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Growing evidence have demonstrated that many biological processes are inseparable
from the participation of key proteins. In this paper, a novel iterative method called
linear neighborhood similarity-based protein multifeatures fusion (LNSPF) is proposed to
identify potential key proteins based on multifeature fusion. In LNSPF, an original protein-
protein interaction (PPI) network will be constructed first based on known protein-protein
interaction data downloaded from benchmark databases, based on which, topological
features will be further extracted. Next, gene expression data of proteins will be adopted
to transfer the original PPI network to a weighted PPI network based on the linear
neighborhood similarity. After that, subcellular localization and homologous information
of proteins will be integrated to extract functional features for proteins, and based
on both functional and topological features obtained above. And then, an iterative
method will be designed and carried out to predict potential key proteins. At last, for
evaluating the predictive performance of LNSPF, extensive experiments have been done,
and compare results between LNPSF and 15 state-of-the-art competitive methods
have demonstrated that LNSPF can achieve satisfactory recognition accuracy, which
is markedly better than that achieved by each competing method.

Keywords: key protein, entropy, linear neighborhood similarity, iterative method, multi-feature fusion

INTRODUCTION

In the past few years, with the development of high-throughput and bioinformatics technologies,
recognition of potential key proteins based on protein-protein interaction (PPI) networks has
become a new research hotspot (Dai et al., 2021; Zhang et al., 2021). Essential proteins play an
important role in cell growth and regulation, and researches on essential proteins can deepen the
understanding of biological life processes. Existing key protein prediction methods can be roughly
divided into two categories: one is based on the topological characteristics of PPI networks and the
other is based on the fusion of topological structures of PPI networks and biological information
of protein such as the gene expression data, the subcellular localization data, the homologous
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data, and the gene ontology of protein. For example, based
on topological characteristics of PPI networks, Li et al. (2015)
proposed a method called LAC, in which, the local average
connectivity of nodes in the PPI network was adopted to estimate
the essentiality of proteins. Qi and Luo (2016) introduced a
model named LID by measuring the importance of proteins
by the local interaction density between neighboring nodes
in the PPI network. Lin designed two predictive models
called MNC (maximum neighborhood connectivity) and DMNC
(density of maximum neighborhood connectivity) based on the
maximum neighborhood connectivity and density of maximum
neighborhood connectivity of modes in the PPI network
separately (Lin et al., 2011). In addition, researchers have
proposed a series of methods to identify key proteins based
on the centrality of nodes in PPI networks, such as DC
(degree centrality) (Hahn and Kern, 2005), EC (eigenvector
centrality) (Bonacich, 1987), CC (closeness centrality) (Wuchty
and Stadler, 2003), IC (information centrality) (Stephenson and
Zelen, 1989), SC (subgraph centrality) (Estrada and Rodríguez-
Velázquez, 2005), BC (betweenness centrality) (Joy et al., 2005),
and NC (neighbor centrality) (Wang et al., 2012). In all these
methods, since only topological characteristics of PPI networks
were considered, then unknown interactions between proteins
might greatly affect the identification accuracy of potential key
proteins. Hence, to improve the recognition accuracy, some
other methods based on the fusion of biological information and
topological features were proposed successively. For instance,
Tang and Li proposed two methods called WDC (weighted
degree centrality) (Tang et al., 2014) and PEC (integration
ECC and Pearson correlation) (Li et al., 2012), respectively, by
fusing topological features of PPI networks with gene expression
information of proteins to measure the importance of proteins.
Peng et al. (2012) designed two methods, namely, UDoNC
(united the domain features and the normalized ECC) and ION
(integration of the properties of orthologous and the features of
neighbors) (Peng et al., 2015a), through combining homology
and domain information of proteins with topological features
of PPI networks separately. Zhang et al. (2013) introduced
a prediction model called CoEWC by integrating topological
characteristics of PPI networks with co-expression characteristics
of proteins in gene expression profiles. Li et al. (2018) proposed
a method named subnetwork partition and prioritization by
fusing subcellular localization information of proteins with PPI
networks. Zhao et al. (2019) designed an iterative computing
method called RWHN by combining homology, domain, and
subcellular localization information of proteins with topological
features of PPI networks. Zhao et al. (2014) proposed a prediction
method called POEM by integrating gene expression data of
proteins and topology features of PPI networks. Lei et al.
(2020) designed a method based on gene expression data and
Drosophila optimization algorithm (FOCA), which combines
PPI network, subcellular localization, gene ontology annotation,
gene expression data, and artificial fish swarm optimization
(AFSO) algorithm (Lei et al., 2016) to predict key proteins. In
addition, a prediction method based on the combination of a
learning system and specific scoring matrix was proposed by
Wang (Wang et al., 2017), and a prediction method based on the

