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Abstract: Dedicators of cytokinesis 9 and 11 (DOCK9 and DOCK11) are members of the dedicator
of cytokinesis protein family encoding the guanosine nucleotide exchange factors for Rho GTPases.
Together with DOCK10, they constitute the DOCK-D or Zizimin subfamily. Two alternative full-length
amino terminal isoforms of DOCK9 are known, which we will call DOCK9.1 and DOCK9.2. In order
to investigate the relevance of the presence of the alternative first exon isoforms within this family,
and to lay the groundwork for future studies that seek to investigate their potential role as biomarkers
of disease, the expression levels of DOCK9 and DOCK11 were measured by qRT-PCR in 26 human
tissues and 23 human cell lines, and by Western blot analysis, using commercial antibodies in cell lines.
DOCK9.1 and DOCK9.2 were widely distributed. High levels of expression of both isoforms were
found in the lungs, placenta, uterus, and thyroid gland. However, only DOCK9.1 was significantly
expressed in the neural and hematopoietic tissues. The unique first exon form of DOCK11 was highly
expressed in hematopoietic tissues, such as the peripheral blood leukocytes, spleen, thymus, or bone
marrow, and in others such as the lungs, placenta, uterus, or thyroid gland. In contrast to tissues,
the expression of DOCK9.1 and DOCK9.2 differed from one another and also from total DOCK9 in
cell lines, suggesting that the amino terminal isoforms of DOCK9 may be differentially regulated.
This study demonstrates the usefulness of antibodies in investigating the regulation of the expression
of DOCK9.1, total DOCK9, and DOCK11.
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1. Introduction

Dedicator of cytokinesis (DOCK) is the designation for a family of 11 genes that encode the large
guanosine nucleotide exchange factors (GEF) for Rho GTPases. DOCK proteins are characterized
by a GEF domain called CZH2 [1–3]. They play roles in cell shape and movement by regulating
actin cytoskeleton dynamics. The DOCK-D or Zizimin subfamily consists of three members, DOCK9,
DOCK10, and DOCK11. DOCK9 and DOCK11 share a higher structural homology with each other
than with DOCK10. Consistent with their preference for GTPase Cdc42, DOCK9 and DOCK11 promote
the formation of filopodia [4–8].

At the mRNA level, DOCK9 is highly expressed in the placenta, lungs, brain, kidneys and thyroid,
and DOCK11 is expressed in the peripheral blood leukocytes, thymus, spleen, placenta, lungs, kidneys,
and thyroid [5,9]. DOCK9 has two alternative full-length amino terminal isoforms, designated here as
DOCK9.1 and DOCK9.2 by analogy with DOCK10 (NCBI RefSeq database numbers NM_015296 and
NM_001130048, respectively) [10–13]. Only one full-length amino terminal form of DOCK11 has been
described (RefSeq no. NM_144658). In terms of their size, the mutually exclusive first exons represent
only ~2% of the total size of the DOCK9 isoforms, and lack recognizable functional domains [14–17],
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which suggests that the isoforms, rather than functional diversity, may provide alternative mechanisms
for the control of DOCK9 expression. The expression of the DOCK9 isoforms has not been studied
thus far.

In accordance with their function in cell plasticity, DOCK9 and DOCK11 could play roles in cancer
and other pathologies. The abnormal expression of DOCK9 has been found in glioblastoma [18],
papillary thyroid carcinoma [19], tuberculosis [20], prostate cancer [21], and pancreatic cancer [22],
and of DOCK11 in testicular carcinoma [23]. The implementation of methods for studying the
expression of DOCK9 and DOCK11 may help validate these alterations in large numbers of patients.

In this paper, the mRNA levels of DOCK9.1 and DOCK9.2, total DOCK9 and total DOCK11
were measured in human primary tissues, and the mRNA and protein levels in human cell lines
were assessed using commercial antibodies (Abs). The tissue distribution of DOCK9.1 and DOCK9.2
was similar, but in cell lines DOCK9.2 had a more restricted expression, suggesting that the isoforms
undergo differential and post-transcriptional regulation. The data also suggested that there are no
alternative first exon isoforms of DOCK11. These findings may be useful for future studies aimed at
establishing the potential roles of DOCK9 and DOCK11 as biomarkers of disease.

