: mean deviation, cpRNFL: circumpapillary retinal nerve fiber layer (RNFL), mRNFL: macular RNFL, GCIPL: ganglion cell layer and inner
plexiform layer combined.
doi:10.1371/journal.pone.0106117.t002

Optical Coherence Tomography and Random Forests Classifier in Glaucoma

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e106117



in the inferior and superior temporal areas as well as a number of

90u- and 30u-cpRNFL sectors: S(4), N(4), I(4), ST (12), SN (12), NS

(12), I (12) and IT (12).

Discussion

In the current study, 151 different SD-OCT measurements

were captured in normal subjects and glaucoma patients, and the

Random Forests method was applied to build a classifier of

glaucoma based on these multiple measurements. As a result, a

significantly larger AROC was obtained with the Random Forests

method compared with any single OCT parameter.

The performance of classifiers at discriminating between normal

subjects and glaucoma patients varies according to the stage of

glaucoma investigated. As one would expect, the AROC tends to

be smaller when early stage glaucoma eyes are included.

[10,15,32] Tan et al. compared the OCT results of normal eyes

and early glaucoma eyes (average MD of glaucoma eyes was equal

to –4.6 dB) and reported an AROC of 90% with mean GCC

thickness (mRNFL and GCIPL combined) over the macular area.

[7] In addition, Kim et al. reported AROCs of 83.6 to 86.9% with

whole circumference, and superior and inferior cpRNFL thickness

measurements, and AROCs between 82.6 and 89.5% with total,

and superior and inferior GCC thickness, in glaucoma eyes with

an average MD of –8.49 dB. [12] In the current study, the average

MD of glaucoma eyes was –5.6 dB, and the AROCs obtained

using only cpRNFL or GCIPL averaged total or hemifield of the

area were comparable with previous studies.

Early glaucomatous structural damage may start locally and

hence may not be well represented in summary measures such as

average thickness over quadrant cpRNFL or hemiretinal macular

inner retinal layers. On the other hand, making a diagnosis based

on SD-OCT parameters obtained from smaller regions may

induce errors due to larger variability in the obtained results

(attributable to increased measurement noise associated with

smaller sample sizes). The limitations of measuring multiple SD-

OCT parameters (captured over smaller regions) are somewhat

controlled for by the Random Forests classifier as it can

concurrently analyze all measurements recognizing global patterns

and thereby reducing the problem of inherent measurement

variability associated with analyzing a single OCT parameter

[48,49]; this appears to result in better discrimination between

normal and pathologic eyes. In the current study, the AROC and

partial AROCs obtained with the Random Forests method were

significantly larger than those obtained using any single SD-OCT

parameter. The sensitivity obtained was 93% with a specificity of

Figure 2. The mRNFL and GCIPL grid giving the largest AROC. a: Largest AROC (94.3 [CI: 91.1–97.6] %) was obtained using the mRNFL grid
with reference 82 (highlighted red). b: Largest AROC (91.2 [CI: 87.3–95.1] %) was obtained using the GCIPL grid with reference 62 (highlighted red).
OCT: optical coherent tomography, AROC: area under the receiver operating characteristic curve, mRNFL: macular retinal nerve fiber layer, GCIPL:
ganglion cell layer -inner plexiform layer combined. CI: 95% confidence interval.
doi:10.1371/journal.pone.0106117.g002

Figure 3. Receiver operating characteristic (ROC) curves
obtained with the Random Forests method and the best
performing cpRNFL-, mRNFL- or GCIPL-related parameters. The
area under the ROC (AROC) with the Random Forests method was
significantly larger than those with the individual cpRNFL-, mRNFL- or
GCIPL-related parameters (P,0.001, DeLong’s method. All P values
were significant after correction for multiple testing using Holm’s
method [43,44]). The orange dot on the ROC of the Random Forests
method represents the optimal threshold; the voting rate at this point
was 55.3%, giving a sensitivity of 92.9% with specificity equal to 96.0%.
[47] cpRNFL: circumpapillary retinal nerve fiber layer (RNFL), mRNFL:
macular RNFL, GCIPL: ganglion cell layer- inner plexiform layer
combined.
doi:10.1371/journal.pone.0106117.g003
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96%; this suggests that there is great potential for SD-OCT

measurements, combined with the Random Forests method, to

screen for glaucoma in a population-based or community-based

setting.

In a previous study, Baskaran et al. [20] analyzed multiple OCT

parameters using a decision tree method and reported an AROC

of 98.2%; however, the average MD of glaucoma eyes in their

study was –9.0 dB, which was much worse than that observed in

the current study (average MD of our glaucoma eyes was –5.6 dB).

Indeed, if we apply the decision tree method to our data, the

AROC was equal to just 88.4%, significantly smaller than that

obtained using the Random Forests method (using DeLong’s

method after correction for multiple testing using Holm’s method

[43,44]). This result agrees with our previous study, which

compared the decision tree method and Random Forests method

to discriminate between perimetric glaucoma eyes and pre-

perimetric glaucoma eyes. [23] Other studies have also investi-

gated different statistical methods to classify glaucoma using SD-

OCT measurements. Mwanza et al. analyzed multiple disc and

SD-OCT parameters using logistic regression and reported an

AROC of 97.4% in glaucoma eyes with an average MD of 2

3.2 dB. [18] Furthermore, Burgansky-Eliash et al. used a Support

Vector Machine Classifier to analyze multiple TD-OCT param-

eters and reported that the AROC to discriminate normal and

glaucoma eyes was as high as 98.1%. [19] The current Random

Forests method concurrently analyzing cpRNFL, mRNFL and

GCIPL parameters provided diagnostic ability that is at least

comparable to that observed in these previous studies.