deep learning model proposed by Chen (Chen et al., 2019). Chen
et al. (2020) proposed an identification method called NPRI by
integrating heterogeneous networks. Dai et al. (2020) identified
key proteins based on PPI network embedding. Zhang et al.
(2019) proposed a method by fusing dynamic PPI networks.
Sun et al. (2021) designed an iterative method called IoMCD
(iteration based on multiple characteristic differences) based on
cross-entropy. Li et al. (2020) proposed an iterative method
called CVIM (character vector iteration method) based on the
fusion of topological structures of PPI networks and functional
characteristics of proteins.

Experimental results show that the fusion of network
topological features and biological information of proteins can
improve the accuracy of identifying potential key proteins
effectively. However, in most existing methods, due to the
limited categories of topological structures of PPI networks
and functional characteristics of proteins fused, the predictive
performances of these methods are not satisfactory. Hence, in
this study, through combining a series of topological features of
PPI networks and abundant biological information of proteins,
a new predictive method called LNSPF (linear neighborhood
similarity-based protein multifeatures fusion) is proposed to
identify potential key proteins. In LNSPF, an original PPI network
will be constructed first based on known PPI data downloaded
from benchmark databases, and then, topological features will be
extracted from the original PPI network. Next, the protein nodes
in the original PPI network are defined as data points, the protein
gene expression data are defined as the characteristics of the
corresponding data points, and the data points are reconstructed
to calculate the linear neighborhood similarity between the data
points in the feature space. After that, subcellular location and
homologous information of proteins will be integrated to extract
functional features for proteins. At last, based on both functional
and topological features extracted above, an iterative method will
be designed to predict key proteins. Experimental results show
that LNSPF can achieve reliable prediction accuracies of 100%,
90%, and 87% in top 1%, 5%, and 10% ranked key proteins
separately based on the GAVIN database, which is markedly
superior to 15 state-of-the-art competitive methods, namely,
DC (Hahn and Kern, 2005), CC (Wuchty and Stadler, 2003),
IC (Stephenson and Zelen, 1989), SC (Estrada and Rodríguez-
Velázquez, 2005), BC (Joy et al., 2005), NC (Wang et al., 2012),
PEC (Li et al., 2012), LAC (Li et al., 2015), COEWC (Zhang et al.,
2013), POEM (Zhao et al., 2014), ION (Peng et al., 2015a), TEGS
(Li et al., 2018), RWHN (Zhao et al., 2019), IoMCD (Sun et al.,
2021), and CVIM (Li et al., 2020) simultaneously.

MATERIALS AND METHODS

As shown in Figure 1, the process of LNSPF consists of the
following four main steps:

Step 1: First, based on known PPI data downloaded
from the benchmark database, an original PPI network
is constructed, from which, topological features, namely,
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FIGURE 1 | Flowchart of the LNSPF.

degree, two hops degree, and triangle are extracted
successively.
Step 2: Next, subcellular location and homologous
information of proteins will be integrated to extract
functional features for proteins.
Step 3: Moreover, based on the topological and biological
properties obtained above, an iterative method is designed
to estimate the importance of proteins.
Step 4: At last, based on the gene expression data
downloaded from the benchmark database, the score was
further optimized by using linear neighborhood similarity.