2. Materials and Methods

2.1. Samples

A collection of RNA samples from pooled human tissues was purchased from Clontech (Takara
Bio USA, Mountain View, CA, USA). The panel included 26 different tissues: brain, cerebellum,
fetal brain, spinal cord, kidney, liver, trachea, heart, skeletal muscle, uterus, colon, small intestine,
stomach, placenta, prostate, testis, adrenal gland, salivary gland, thyroid gland, fetal liver, spleen,
thymus, tonsil, leukocytes and bone marrow.

A panel of 23 human hematopoietic and epithelial cell lines, detailed in Supplementary Table S1,
was used. Hematopoietic cells were grown in RPMI-1640 medium supplemented with 10% fetal calf
serum (Biowhittaker, Cambrex, East Rutherford, NJ, USA), 50 U/mL penicillin, 50 U/mL streptomycin,
2.5 µg/mL amphotericin B, and 2 mM l-glutamine. Epithelial cells were grown in Dulbecco’s minimum
essential medium (DMEM) with the same supplements.

2.2. Transient Transfections

Human embryonic kidney 293T cells were cultured in DMEM with the same supplements,
transfected at subconfluency with plasmid constructs for the transient expression of DOCK9.1,
DOCK10.1 and DOCK11 (Supplementary Materials, Table S2) using lipofectamine reagent, and were
cultured for 24 h.

2.3. qRT-PCR

Total RNA was obtained with the SV Total RNA Isolation Kit (Promega, Madison, WI, USA).
One µg of RNA was retrotranscribed using the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Waltham, MA, USA), followed by PCR in an ABI Prism 7000 Sequence Detection
System. Details of the Taqman assays used are shown in Supplementary Table S3. These included two
predesigned assays to detect total human DOCK9, one directed to the boundaries between exons 27
and 28, and the other to the boundary between exons 33 and 34. Two predesigned assays, directed to
the boundaries between the respective exon 1 of DOCK9.1 and DOCK9.2 and the common exon 2 were
used to detect the alternative first exon splicing isoforms of DOCK9. Two assays were used to detect
human DOCK11: one custom assay, directed to the boundary between exons 1 and 2 and another
predesigned assay, directed to the boundary between exons 36 and 37. Lastly, a predesigned GAPDH
assay was performed for normalization. All measurements were performed in duplicate. Relative
expression levels were calculated by the ∆∆Ct method [24].
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2.4. Western Blot Analysis

Twenty µg of total protein extracted from the cell lines was electrophoresed in 6% SDS-PAGE
gels, electroblotted onto nitrocellulose filters, and incubated with rabbit polyclonal Abs from Bethyl
Laboratories (Montgomery, TX, USA) against DOCK9 (ref. nos. 530A, 531A, and 532A, mapping to
amino acids 1–50, 1250–1300, and 1850–1900, respectively), DOCK10 (ref. no. 305A), and DOCK11
(ref. nos. 638A and 639A, mapping to amino acids 100–150 and 400–450, respectively), followed by
swine anti-rabbit Igs, HRP. Duplicate blots, obtained after electrophoresis of the protein extracts in
10% gels, were probed with GAPDH Ab, HRP, as a normalization control. Details about the use of the
Abs are shown in Supplementary Table S4. Blots were developed with ECL reagent, and quantitated in
a ChemiDoc XRS+ photodocumentation system using the Image Lab software (Bio-Rad Laboratories,
Hercules, CA, USA).

2.5. Statistical Analysis

The correlation between assays was evaluated by linear regression analysis. Statistical significance
was established for p < 0.05. Pearson correlation coefficient (R) values close to one indicate
high association.

3. Results

3.1. Expression of Mutually Exclusive First Exon Isoforms of DOCK9 in Human Tissues

A schematic representation of the two alternative amino terminal full length isoforms of DOCK9
is shown in Figure 1A. Specific qRT-PCR assays were used to analyze the expression of DOCK9.1,
DOCK9.2 and total DOCK9 in a panel of 26 RNA samples from human tissues (Figure 1B and
Supplementary Table S5). For total DOCK9, two assays located in different regions were used, in order
to minimize potential biases produced by alternative splicing. The expression of DOCK9.1 and
DOCK9.2 significantly correlated in human tissues (Table 1), indicating that both isoforms exhibited a
roughly similar distribution, which is evident in tissues with a high expression of DOCK9 such as the
lungs, placenta and uterus. However, significant differences were found in diverse tissues, such as
neural tissues (e.g., cerebellum, spinal cord) and hematopoietic tissues (e.g., spleen, thymus, tonsils,
leukocytes), which showed higher levels of DOCK9.1 than DOCK9.2. Both total DOCK9 assays highly
correlated with each other, though DOCK9 e27-e28 was better associated with the isoform-specific
assays. The best correspondence was found between the DOCK9 e27-e28 assay and the sum of the
isoform-specific assays.

