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Upon activation by the pathogen through T-cell receptors (TCRs), γδT cells

suppress the pathogenic replication and thus play important roles against viral

infections. Targeting SARS-CoV-2 via γδT cells provides alternative therapeutic

strategies. However, little is known about the recognition of SARS-CoV-2

antigens by γδT cells. We discovered a specific Vγ9/δ2 CDR3 by analyzing

γδT cells derived from the patients infected by SARS-CoV-2. Using a cell

model exogenously expressing γδ-TCR established, we further screened

the structural motifs within the CDR3 responsible for binding to γδ-TCR.

Importantly, these sequences were mapped to NSP8, a non-structural protein

in SARS-CoV-2. Our results suggest that NSP8 mediates the recognition by

γδT cells and thus could serve as a potential target for vaccines.
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Introduction

Coronavirus disease 2019 (COVID-19) has been swept across the globe due to its
extreme fast transmission speed and high pathogenic potential (Jin et al., 2020; Yang
et al., 2020). By June 2022, there have been 529,410,287 confirmed cases of COVID-
19, resulting in 6,296,771 deaths.1 Vaccination so far has been the key to the success in
controlling the pandemic. With the danger of new variants looming around, more efforts
are dedicated to developing alternative approaches for immunization.

γδT cells are increasingly recognized for important roles against viral infection
(Rojas et al., 2002; Cao and He, 2005; Holtmeier and Kabelitz, 2005; Zhang et al.,
2006). Primarily distributed within mucosa and subcutaneous tissues in skin, small
intestine, lung, and reproductive organs, γδT cells account for 0.5–5% of peripheral
blood mononuclear cells. Vγ9δ2T cells give rise to the main subtype of peripheral γδT
cells. Virus-activated γδT cells could trigger a series of antiviral responses including
release of cytokines (including IFN-γ, TNF-α, and IL-17), restriction of viral replication,

1 https://covid19.who.int/
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and cytolysis of virus-infected cells (Jouan et al., 2020; Lei
et al., 2020; Yazdanifar et al., 2020; Orumaa and Dunne, 2022).
Multiple mechanisms have been proposed for the recognition of
SARS-CoV-2 by γδT cells. TLRs (Toll-like receptors), a member
of pattern recognition receptors, recognize SARS-CoV-2 RNA
and mediate the activation of γδT cells (Hirsh and Junger, 2008).
NKG2D receptors bind with MIAC/B and ULBP molecules
that are expressed on the surface of SARS-CoV-2 infected
cells (Ghadially et al., 2017). In addition, TCR receptor can
bind with phosphorylated antigen and protein antigen (Spencer
et al., 2008). In spite of phosphoantigen being regarded as
the main γδ TCR-recognized antigen, phosphoantigen-activated
γδT cells display restricted TCR diversity, and only a subset
of phosphoantigen-responsive γδT cells mediate protective
immunity against microorganisms (Rojas et al., 2002; Spencer
et al., 2008; Morath and Schamel, 2020). Previously, we
have observed that protein antigens could be recognized by
γδT cells, and activated γδT cells could effectively induce
innate and adaptive immunity against microorganisms (Boom
et al., 1994; Xi et al., 2013, 2021). However, the entity of
antigenic components in SARS-CoV-2 recognized by TCR
remains obscure.

With a strategy for screening γδTCR-specific antigen
epitopes established previously (Xi et al., 2011a,b, 2013), we
revealed NSP8, a non-structural protein of SARS-CoV-2, as
a strong candidate target for γδT cells mediated by γδTCR,
thus opening up more space for the development of alternative
vaccination schemes.

Methods

Subjects

Twenty COVID-19 patients were recruited at Xiyuan and
Renmin Hospitals in Shiyan City, Hubei province, China. Ten
healthy donors were recruited at Renmin Hospital in Shiyan
City. The protocol for this study has received approval from the
Clinical Ethics Committee of Hubei University of Medicine (No.
2020-TH-017). COVID-19 patients and healthy donors were all
free from tumors, other infections, and diseases. All individuals
had given their informed consent to participate in this study.
The median ages of COVID-19 patients and healthy subjects
were 42.8 and 39.3, respectively. The sex ratio for males and
females is 12/8 in COVID-19 patients and 6/4 in healthy donors.

RNA extraction and reverse
transcription polymerase chain
reaction

Total RNA was extracted separately from the peripheral
blood of COVID-19 patients and healthy donors. One

TABLE 1 The primer sequences.