Extraction of Functional Features for
Proteins
Let G= (V, E) denote the original PPI network constructed from
a dataset of known PPIs downloaded from any given benchmark
database D, V =

{
p1, p2, · · · pN

}
represent a set of different

proteins, and E =
{
e
(
pi, pj

) ∣∣pi, pj ∈ V
}

represent a collection
of edges between proteins in G. Here, if and Based a known
interaction between any two given proteins in V , there is a side
e
(
pi, pj

)
between them. Obviously, based on the original PPI

network G, we can obtain a N × N dimensional adjacency matrix
A=

(
aij
)
N×N ,where there is aij = 1, if and only if there is an edge

e
(
pi, pj

)
between pi and pj, otherwise, there is aij = 0.

For any given protein pi in G, let NG (pi) denote the set of
nodes neighboring to pi in G, then it is obvious that there is:

NG(pi) =
{
pj |∃ e

(
pi, pj

)
∈ E, pj ∈ V

}
(1)

According to Equation 1, it is easy to know that the nodes in NG
(pi) are one-hop from pi in G, for convenience, we define NG (pi)

as the set of one-hop neighbors of pi in G, based on which, we can
obtain a new set of two-hops neighbors of pi in G as follows:

THNG(pi) =
{
pj |∃ e

(
pj, pk

)
∈ E, pk ∈ NG

(
pi
)}

(2)

Where
∣∣NG (pi)∣∣ denotes the number of different nodes in the

set NG
(
pi
)
.

According to Equations 1, 2, based on the fact that key proteins
and their neighbors often form tight junction clusters (Li et al.,
2015; Peng et al., 2015a), we can define two kinds of topological
properties for any given protein pi in G as follows:

TP1
(
pi
)
=

∑
pj∈NG(pi)

TZ1
(
pi, pj

)
(3)

TP2(pi) =
∑

pj∈NG(pi)

TZ2
(
pi, pj

)
(4)

Where,

TZ1
(
pi, pj

)
=


∣∣NG(pi)∩ NG(pj)

∣∣∣∣NG(pi)
∣∣ ; pj ∈ NG(pi)

0; otherwise
(5)

TZ2(pi, pj) =


∣∣THNG(pi)∩ NG(pj)

∣∣∣∣THNG (pi)∣∣ ; pj ∈ NG(pi)

0; otherwise
(6)

From observing Equations 3, 4, it can be seen that, for any
two given proteins pi and pj in G, the more the number of
common one-hop or two-hops neighboring nodes between them,
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the bigger the values ofTZ1
(
pi, pj

)
andTZ2(pi, pj) will be. Hence,

it is obvious that TZ1
(
pi, pj

)
and TZ2(pi, pj) can to a certain

extent reflect the tightness and the aggregation degree between
pi and pj, respectively.

Extraction of Functional Features for
Proteins
Key proteins tend to connect with each other rather than exist
independently, and the key of proteins is usually expressed
through protein complexes or functional modules, rather than
a single protein (Min et al., 2017). Existing studies have shown
that key proteins are closely related to the subcellular structures
of proteins (Peng et al., 2015b; Li et al., 2016; Fan et al., 2017).
In this section, we will adopt the subcellular locations to extract
functional features for proteins. First, for any given protein pi, let
Sub

(
pi
)

denote the set of different subcellular locations relating
to pi, and

∣∣Sub (pi)∣∣ represent the number of different elements in
Sub

(
pi
)
, then, we can calculate one kind of functional property

for pi as follows:

FP1(pi) =

∑
pj∈NG(pi) TZ3

(
pi, pj

)∣∣NG (pi)∣∣ + 1 (7)

Where,

TZ3(pi, pj) =



∣∣Sub (pi)∩ Sub (pj)∣∣2∣∣Sub (pi)∣∣ ∗ ∣∣Sub(pj)∣∣ ;∣∣Sub (pi) | ∗ |Sub(pj)∣∣ > 0

0; otherwise

(8)

In addition, in the study of Peng et al. (2012), key proteins were
proved to be relatively conserved. Through whether each protein
has homology, the homology score of each protein is obtained
to indicate the degree of conservation of each protein. Based on
the homology information of proteins, for any given protein pi,

let os(pi) denote the homology fraction of pi, then we can obtain
another kind of functional property for pi as follows:

FP2(pi) =
os(pi)

max
pj∈V

{
os(pj)

} (9)