Table 1. Linear regression analysis between mRNA levels of DOCK9 and DOCK11 as measured by
different qRT-PCR assays in human tissues.

Tissues Cell Lines

Assay 1 Assay 2 R p Value R p Value

DOCK9 e1.1-e2 DOCK9 e1.2-e2 0.751 1 × 10−5 Significant 0.319 0.137 NS 1

DOCK9 e27-e28 DOCK9 e33-e34 0.913 8 × 10−11 Significant 0.956 1 × 10−12 Significant

DOCK9 e1.1-e2 DOCK9 e27-e28 0.853 3 × 10−8 Significant 0.708 2 × 10−4 Significant

DOCK9 e1.1-e2 DOCK9 e33-e34 0.757 3 × 10−8 Significant 0.818 2 × 10−6 Significant

DOCK9 e1.2-e2 DOCK9 e27-e28 0.873 6 × 10−9 Significant 0.824 1 × 10−6 Significant

DOCK9 e1.2-e2 DOCK9 e33-e34 0.687 1 × 10−5 Significant 0.787 8 × 10−6 Significant

DOCK9 e27-e28 DOCK9 e1.1-e2 +
DOCK9 e1.2-e2 0.922 2 × 10−11 Significant 0.946 1 × 10−11 Significant

DOCK9 e33-e34 DOCK9 e1.1-e2 +
DOCK9 e1.2-e2 0.770 4 × 10−6 Significant 0.987 3 × 10−18 Significant

DOCK11 e1-e2 DOCK11 e36-e37 0.954 4 × 10−14 Significant 0.970 2 × 10−14 Significant
1 NS, nonsignificant.
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Figure 1. mRNA expression of dedicator of cytokinesis 9 (DOCK9) and its alternative first exon 
isoforms in human tissues and cell lines. (A) Schematic representation of the DOCK9 gene and the 
DOCK9 isoforms indicating the exons that constitute them. (B) qRT-PCR analysis of DOCK9.1, 
DOCK9.2, and total DOCK9 using two different assays in 26 human tissues. The bottom chart 
represents the overlap of the mRNA levels of DOCK9.1 and DOCK9.2, and is shown to demonstrate 
their equivalence to total DOCK9. (C) qRT-PCR analysis of DOCK9.1, DOCK9.2, and total DOCK9 in 
23 human cell lines, displayed as in (B). All experiments were performed in duplicate (mean ± S.D.). 
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1. NS, nonsignificant. 

3.2. Expression of Mutually Exclusive First Exon Isoforms of DOCK9 in Human Cell Lines 

Figure 1. mRNA expression of dedicator of cytokinesis 9 (DOCK9) and its alternative first exon isoforms
in human tissues and cell lines. (A) Schematic representation of the DOCK9 gene and the DOCK9
isoforms indicating the exons that constitute them. (B) qRT-PCR analysis of DOCK9.1, DOCK9.2, and
total DOCK9 using two different assays in 26 human tissues. The bottom chart represents the overlap
of the mRNA levels of DOCK9.1 and DOCK9.2, and is shown to demonstrate their equivalence to
total DOCK9. (C) qRT-PCR analysis of DOCK9.1, DOCK9.2, and total DOCK9 in 23 human cell lines,
displayed as in (B). All experiments were performed in duplicate (mean ± S.D.).

3.2. Expression of Mutually Exclusive First Exon Isoforms of DOCK9 in Human Cell Lines

DOCK9 mRNA expression was also studied in a panel of 23 human cell lines, which included
B-lymphoid cell lines, but also myeloid, T-lymphoid, and nonhematopoietic cell lines (Figure 1C and
Supplementary Table S5). DOCK9.1 and total DOCK9 were widely distributed, and high expression
levels were displayed by several B cell lines (EHEB, Namalwa, Daudi, DG-75, RS4; 11), T cell line
HuT-78, myeloid cell line K-562, and epithelial cell line HeLa. DOCK9.2 mRNA was found to be
highly expressed in EHEB and was also detected, at much lower levels, in another B cell line, Mec-1.
Since most of the cell lines used in this study are hematopoietic, the absence of DOCK9.2 expression
in cell lines is consistent with the lack of DOCK9.2 expression in hematopoietic tissue (Figure 1B).
Therefore, it was not surprising that the expression of DOCK9.1 and DOCK9.2 did not correlate
in cell lines (Table 1). However, both total DOCK9 assays correlated with each other and with the
isoform-specific assays. The best association in cell lines was found between DOCK9 e33-e34 and the
sum of the isoform-specific assays.
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3.3. Protein Expression of DOCK9 in Human Cell Lines