Primer name Primer sequence

γ9CDR3-up 5′-AATGTAGAGAAACAGGAC-3′

γ9CDR3-down 5′-ATCTGTAATGATAAGCTTT-3′

δ2CDR3-up 5′-GCACCATCAGAGAGAGATGAAGGG-3′

δ2CDR3-down 5′-AAACGGATGGTTTGGTATGAGGC-3′

Sequencing primer 1 5′- TTATTCGCAATTCCTTTAGTG -3′

Sequencing primer 2 5′- GCCCTCATAGTTAGCGTAACG -3′

microgram of total RNA was then converted into cDNA using a
reverse transcription system. Primer sequences complementary
to upstream V regions and downstream C regions were used to
amplify the CDR3 regions. The primer sequences were listed in
Table 1.

Cloning and sequencing of Vγ9 and
Vδ2 CDR3 regions

The purified PCR products were ligated into pGEM-T easy
vector (Invitrogen, Carlsbad, CA, United States) and sequenced
by using T7 primer (Sangon Biotech Inc., Shanghai, China). The
CDR3γ region was considered to contain conserved “CALW” at
its N-terminus and conserved “KVFG” at its C-terminus. While
CDR3δ region was considered to contain conserved “CA” at its
N-terminus and conserved “FGXG” at its C-terminus.

Construction of SARS-CoV-2-specific
γδTCR transfected cells

The SARS-CoV-2 specific CDR3 sequences were separately
inserted into full-length γ9 and δ2 chains to substitute their
original CDR3 sequences based on our previous report (Xi et al.,
2011b). The obtained γ9 and δ2 chains were then inserted into
pREP7 and pREP9 vectors (Figure 1A), respectively. Full-length
pREP7-γ9 and pREP9-δ2 chains were co-transfected into J.RT3-
T3.5 cells. After 48 h, the transfected cells were cultured in a
selection medium with hygromycin and neomycin for 4 weeks.
The expression of transfected γδTCR in the cells was then
evaluated by flow cytometry.

In vitro panning

The transfected cells expressing potential SARS-CoV-
2 specific γδTCR were used as probe cells to perform
subtractive screening in a 12-peptide phage-display library. Four
rounds of screening with conditions such as increased Tween
concentration, increased action time with control cells as well
as decreased action time with SARS-CoV-2 specific γδTCR
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FIGURE 1

Construction of SARS-CoV-2 specific γδTCR transfected cells. (A) The map of pREP7 and pREP9 vectors. (B) Detection of γδTCR expression by
PCR in transfected J.RT3-T3.5 cells. mRNA was extracted from transfected cells and reverse transcribed into cDNA. The full-length γ9 and δ2
chains and their CDR3 sequences were amplified by using specific PCR primers. (C) Detection of γδTCR expression by FACS analysis in
J.RT3-T3.5 transfected cells. The cells were stained with FITC-labeled γδTCR antibody and then analyzed by flow cytometry on a MoFlo XDP
flow cytometer. The results are representative of three independent experiments. SARS-CoV-2 cells: SARS-CoV-2 specific γδTCR transfected
J.RT-T3.5 cells; Control cells: healthy controls’ γδTCR transfected J.RT-T3.5 cells. J.RT-T3.5 cells: J.RT-T3.5 cells without plasmid transfection.

transfected cells were conducted in order to enrich epitope
peptides that could specifically bind with SARS-CoV-2 specific
γδTCR transfected cells.

Peptide synthesis

Sangon Biotech Inc. synthesized peptides with a purity
of more than 95% as determined by high-performance liquid
chromatography analysis. Half of the synthesized peptides were
linked with FITC at their N-terminals.

Flow cytometry

Cells were incubated with FITC-conjugated peptide or
control peptide for 30 min at 4◦C. The cells were then analyzed
by flow cytometry on a MoFlo XDP flow cytometer (Beckman
Coulter, Fullerton, CA, United States).

Magnetic-activated cell sorting

γδT cells were isolated from healthy donors’ peripheral
blood mononuclear cells (PBMCs) using an anti-TCR γ/δ

MicroBead Kit from Miltenyi company (130-050-701)
according to the manufacturer’s instructions.

Protein-immobilized amplification
assay

The transfected cells and sorted γδT cells were separately
incubated with 10 ng/mL NSP8 protein (Sino Biological
Inc., Beijing, China) or control protein for 30 min at room
temperature. After extensive washing with RPMI-1640 culture
medium, the transfected cells and natural γδT cells were then
plated into 24-well plates at 1 × 106 cells per well. The
supernatants were harvested after 24 h and the level of IL-2
was detected by using Human IL-2 ELISA Kit (BD Biosciences,
San Jose, CA, United States) according to the manufacture’s
instructions.