Construction of Linear Neighborhood
Similarity-Based Protein Multifeatures
Fusion
Initial Iteration
For generality, supposing that we have extracted M1 different
topological features (such as TP1, TP2,. . ., TPM1 ) and M2
different functional features (such as FP1, FP2,. . .,FPM2 ),
moreover, there is M1 + M2 = M, then, for any given protein
pi, we can construct a feature vector for it as follows:

Vi = < TP1,TP2, . . . ,TPM1 , FP1, FP2, . . . , FPM2 >

= < P1, P2, . . . , PM > (10)

Based on Equation 10, we can further obtain a feature matrix
for all N proteins in G as follows:

Z = [V1 · · · VN ]
T
=
[
zij
]
N×M (11)

Based on Equation 11, it is obvious that we can adopt entropy
to measure the weight of each feature in all M different features
as follows:

wj = (1− ej)/
M∑
i=1

(1− ei) (12)

Where,

ej = −
N∑
i=1

zij ln zij/ lnN (13)

TABLE 1 | A brief description of the existing representative prediction models.

Algorithm Network topology Biological information Particular year

DC (Hahn and Kern, 2005) Degree centrality NO 2005

EC (Bonacich, 1987) Eigenvector centrality NO 1987

CC (Wuchty and Stadler, 2003) Closeness centrality NO 2003

IC (Stephenson and Zelen, 1989) Information centrality NO 1989

SC (Estrada and Rodríguez-Velázquez, 2005) Subgraph centrality NO 2005

BC (Joy et al., 2005) Betweenness centrality NO 2005

NC (Wang et al., 2012) Neighbor centrality NO 2012

PEC (Li et al., 2012) Edge clustering coefficient Gene expression data 2012

LAC (Li et al., 2015) Degree centrality, common neighbor node NO 2011

CoEWC (Zhang et al., 2013) Clustering coefficient Gene expression data 2013

POEM (Zhao et al., 2014) Degree centrality, subgraph, edge clustering
coefficient, closeness centrality

Gene expression data 2014

ION (Peng et al., 2015a) Edge clustering coefficient Orthologous data 2012

TEGS (Li et al., 2018) Subnetwork partition and prioritization subcellular localization data 2018

RWHN (Zhao et al., 2019) Degree centrality, protein-domain Orthologous data, subcellular localization 2019

IoMCD (Sun et al., 2021) Common neighbor node, degree Centrality Gene expression data, orthologous data 2021

CVIM (Li et al., 2020) Degree centrality, common neighbor node Gene expression data, orthologous data 2020
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Moreover, according to Equation 13, we can further calculate
the feature-based score of pi for any given protein as follows:

CScore(pi) =
M∑
j=1

wjZij (14)

Based on Equation 14, we can construct a new matrix H as
follows:

Hij =


CScore(pi)∑N
l=1 CScore(pl)

; if i = j

min
{
CScore(pi),CScore(pj)

}∑N
l=1 CScore(l)

; else
(15)

Hence, according to Equation 15, we can obtain stable scores
for all proteins in an iterative way as follows:

Y t+1
= αHY t

+ (1− α)Y0 (16)

Where the parameter α ∈ (0, 1)and Y0
=<

FP2
(
p1
)
, FP2

(
p2
)
, . . . , FP2(pN) > is the vector consisting

of initial scores of all proteins. Moreover, for convenience, we
define the final stable scores obtained by Equation 16 as YFinal .

Further Optimization
Proteins can be considered as data points in the feature space,
and how to predict the similarity between potential essential
proteins in the feature space is very important for the prediction
of essential proteins. Wang and Zhang (2008) found that every
data point in a high-dimensional space can be reconstructed
by its neighbors. Zhang et al. (2017) proposed a new similarity
measure to predict drug side effects based on characteristics
of drugs. Hence, based on above concepts, in this section, we
will first define protein nodes in the original PPI network as
data points, and the gene expression data of proteins as features
of corresponding data points. And for convenience, for any
given protein pi, let gi =< gi1, gi2, . . . , gi36 > represent its gene
expression data, where git represents the gene expression level of
pi at the tth time point, then, we can further reconstruct each
data point pi based on features of its neighbors by minimizing
the following reconstruction error εi:

εi =

∣∣∣∣∣∣∣∣gi − ∑
pj∈NG(pi)

si,jg2
j

∣∣∣∣∣∣∣∣+ ||s2i ||
=

∣∣∣∣∣∣∣∣ ∑
pj∈NG(pi)

si,j
(
gi − gj

)2
∣∣∣∣∣∣∣∣+ ∑

pj∈NG(pi)

(
si,j
)2

=

∑
pj,pk∈NG(pi)

si,jsi,k
(
gi − gj

)T (gi − gj
)
+

∑
pj∈NG(pi)

(
si,j
)2

=

∑
pj,pk∈NG(pi)

si,j
(
Gi
+ I
)
si,k

= sTi
(
Gi
+ I
)
si

s.t.
∑

pj∈NG(pi)

si,j = 1, si,j ≥ 0 (17)

Here, Gi
= (gi − gj)T(gi − gj), si = (si,1, si,2 · · · si,k)T , ||gi −∑

pj∈NG(pi) si,jg
2
j || is the item of reconstruction error, ||s2i || is used

for regularization and I is the identity matrix.
Obviously, according to Equation 17, let Si,j =
si,j : if pj ∈ NG

(
pi
)

1 : i = j
0 : otherwise

, then we can obtain a N ×

N-dimensional similarity matrix S as follows:

S =

 S11 · · · S1N
...

. . .
...

SN1 · · · SNN

 (18)

In addition, for any given protein node pi in G, we can
calculate the similarity si,j between it and its neighboring node

TABLE 2 | Influence of parameter α on the effect of initial iteration algorithm
in Gavin database.

α

Rank 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top1% (19) 16 17 18 18 18 18 17 15 15

Top5% (93) 75 80 83 83 82 80 80 78 79

Top10% (186) 147 155 156 159 162 162 163 160 161

Top15% (278) 198 205 213 219 218 220 220 219 217

Top20% (371) 249 259 264 268 271 267 274 278 272

Top25% (464) 303 306 309 314 317 322 322 320 321

The bold values represent the best predictive performance achieved by LNSPF
under different conditions.

TABLE 3 | Effect of parameter β on prediction performance of LNSPF
in Gavin database.

β

Rank 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top1% (19) 18 19 19 19 18 18 18 18 17

Top5% (93) 81 83 83 84 82 82 82 81 78

Top10% (186) 164 165 164 163 164 166 164 163 161

Top15% (278) 221 223 221 223 222 219 220 219 210

Top20% (371) 271 274 274 278 274 272 272 270 262

Top25% (464) 324 324 325 326 325 321 319 314 310

The bold values represent the best predictive performance achieved by LNSPF
under different conditions.

TABLE 4 | Effect of parameter β on prediction performance of LNSPF based
on DIP database.

β

Rank 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top1% (51) 46 47 47 46 46 46 44 44 43

Top5% (255) 203 208 205 203 203 200 198 197 189

Top10% (510) 347 352 350 352 352 349 342 334 330

Top15% (764) 468 468 467 469 467 459 457 458 429

Top20% (1019) 547 546 544 548 547 542 542 535 519

Top25% (1274) 626 630 628 625 622 622 623 615 608

The bold values represent the best predictive performance achieved by LNSPF
under different conditions.
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FIGURE 2 | Comparison results of the numbers of real key proteins predicted by LNSPF, DC, CC, IC, SC, BC, NC, PEC, LAC, CoEWC, POEM, ION, RWHN,
IoMCD, and CVIM based on the GAVIN database. (A) Top 1% ranked proteins. (B) Top 5% ranked proteins. (C) Top 10% ranked proteins. (D) Top 15% ranked
proteins. (E) Top 20% ranked proteins. (F) Top 25% ranked proteins.

pj ∈ NG
(
pi
)

as follows:

min sTi
(
Gi
+ µI

)
si

s.t.
∑

pj∈NG(pi)
si,j = 1 , si,j ≥ 0

Thereafter, let T0
= YFinal, based on above newly obtained

matrix S, we can further optimize the scores for all proteins in
an iterative way as follows:

Tσ+1
= βSTσ

+ (1− β)T0 (19)
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FIGURE 3 | Comparison results of the numbers of real key proteins predicted by LNSPF, DC, CC, IC, SC, BC, NC, PEC, LAC, CoEWC, POEM, ION, RWHN,
IoMCD, and CVIM based on the DIP database. (A) Top 1% ranked proteins. (B) Top 5% ranked proteins. (C) Top 10% ranked proteins. (D) Top 15% ranked
proteins. (E) Top 20% ranked proteins. (F) Top 25% ranked proteins.