A schematic representation of DOCK9 isoforms and DOCK11 is depicted in Figure 2A, showing
the approximate regions targeted by the Abs. DOCK9 Abs 530A and 532A and DOCK11 Abs 638A and
639A were specific, as demonstrated by the detection of a band at their expected size of 236 kDa and
237 kDa, respectively, by Western blot analysis of 293T cells transfected with DOCK9.1, DOCK10.1 and
DOCK11, in the appropriate lanes (Figure 2B).
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Figure 2. Expression of DOCK9 protein in human cell lines. (A) Schematic representation of the
DOCK9 isoforms, and of the DOCK11 protein, indicating the approximate positions targeted by the
antibodies (Abs) used in the present study. (B) Western blot analysis of 293T cells transfected with
expression vectors for the indicated DOCK-D family members, using Abs directed to DOCK9, DOCK10
or DOCK11. (C) Western blot analysis of 23 human cell lines, using Abs directed to DOCK9 and
GAPDH. The positions of the size markers are indicated in kDa to the left. References of the Abs are
shown to the right. Charts represent quantitation of two replicate blots (mean ± S.D.). Only the 236 kDa
band has been quantified.

The human cell lines were analyzed by Western blot using the DOCK9 Abs. Quantitation was
normalized using the DOCK9 signal in the K-562 cell line, which was included in all the blots as
a reference. The 530A Ab recognizes DOCK9.1, which showed its highest levels in the B cell line
Namalwa, T cell line HuT-78 and myeloid cell line K-562 (Figure 2B). The 532A Ab recognizes a
common C-terminal region of DOCK9, which showed its highest levels in B cell lines Mec-1, Daudi,
DG-75 and EHEB, T cell lines HuT-78 and Jurkat, myeloid cell line K-562, and epithelial cell lines HeLa
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and MCF-7. The results using 530A and 532A disagreed (Table 2). The presence of an additional band
of approximately 250 kDa, possibly due to cross reaction with DOCK10, prompted to use the 531A
Ab, which recognizes a common central region of DOCK9, despite the fact that the package insert
discourages its use in immunoblotting. The 531A Ab showed expression of a band at the expected
size of 236 kDa and another of smaller size, with similar profile to the former but higher expression.
This smaller band could correspond to isoforms with truncated carboxy terminal ends (NP_001123521,
NP_001123522) [10] which, according to the ProtParam tool [25], have an expected size of 142 kDa.
The levels of full length DOCK9 detected with 531A were similar as those detected with 532A, and their
results agreed. The results of 530A and 531A were not related.

Table 2. Linear regression analysis between DOCK9 protein levels as measured by Western blot analysis
using different Abs, or between protein and mRNA levels as measured by qRT-PCR using different
assays, in human cell lines.

Ab 1 Ab 2 R p Value

DOCK9 530A DOCK9 531A 0.240 0.270 NS 1

DOCK9 530A DOCK9 532A 0.306 0.156 NS 1

DOCK9 531A DOCK9 532A 0.865 1 × 10−7 Significant

Ab qRT-PCR Assay R p Value

DOCK9 530A DOCK9 e1.1-e2 0.725 9 × 10−5 Significant
DOCK9 530A DOCK9 e1.2-e2 0.054 0.808 NS 1

DOCK9 530A DOCK9 e27-e28 0.310 0.151 NS 1

DOCK9 530A DOCK9 e33-e34 0.504 1 × 10−2 Significant
DOCK9 531A DOCK9 e1.1-e2 0.338 0.114 NS 1

DOCK9 531A DOCK9 e1.2-e2 0.227 0.298 NS 1

DOCK9 531A DOCK9 e27-e28 0.424 4 × 10−2 Significant
DOCK9 531A DOCK9 e33-e34 0.392 6 × 10−2 NS 1

DOCK9 532A DOCK9 e1.1-e2 0.348 0.103 NS 1

DOCK9 532A DOCK9 e1.2-e2 0.121 0.583 NS 1

DOCK9 532A DOCK9 e27-e28 0.329 0.126 NS 1

DOCK9 532A DOCK9 e33-e34 0.346 0.106 NS 1

1 NS, nonsignificant.

The expression of DOCK9.1 mRNA was significantly associated to the expression of DOCK9
protein analyzed with 530A, but not with 531A or 532A, in cell lines. Significant correlations, but with
lower p values, were also found between DOCK9 mRNA and protein using DOCK9 e33-e34 and
530A, and DOCK9 e27-e28 and 531A, and in no other comparison, suggesting a relatively poor
correspondence between total DOCK9 mRNA and protein expressions. A representative example of
this discrepancy is provided by the B cell line EHEB, which showed high mRNA levels, but much
lower protein levels.