Bioinformatics analysis

The homologous analysis and sequence alignment were
performed by using the Basic Local Alignment Search Tool
(BLAST) to identify the matched proteins. After the screening,
the obtained epitope peptide candidates were analyzed on the
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TABLE 2 Deduced Vγ9 CDR3 amino acid sequences of COVID-19
patients and healthy donorsa.

Clone V region N/P
region

J region Frequencyb

COVID-19
patients

1 CALWE APQ ELGKKIKVFG 8/60

2 CALWE VIS ELGKKIKVFG 8/60

3 CALWE PPV ELGKKIKVFG 3/60

4 CALWE VACY ELGKKIKVFG 2/60

5 CALWE GIC ELGKKIKVFG 2/60

6 CALWE KKA ELGKKIKVFG 2/60

7 CALWE DEHK ELGKKIKVFG 2/60

8 CALWE PYQ ELGKKIKVFG 2/60

Healthy
donors

1 CALWE VIS ELGKKIKVFG 4/30

2 CALWE APG ELGKKIKVFG 4/30

3 CALWE SKR ELGKKIKVFG 2/30

4 CALWE GETP ELGKKIKVFG 1/30

5 CALWE PLAAA ELGKKIKVFG 1/30

6 CALWE GNSY ELGKKIKVFG 1/30

7 CALW RRSG ELGKKIKVFG 1/30

8 CALWE QIIEF ELGKKIKVFG 1/30

aTotal RNA was extracted separately from the peripheral blood of COVID-19 patients
and healthy donors. One microgram of total RNA was then converted into cDNA using
a reverse transcription system. Primer sequences complementary to upstream V regions
and downstream C regions were used to amplify the CDR3 regions. The purified PCR
products were ligated into pGEM-T easy vector and sequenced. The CDR3γ region was
considered to contain conserved “CALW” at its N-terminus and conserved “KVFG” at
its C-terminus.
bNumber of identical clones/total number of clones sequenced. Not all the sequencing
results were listed in the table.

Heliquest website.2 The sequence alignment between peptide
candidates and the downloaded SARS-CoV-2 ORF1ab sequence
was performed by using DNAMAN8 software.

Statistical analysis

Statistical comparisons between the experiment group and
control group were performed by using the Student’s t-test. All
data were analyzed either by SPSS 19.0 software or by GraphPad
8.0 software. P < 0.05 was considered statistically significant.

Results

A specific CDR3δ2 sequence derived
from COVID-19 patients

The specificity in antigen recognition by TCR is primarily
determined by the sequences within CDR3 region that are highly

2 http://heliquest.ipmc.cnrs.fr

TABLE 3 Deduced Vδ2 CDR3 amino acid sequences of COVID-19
patients and healthy donorsa.

Clone V region N-D-N
region

J region Frequencyb

COVID-19
patients

1 CACD PLLGDASY TDKLIFGKG 18/80

2 CACD VLGA TDKLIFGKG 6/80

3 CACD RLSP TDKLIFGKG 6/80

4 CACD TLVS TDKLIFGKG 4/80

5 CACD VRLS TDKLIFGKG 3/80

6 CACD SLLGDSEY TDKLIFGKG 3/80

Healthy
donors

1 CACD RLGDTG TDKLIFGKG 5/40

2 CACD TLVS TDKLIFGKG 4/40

3 CACD PLEAP TDKLIFGKG 3/40

4 CACD PLTS TDKLIFGKG 2/40

5 CACD ALLI TDKLIFGKG 2/40

6 CACD VLPG TDKLIFGKG 2/40

aTotal RNA was extracted separately from the peripheral blood of COVID-19 patients
and healthy donors. One microgram of total RNA was then converted into cDNA using
a reverse transcription system. Primer sequences complementary to upstream V regions
and downstream C regions were used to amplify the CDR3 regions. The purified PCR
products were ligated into pGEM-T easy vector and sequenced. The CDR3δ region was
considered to contain conserved “CA” at its N-terminus and conserved “FGXG” at its
C-terminus.
bNumber of identical clones/total number of clones sequenced. Not all the sequencing
results were listed in the table.

diverse. We isolated peripheral γδT cells from the patients
infected by SARS-CoV-2 viruses and analyzed both Vγ9 CDR3
and Vδ2 TCR regions in comparison to the sequences derived
from healthy donors. There was no significant variation in Vγ9
CDR3 region identified between the infected and control groups
(Table 2). However, in Vδ2 region, we found a CDR3 sequence
specifically present in most of the infected cases (Table 3).