Here, there is β ∈ (0, 1).
Based on the above descriptions, the process of LNSPF can be

described in detail as follows:
Algorithm: LNSPF.
Input: Original PPI network, gene expression data, subcellular

location data and homologous data, parameters δ and K.
Output: Rank the proteins in descending order according to

TFinal value, and output TOP K%.

Step 1: According to Equations 3, 4, an original PPI network
G = (V,E) is generated, based on which, topological features are
extracted;

Step 2: According to Equations 7, 9, functional characteristics
are extracted from the subcellular location data and homologous
data, respectively.

Step 3: According to Equation 15, the matrix H is obtained;
Step 4: let t = t + 1; calculate Y t+1 according to Equation 16;
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FIGURE 4 | The ROC curves of LNSPF method based on DIP dataset and DC, CC, IC, SC, BC, NC, Pec, and LAC CoEWC, POEM, ION, TEGS, IoMCD, and CVIM
14 prediction methods. (A) Comparison between LNSPF and DC, CC, IC, SC, BC, NC, PEC. (B) Comparison between LNSPF and LAC, CoEWC, POEM, ION,
TEGS, IoMCD, CVIM.

FIGURE 5 | The ROC curves of LNSPF method based on Krogan dataset and DC, CC, IC, SC, BC, EC, PEC, and LAC, CoEWC, RWHN, TEGS, CVIM, and IOMCD
13 prediction methods. (A) Comparison between LNSPF and DC, CC, IC, SC, BC, EC, PEC. (B) Comparison between LNSPF and LAC, CoEWC, RWHN, TEGS,
CVIM, IOMCD.

Step 5: Repeat step 4 until ||Y t+1
− Y t|| < δ, the matrix YFinal

is obtained;
Step 6: According to Equation 18, the similarity matrix S is

obtained;
Step 7: let T0

= YFinal and σ = σ+ 1, the matrix YFinal is
further optimized according to Equation 19;

Step 8: Repeat step 7 until ||Tσ+1
− Tσ|| < δ, the matrix TFinal

is obtained;
Step 9: The values of TFinal are sorted in descending order,

and the top K% proteins with the highest final scores are
output.

EXPERIMENTAL RESULTS

Experimental Data
During experiments, we first downloaded known PPIs from
three different databases such as the Gavin (Gavin et al., 2006)
database, the DIP (Xenarios et al., 2002) database, and the

Krogan (Cherry, 1998) database, and then, after filtering
repeated interactions and self-interactions, we finally obtained
24,743 interactions between 5,093 proteins based on the DIP
database, 7,669 interactions between 1,855 proteins based on
the Gavin database, and 14,317 interactions between 3,672
proteins based on the Krogan database, respectively. Moreover,
we obtained a group of 1,285 essential proteins in Saccharomyces
cerevisiae from the databases of SGDP (Holman et al., 2009),
SGD (Holman et al., 2009), DEG (Zhang and Lin, 2009),
and MIPS (Bruno et al., 2012) as well. Furthermore, we

TABLE 5 | Based on DIP database, LNSPF and AUC of 14 competitive methods.

Method LNSPF DC CC IC SC BC NC Pec

AUC 0.7525 0.6704 0.6293 0.6657 0.6384 0.6250 0.6879 0.6329

Method LNSPF LAC CoEWC POEM ION TEGS IoMCD CVIM

AUC 0.7525 0.6816 0.6513 0.6662 0.7522 0.7386 0.7409 0.7451
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TABLE 6 | AUC values of LNSPF and 13 competing methods based
on Krogan dataset.