3.4. Expression of DOCK11 mRNA in Human Tissues and Cell Lines

To search for evidence of potential amino terminal forms of DOCK11, in addition to the one
already described, two qRT-PCR assays have been used, one directed to the boundary between exons
1 and 2 and the other to the central region, in the same panels of tissues (Figure 3A) and cell lines
(Figure 3B). DOCK11 e1-e2 showed higher sensitivity than DOCK11 e36-e37 as suggested by its lower
∆Ct values (Supplementary Table S5). The mRNA levels measured using both assays coincided, both in
human tissues and cell lines (Table 1), suggesting that the known amino terminal form of DOCK11 is
the only one that exists.
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Figure 3. Expression of DOCK11 mRNA and protein in human tissues and cell lines. (A) qRT-PCR
analysis of DOCK11 using two different assays in 26 human tissues. (B) qRT-PCR analysis of DOCK11
in 23 human cell lines. All experiments were performed in duplicate (mean ± S.D.). (C) Western
blot analysis of 23 human cell lines, using DOCK11 Abs (depicted in Figure 2A) and a GAPDH Ab.
The positions of the size markers are indicated in kDa to the left. References of the Abs used are shown
to the right. Charts represent quantitation of two replicate blots (mean ± S.D.).

3.5. Protein Expression of DOCK11 in Human Cell Lines

The cell lines were tested for protein expression using the DOCK11 Abs. Quantitation was
normalized using the DOCK11 signal in the PER cell line, which was included in all the blots as a
reference. The 638A and 639A Abs recognized common regions of DOCK11, and they displayed
relatively similar results between each other (Figure 3C) and with mRNA levels (Table 3), suggesting a
good correspondence between DOCK11 mRNA and protein expressions.

Table 3. Linear regression analysis between DOCK11 protein levels as measured by Western blot
analysis using different Abs, or between protein and mRNA levels as measured by qRT-PCR using
different assays, in human cell lines.

Ab 1 Ab 2 R p Value

DOCK11 638A DOCK11 639A 0.631 1 × 10−3 Significant

Ab qRT-PCR Assay R p Value

DOCK11 638A DOCK11 e1-e2 0.646 9 × 10−4 Significant
DOCK11 638A DOCK11 e36-e37 0.517 1 × 10−2 Significant
DOCK11 639A DOCK11 e1-e2 0.723 1 × 10−4 Significant
DOCK11 639A DOCK11 e36-e37 0.741 5 × 10−5 Significant

4. Discussion

In previous studies, DOCK10 and its mutually exclusive first exon isoforms were studied in human
tissues and cell lines. DOCK10 is widely distributed, with prominent expression in hematopoietic
tissues (spleen, thymus, leukocytes), stomach, and lungs, where both isoforms are expressed at
approximately similar levels, although there are imbalances in T and B lymphocytes in favor of
DOCK10.1 and DOCK10.2, respectively [9,12]. In contrast, there are striking disbalances in cell lines,
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which frequently show a strong preference for DOCK10.1 (e.g., HuT-78, HC-1, JY) or DOCK10.2 (e.g.,
697, Jurkat, TOM-1, EHEB) [12,13]. In the present study, the expression of the alternative first exon
isoforms of DOCK9 has been studied for the first time. The potential existence of such isoforms
for DOCK11 has also been tested. DOCK9 and DOCK11 were widely expressed in human tissues,
each with a different profile. DOCK9 was significantly expressed in tissues such as those in the lungs,
placenta, uterus, thyroid, trachea, stomach, prostate, and cerebellum. Both DOCK9 isoforms were
expressed at approximately similar levels in tissues, as with DOCK10. However, imbalances were
found in the expression of isoforms in cell lines, since several of them only significantly expressed
DOCK9.1 (e.g., Namalwa, Daudi, K-562, EHEB, DG-75, HuT-78, HeLa, REH, or MCF-7), while only one
(EHEB) expressed significant levels of DOCK9.2. According to the DBCAT database, [26], the DOCK9.1
and DOCK10.1 promoters colocalize with CpG islands, suggesting that they are tightly regulated
by methylation, while those of DOCK9.2 and DOCK10.2 do not, and may have looser regulation.
Such alterations in expression should not be surprising, since the normal mechanisms that operate in
primary tissues may be disrupted in cell lines.