Reports have suggested that the Random Forests method is

more useful than other machine learning methods, such as support

vector machines or boosting and bagging classifiers in predicting

dementia, gene selection or fMRI decoding [27,28,50]. However,

it is not known whether the Random Forests method outperforms

other machine learning methods in discriminating glaucoma from

normal eyes; this question awaits further research. Nevertheless a

strength of the Random Forests method, in contrast to the support

vector machine classifier, is its understandability and interpret-

ability; the contribution of each parameter in the diagnosis process

can be inferred, as shown in Figure 4a, 4b. Indeed, our results

suggest that the superior and inferior-temporal peripapillary

RNFLs and corresponding retinal area are likely to be involved

in the early stage of glaucoma [16,17] as these parameters

significantly contributed to the discrimination between glaucoma

and normal eyes.

Leave-one out cross validation was used to evaluate the

performance of the Random Forests method in the current study.

As described in the Methods section, the original dataset was

divided into validation data (one patient) and training data (all

other patients), and the Random Forests classifier is built using

only training data of patients; this process was repeated so that

Table 3. AROCs with summary SD-OCT measures.

SD-OCT parameter AROC [CI] (%)

total cpRNFL 92.8 [89.4–96.2]

temporal quadrant cpRNFL 73.6 [67.0–80.2]

superior quadrant cpRNFL 82.6 [77.2–88.0]

nasal quadrant cpRNFL 78.7 [72.5–84.8]

inferior quadrant cpRNFL 90.9 [87.0–94.8]

12 sector cpRNFL (temporal) 61.3 [53.8–68.9]

12 sector cpRNFL (temporal-superior) 73.0 [66.4–79.7]

12 sector cpRNFL (superior-temporal) 81.6 [76.0–87.3]

12 sector cpRNFL (superior) 72.3 [65.5–79.1]

12 sector cpRNFL (superior-nasal) 74.1 [67.5–80.6]

12 sector cpRNFL (nasal-superior) 79.3 [73.2–85.3]

12 sector cpRNFL (nasal) 69.7 [62.6–76.7]

12 sector cpRNFL (nasal-inferior) 73.2 [66.3–80.1]

12 sector cpRNFL (inferior-nasal) 74.8 [68.2–81.4]

12 sector cpRNFL (inferior) 83.4 [78.0–88.9]

12 sector cpRNFL (inferior-temporal) 92.5 [88.9–96.1]

12 sector cpRNFL (temporal-inferior) 75.5 [69.0–81.9]

total m-RNFL 93.4 [90.0–96.8]

superior hemiretina mRNFL 80.2 [74.4–85.9]

inferior hemiretina mRNFL 91.4 [87.3–95.4]

64 grid m-RNFL 52.8 [44.9–60.7] – 94.3 [91.1–97.6]

total GCIPL 89.4 [85.2–93.6]

superior hemiretina GCIPL 79.4 [73.4–85.5]

inferior hemiretina GCLIPL 91.8 [88.2–95.4]

64 grid GCIPL 56.3 [48.4–64.2] – 91.2 [87.3–95.1]

AROC: Area Under the Receiver Operating Characteristic Curve, SD-OCT: spectral domain optical coherence tomography, CI: 95% confidence interval, cpRNFL:
circumpapillary retinal nerve fiber layer (RNFL), mRNFL: macular RNFL, GCIPL: ganglion cell layer and inner plexiform layer combined.
doi:10.1371/journal.pone.0106117.t003
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every patient was used as a testing case once. Applying the

classifier in the clinical setting is straightforward – a new patient

can be classified according to the pre-determined optimum

operating point (a 55.3% voting rate in the Random Forests

classifier). Furthermore, the Random Forests classifier can be

continuously trained by adding the data of new patients to it,

which should further improve diagnostic accuracy. In addition, the

Random Forests method carried out in this study was built using

free statistical software and packages, specifically ‘R’, which is an

open source statistical program (ver. 2.14.2; The R Foundation for

Statistical Computing, Vienna, Austria).

One limitation of the current study is that eyes with high

myopia (spherical refraction error ,26 diopters) were not

included in the analysis. Many previous studies have indicated

that the diagnostic ability of glaucoma imaging devices such as the

Heidelberg Retina Tomograph (Heidelberg Engineering GmbH,

Heidelberg, Germany) or OCT is worse in highly myopic eyes

compared with near-emmetropic eyes [51–54]. Another limitation

of the current study is that disc parameters were not included in

the Random Forests classifier, which may have improved

diagnostic performance; however, the 3D-OCT 1000 does not

measure disc parameters such as rim area or vertical cup/disc

ratio.

In summary, a combined analysis of cpRNFL-, mRNFL- and

GCIPL-related thickness measurement using the Random Forests

method was found to significantly improve the ability of SD-OCT

to discriminate between normal and glaucoma eyes.
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