Method LNSPF DC CC IC SC BC EC

AUC 0.7482 0.6583 0.6114 0.6573 0.6167 0.6248 0.6167

Method PEC LAC CoEWC RWHN TEGS CVIM IoMCD

AUC 0.6446 0.6505 0.6396 0.7202 0.7287 0.7458 0.7344

downloaded the homology information of proteins from the
Inparanoid database (Gabriel et al., 2010), the gene expression
dataset composing of 6,776 proteins representing the gene
expression level of proteins in continuous metabolic cycles
from the database provided by Tu et al. (2005), and the
dataset of subcellular location information from the part-means
database (Binder et al., 2014) separately. Especially, the dataset
of subcellular location information consists of 11 kinds of

subcellular localization, namely, the extracellular, peroxisome,
nucleus, plasma, endosome, mitochondrion, vacuole, cytosol,
golgi, cytoskeleton, and endoplasmic, which are closely related to
known key proteins. At last, to evaluate the recognition rate of
true essential proteins predicted by LNSPF, we compared LNSPF
with 16 representative predictive models, as shown in Table 1,
namely, DC, EC, CC, IC, SC, BC, NC, Pec, LAC, CoEWC, POEM,
ION, TEGS, RWHN, IoMCD, and CVIM.

Influence of Parameters on Linear
Neighborhood Similarity-Based Protein
Multifeatures Fusion Performance
In LNSPF, we set parameters α and β, the value ranges of both
α and β are (0, 1), to adjust the final protein score. During
experiments, we will set different values to the parameter α

or β first based on the Gavin database and the DIP database,
respectively, and then, the setting value with the highest

FIGURE 6 | The figure shows the Jackknife curves of LNSPF and DC, CC, IC, SC, BC, EC, and PEC based on Krogan dataset, and LAC, CoEWC, RWHN, TEGS,
and IOMCD 12 prediction methods. The X-axis represents the number of potentially critical proteins ranked in the top 200, and the Y-axis represents the number of
truly essential proteins identified by these models. (A) Comparison between LNSPF and DC, CC, IC, SC. (B) Comparison between LNSPF and BC, EC, PEC. (C)
Comparison between LNSPF and LAC, CoEWC, RWHN. (D) Comparison between LNSPF and TEGS, IOMCD.
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FIGURE 7 | The figure, respectively, shows the Jackknife curve of LNSPF and DC, CC, IC, SC, BC, NC, and PEC, LAC, COEWC, POEM, ION, and CVIM 12
prediction methods based on DIP data set. The X-axis represents the number of potentially critical proteins ranked in the top 500, and the Y-axis represents the
number of truly essential proteins identified by these models. (A) Comparison between LNSPF and DC, CC, IC, SC, BC, NC. (B) Comparison between LNSPF and
PEC, LAC, COEWC, POEM, ION, CVIM.

prediction accuracy of essential protein will be selected as the
final value of parameter α or β. Based on the Gavin dataset, we
set α to 0.1., 0.8, and 0.9 to predict the effect of the preliminary
iterative algorithm. From observing Table 2, it is obvious that
when α = 0.6, the protein score with obvious effect and the most
stable one can be obtained. At this time, the setting value of α

in Gavin dataset is 0.6 and that in DIP database is 0.8. β set
0.1, . . ., 0.8, 0.9. The prediction results based on Gavin data set
(α = 0.6) and dip data set (α = 0.8) are shown in Tables 3, 4,
respectively. By observing Table 3, it is easy to see that the
prediction performance of LNSPF is the highest at 1%, 5%, 15%,
20%, and 25% when β = 0.4 is used. Therefore, based on Gavin
data set, it is appropriate to set β as 0.4. By observing Table 4,
it is easy to see that the prediction performance of LNSPF is the
highest at 1%, 5%, 10%, and 25% when β = 0.2 is used. Therefore,
based on the DIP data set, it is more appropriate to set β as 0.2.

COMPARISON OF LNSPF WITH OTHER
METHODS

Comparison of the Number of Real
Essential Proteins Between Linear
Neighborhood Similarity-Based Protein
Multifeatures Fusion and 14
Representative Methods
According to above descriptions, it is easy to see that LNSPF can
achieve it best predictive performance while we set α to 0.6 and
β to 0.4 based on the Gavin database. Hence, in this section, in
order to estimate the actual predictive performance of LNSPF, we
will first compare it with 14 advanced predictive methods based
on the Gavin database while setting α to 0.6 and β to 0.4, and the
comparison results are shown in Figure 2. From observing the
Figure 2, it is easy to see that, in the ranking of the number of

true essential proteins inferred by these 15 predictive methods,
LNSPF can achieve better predictive performance than all these
competitive methods in top 1, 5, 10, 15, and 20% predicted key
proteins simultaneously. For instance, from the top 1% to top
20% predicted key proteins, the predictive accuracies of LNSPF
are 15.8, 4.3, 2.6, 1.4, and 1.8% higher than that of the method of
CVIM, respectively.