DOCK11 was highly expressed in the hematopoietic tissues (leukocytes, spleen, bone marrow, and
thymus), lungs and placenta. No evidence pointing to the existence of first exon isoforms of DOCK11
was found. Moreover, the good association between mRNA and protein expressions further suggests
that the regulation of DOCK11 expression could be more straightforward than that of its homologs.
The tissue expression profiles of the DOCK-D family members studied here and in previous studies by
qRT-PCR [12,13] are comparable with global expression studies deposited in public repositories [27–30].
Combining all the data, it was found that the three genes are significantly expressed in tissues such
as lung and thymus, and the main differences between the three are that DOCK9 is not expressed in
the appendix or hematopoietic tissues (e.g., spleen, lymph nodes, white blood cells, or bone marrow),
with the exception of T cells [8], that DOCK10 is not expressed in fat, the placenta or thyroid, and that
DOCK11 is not expressed in the brain. This knowledge could be useful to identify the transcription
factors targeting the DOCK9 isoforms and DOCK11—for example, through co-expression studies.

Lastly, mRNA/protein associations were tested in cell lines. The DOCK9.1 Ab and both DOCK11
Abs proved to be highly specific. However, the weaker associations between total DOCK9 mRNA
and protein levels suggest that these Abs were less specific, though post-transcriptional regulation
could provide an alternative explanation. In addition, the 531A Ab may be useful to study the carboxy
terminal truncated isoforms of DOCK9. In summary, the Abs studied here were useful for detecting
the DOCK9.1 isoform and total DOCK9 and DOCK11 proteins. Altogether, these findings represent a
starting point for future studies aimed at establishing the role of DOCK9 and DOCK11 as biomarkers
of disease.
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DOCK11 in human tissues and cell lines.

Funding: This study was funded by Plan Nacional de I+D+I 2008-2011, Acción Estratégica en Salud, Instituto de
Salud Carlos III (grant number PI10/01226) (co-financed by the European Regional Development Fund, “A way to
make Europe”), and II PCTRM 2007-2010, Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de
Murcia (grant number 08721/PI/08).

Acknowledgments: I thank Natalia Ruiz Lafuente, Silvia Sebastian Ruiz and María José Alcaraz García for their
excellent technical assistance, and the staff from the Immunology Service of Clinic University Hospital Virgen de
la Arrixaca for their support.

Conflicts of Interest: The author declares no conflict of interest.

http://www.mdpi.com/2073-4468/9/3/27/s1


Antibodies 2020, 9, 27 9 of 10

References

1. Meller, N.; Merlot, S.; Guda, C. CZH proteins: A new family of Rho-GEFs. J. Cell Sci. 2005, 118, 4937–4946.
[CrossRef] [PubMed]

2. Nishikimi, A.; Kukimoto-Niino, M.; Yokoyama, S.; Fukui, Y. Immune regulatory functions of DOCK family
proteins in health and disease. Exp. Cell Res. 2013, 319, 2343–2349. [CrossRef] [PubMed]

3. Gadea, G.; Blangy, A. Dock-family exchange factors in cell migration and disease. Eur. J. Cell Biol. 2014, 93,
466–477. [CrossRef] [PubMed]

4. Meller, N.; Irani-Therani, M.; Kiosses, W.B.; Del Pozo, M.A.; Schwartz, M.A. Zizimin1, a novel Cdc42 activator,
reveals a new GEF domain for Rho proteins. Nat. Cell Biol. 2002, 4, 4639–4647. [CrossRef] [PubMed]

5. Nishikimi, A.; Meller, N.; Uekawa, N.; Isobe, K.; Schwartz, M.A.; Maruyama, M. Zizimin2: A novel,
Dock180-related guanine nucleotide exchange factor expressed predominantly in lymphocytes. FEBS Lett.
2005, 579, 1039–1046. [CrossRef]

6. Lin, Q.; Yang, W.; Baird, D.; Feng, Q.; Cerione, R.A. Identification of a DOCK180-related guanine
nucleotide-exchange factor that is capable of mediating a positive feedback activation of Cdc42. J. Biol. Chem.
2006, 281, 35253–35262. [CrossRef]

7. Ruiz-Lafuente, N.; Alcaraz-García, M.J.; García-Serna, A.M.; Sebastián-Ruiz, S.; Moya-Quiles, M.R.;
García-Alonso, A.M.; Parrado, A. Dock10, a Cdc42 and Rac1 GEF, induces loss of elongation, filopodia, and
ruffles in cervical cancer epithelial HeLa cells. Biol. Open 2015, 4, 627–635. [CrossRef]

8. Ruiz-Lafuente, N.; Minguela, A.; Parrado, A. DOCK9 induces membrane ruffles and Rac1 activity in cancer
HeLa epithelial cells. Biochem. Biophys. Rep. 2018, 14, 178–181. [CrossRef]

9. Yelo, E.; Bernardo, M.V.; Gimeno, L.; Alcaraz-García, M.J.; Majado, M.J.; Parrado, A. Dock10, a novel CZH
protein specifically induced by IL4 in B lymphocytes. Mol. Immunol. 2008, 45, 3411–3418. [CrossRef]

10. O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.;
Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status,
taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [CrossRef]

11. Martinez, N.M.; Lynch, K.W. Control of alternative splicing in immune responses: Many regulators, many
predictions, much still to learn. Immunol. Rev. 2013, 253, 216–236. [CrossRef]

12. Alcaraz-García, M.J.; Ruiz-Lafuente, N.; Sebastián-Ruiz, S.; Majado, M.J.; González-García, C.; Bernardo, M.V.;
Álvarez-López, M.R.; Parrado, A. Human and mouse DOCK10 splicing isoforms with alternative first coding
exon usage are differentially expressed in T and B lymphocytes. Hum. Immunol. 2011, 72, 531–537. [CrossRef]

13. Parrado, A. Expression of DOCK10.1 protein revealed with a specific antiserum: Insights into regulation of
first exon isoforms of DOCK10. Mol. Biol. Rep. 2020, 47, 3003–3010. [CrossRef]

14. Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.;
Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res.
2020, 48, D265–D268. [CrossRef] [PubMed]

15. Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004,
32, W327–W331. [CrossRef] [PubMed]

16. Sigrist, C.J.; de Castro, E.; Cerutti, L.; Cuche, B.A.; Hulo, N.; Bridge, A.; Bougueleret, L.; Xenarios, I. New and
continuing developments at PROSITE. Nucleic Acids Res. 2013, 41, D344–D347. [CrossRef] [PubMed]

17. De Castro, E.; Sigrist, C.J.A.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.;
Hulo, N. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and
structural residues in proteins. Nucleic Acids Res. 2006, 34, W362–W365. [CrossRef]

18. Hirata, E.; Yukinaga, H.; Kamioka, Y.; Arakawa, Y.; Miyamoto, S.; Okada, T.; Sahai, E.; Matsuda, M. In vivo
fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in
glioblastoma cell invasion. J. Cell Sci. 2012, 125, 858–868. [CrossRef]

19. Passon, N.; Bregant, E.; Sponziello, M.; Dima, M.; Rosignolo, F.; Durante, C.; Celano, M.; Russo, D.; Filetti, S.;
Damante, G. Somatic amplifications and deletions in genome of papillary thyroid carcinomas. Endocrine
2015, 50, 453–464. [CrossRef]

20. De Araujo, L.S.; Vaas, L.A.; Ribeiro-Alves, M.; Geffers, R.; Mello, F.C.; de Almeida, A.S.; Moreira, A.D.;
Kritski, A.L.; Lapa e Silva, J.R.; Moraes, M.O.; et al. Transcriptomic biomarkers for tuberculosis: Evaluation
of DOCK9, EPHA4, and NPC2 mRNA expression in peripheral blood. Front. Microbiol. 2016, 7, 1586.
[CrossRef]