Similarly, according to above descriptions, it is easy to see that
LNSPF can achieve it best predictive performance while we set
α to 0.6 and β to 0.2 based on the DIP database. Hence, in this
section, in order to estimate the actual predictive performance of
LNSPF, we will further compare it with 14 advanced predictive
methods based on the DIP database while setting α to 0.6 and β

to 0.2, and the comparison results are shown in Figure 3. From
observing the Figure 3, it is easy to see that, the numbers of
essential proteins detected by LNSPF in the top 1, 5, 10, 15, 20,
and 25% ranked proteins are significantly better than that of all
competitive methods as a whole.

Receiver Operating Characteristic Curve
Verification
Receiver operating characteristic curve (ROC) is used to compare
the prediction performance of LNSPF with DC, CC, IC, SC,
BC, NC, PEC, LAC, CoEWC, POEM, ION, TEGS, IoMCD, and
CVIM based on DIP data set. The larger the area of ROC curve,
the better the performance of the model, it can be seen from
Figure 4 and Table 5 that the performance of this model is
significantly higher than that of the 14 competitive methods.
The prediction performance of LNSPF method based on Krogan
dataset compared with DC, CC, IC, SC, BC, EC, PEC, and
LAC, CoEWC, RWHN, TEGS, CVIM, and IoMCD 13 competing
methods. It can be seen from Figure 5 and Table 6 that the
performance of this model is significantly higher than that of
these 13 competing methods.
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Verification of Jackknife Method
In this section, I’ll use the Jackknife method to verify the
performance of the LNSPF against the other models. The
performance of LNSPF was compared with DC, CC, IC, SC, BC,
EC, PEC, and LAC, CoEWC, RWHN, TEGS, and IOMCD based
on Krogan data set. As shown in Figure 6. It is obvious that
this method is superior to other models. The performance of
LNSPF is compared with DC, CC, IC, SC, BC, NC, PEC, and
LAC, COEWC, POEM, ION, and CVIM based on DIP data set,
as shown in Figure 7.

DISCUSSION

Essential proteins play an important role in cell growth and
regulation, for the past few years, accumulating computational
methods have been proposed to detect potential key proteins,
however, the predictive performances of these existing methods
are not very satisfactory yet. In this study, a novel predictive
model called LNSPF was designed by combining topological
features of PPI networks with a series of biological characteristics
of proteins to detect potential key proteins. In LNSPF, a
new entropy-based method for feature fusion and a linear
neighborhood similarity method for optimization were adopted.
Comparing with traditional identification methods, LNSPF can
achieve better predictive performance, which demonstrates that
the method based on the fusion of biological information of
proteins and topological features of PPI networks can improve
the prediction accuracy of essential proteins effectively. In
addition, there are some limitations in current version of LNSPF
as well, for example, the loss of gene time expression data or
homologous data of some proteins will affect the recognition
accuracy of LNSPF to some degree.

CONCLUSION

In this paper, an iterative model of protein multifeature fusion
based on linear neighborhood similarity (LNSPF) is proposed
to predict essential proteins by fusing biological and topological
information of proteins. In LNSPF, first, the topological features
are extracted from the original PPI network, and then the
functional features are extracted from the subcellular location

data. Second, an entropy weight method is used to fuse the
features, and then a stable protein score is obtained by an iterative
method. At last, a linear neighborhood similarity method is
used to optimize the score effectively. The experimental results
show that based on Gavin data sets, the Krogan data sets, and
DIP held several experimental data sets, through a variety of
methods to verify the effectiveness of the new model LNSPF and
stability. Compared with many advanced prediction models, the
new model LNSPF has better prediction effect.
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