http://dx.doi.org/10.1242/jcs.02671
http://www.ncbi.nlm.nih.gov/pubmed/16254241
http://dx.doi.org/10.1016/j.yexcr.2013.07.024
http://www.ncbi.nlm.nih.gov/pubmed/23911989
http://dx.doi.org/10.1016/j.ejcb.2014.06.003
http://www.ncbi.nlm.nih.gov/pubmed/25022758
http://dx.doi.org/10.1038/ncb835
http://www.ncbi.nlm.nih.gov/pubmed/12172552
http://dx.doi.org/10.1016/j.febslet.2005.01.006
http://dx.doi.org/10.1074/jbc.M606248200
http://dx.doi.org/10.1242/bio.20149050
http://dx.doi.org/10.1016/j.bbrep.2018.05.004
http://dx.doi.org/10.1016/j.molimm.2008.04.003
http://dx.doi.org/10.1093/nar/gkv1189
http://dx.doi.org/10.1111/imr.12047
http://dx.doi.org/10.1016/j.humimm.2011.03.024
http://dx.doi.org/10.1007/s11033-020-05342-5
http://dx.doi.org/10.1093/nar/gkz991
http://www.ncbi.nlm.nih.gov/pubmed/31777944
http://dx.doi.org/10.1093/nar/gkh454
http://www.ncbi.nlm.nih.gov/pubmed/15215404
http://dx.doi.org/10.1093/nar/gks1067
http://www.ncbi.nlm.nih.gov/pubmed/23161676
http://dx.doi.org/10.1093/nar/gkl124
http://dx.doi.org/10.1242/jcs.089995
http://dx.doi.org/10.1007/s12020-015-0592-z
http://dx.doi.org/10.3389/fmicb.2016.01586


Antibodies 2020, 9, 27 10 of 10

21. Alkhateeb, A.; Rezaeian, I.; Singireddy, S.; Cavallo-Medved, D.; Porter, L.A.; Rueda, L. Transcriptomics
signature from next-generation sequencing data reveals new transcriptomic biomarkers related to prostate
cancer. Cancer Inform. 2019, 18, 1176935119835522. [CrossRef] [PubMed]

22. Zhu, J.; Shu, X.; Guo, X.; Liu, D.; Bao, J.; Milne, R.L.; Giles, G.G.; Wu, C.; Du, M.; White, E.; et al. Associations
between genetically predicted blood protein biomarkers and pancreatic cancer risk. Cancer Epidemiol. Biomark.
Prev. 2020. [CrossRef] [PubMed]

23. Almstrup, K.; Leffers, H.; Lothe, R.A.; Skakkebaek, N.E.; Sonne, S.B.; Nielsen, J.E.; Rajpert-de Meyts, E.;
Skotheim, R.I. Improved gene expression signature of testicular carcinoma in situ. Int. J. Androl. 2007, 30,
292–302. [CrossRef]

24. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and
the 2−∆∆CT method. Methods 2001, 25, 402–408. [CrossRef] [PubMed]

25. Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein
identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.;
Humana Press: Totowa, NJ, USA, 2005; pp. 571–607.

26. Kuo, H.C.; Lin, P.Y.; Chung, T.C.; Chao, C.M.; Lai, L.C.; Tsai, M.H.; Chuang, E.Y. DBCAT: Database of CpG
islands and analytical tools for identifying comprehensive methylation profiles in cancer cells. J. Comput.
Biol. 2011, 18, 1013–1017. Available online: dbcat.cgm.ntu.edu.tw (accessed on 23 June 2020). [CrossRef]

27. Available online: https://www.ncbi.nlm.nih.gov/gene/23348#gene-expression (accessed on 23 June 2020).
28. Available online: https://www.ncbi.nlm.nih.gov/gene/55619#gene-expression (accessed on 23 June 2020).
29. Available online: https://www.ncbi.nlm.nih.gov/gene/139818#gene-expression (accessed on 23 June 2020).
30. Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.;

Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression
by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13,
397–406. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/1176935119835522
http://www.ncbi.nlm.nih.gov/pubmed/30890858
http://dx.doi.org/10.1158/1055-9965.EPI-20-0091
http://www.ncbi.nlm.nih.gov/pubmed/32439797
http://dx.doi.org/10.1111/j.1365-2605.2007.00758.x
http://dx.doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
dbcat.cgm.ntu.edu.tw
http://dx.doi.org/10.1089/cmb.2010.0038
https://www.ncbi.nlm.nih.gov/gene/23348#gene-expression
https://www.ncbi.nlm.nih.gov/gene/55619#gene-expression
https://www.ncbi.nlm.nih.gov/gene/139818#gene-expression
http://dx.doi.org/10.1074/mcp.M113.035600
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Samples 
	Transient Transfections 
	qRT-PCR 
	Western Blot Analysis 
	Statistical Analysis 

	Results 
	Expression of Mutually Exclusive First Exon Isoforms of DOCK9 in Human Tissues 
	Expression of Mutually Exclusive First Exon Isoforms of DOCK9 in Human Cell Lines 
	Protein Expression of DOCK9 in Human Cell Lines 
	Expression of DOCK11 mRNA in Human Tissues and Cell Lines 
	Protein Expression of DOCK11 in Human Cell Lines 

	Discussion 
	References