The identification of
SARS-CoV-2-specific γδTCRs binding
epitopes

We amplified the sequences encoding γδTCRs derived
from either infected patients or healthy individuals. The γ9
sequence (CALWEVISELGKKIKVFG) was identical between
the two groups, whereas the δ2 sequences were different,
with CACDPLLGDASYTDKLIFGKG from COVID-19 patients
and CACDRLGDTGTDKLIFGKG from healthy individuals.
We then established the expressions of full length γ9 and
δ2 chains via introducing the designated vectors into J.RT3-
T3.5 cells by electroporation (see more details in section
“Materials and Methods”). After 4 weeks of selection with
hygromycin and neomycin, the SARS-CoV-2-specific γδTCRs
lines established were verified by both PCR (Figure 1B) and flow
cytometry (Figure 1C).
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TABLE 4 The sequence of epitope peptide candidatesa.

Name Sequence Frequencyb

SP1 KKLKKSLTLPLQ 6/20

SP2 YTPQLPSYAAFA 5/20

SP3 VSRHALWELQQS 4/20

SP4 SLNVAKSESCLH 1/20

SP5 YKVVIFDWRRSD 1/20

SP6 KDAHPESEFDRD 1/20

SP7 KHKHPPFDPSRP 1/20

SP8 AQTPVSYSPTTF 1/20

aAccording to the results of phage-ELISA, 20 phage clones that could specifically bind
with SARS-CoV-2-specific γδTCR transfected cells were obtained and amplified by
RT-PCR. The PCR products were then sequenced and the corresponding amino acid
sequences were analyzed. Eight dominant epitope candidates (SP1 to SP8) were obtained.
bNumber of identical clones/total number of clones sequenced.

Next, we used this cell model to screen potential epitopes
recognized by this γδTCR based on a 12-mer random
peptide phage-display library (E8110S, New England Biolabs,
Hitchin, United Kingdom) (Xi et al., 2011b). There were

20 positive clones obtained as indicated by the phage-
ELISA. Sequences derived from these clones were sequenced
and gave rise to the dominant epitope candidates (SP1 to
SP8) (Table 4).

Identified dominant epitopes bind to
SARS-CoV-2-specific γδTCR

We used the SARS-CoV-2-specific γδTCR cell model
to verify the binding between the epitopes identified and
γδTCR. IL-2 secretion was monitored by ELISA in the
cells upon the stimulation with individual epitope peptides.
Among three representative epitopes SP1, SP2, and SP3
highlighted in Figure 2A (The predicted spiral structures
were obtained using bioinformatics analysis tools proved by
Heliquest website.), SP1 and SP2 triggered significant IL-2
production in the cells (Figure 2B) (P < 0.05). FACS analysis
using FITC-conjugated peptides also confirmed that SP1 and
SP2 exhibited strong affinity toward the SARS-CoV-2-specific
γδTCR cells (Figure 2C).

FIGURE 2

Confirmation of peptide binding to SARS-CoV-2 specific γδTCR transfected cells. (A) Spiral structure of three identified peptides predicted by
bioinformatics tools on the Heliquest website (http://heliquest.ipmc.cnrs.fr/?tdsourcetag=s_pcqq_aiomsg). (B) IL-2 secretion after stimulation
by the identified peptides in SARS-CoV-2 specific γδTCR transfected cells. The three peptides and control peptide were separately co-cultured
with SARS-CoV-2 specific γδTCR transfected cells and control cells for 24 h. IL-2 production in the supernatant of the cell culture medium was
detected by ELISA. Data was presented as mean ± SD from triplicate experiments. (C) The results of FACS analysis revealed the affinity between
identified peptides and SARS-CoV-2 specific γδTCR transfected cells. The identified peptides and control peptides had been conjugated with
FITC (10 µg) and were separately co-cultured with SARS-CoV-2-specific γδTCR transfected cells. The results showed that SP1 (76.3%) and SP2
(58.9%) could bind more effectively to the transfected cells than SP3 (2.78%). The results are representative of three independent experiments.
∗Denotes p < 0.05.
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TABLE 5 BLAST analysis of epitope peptide candidates.

Reference no. Protein name Species E value Matching part

SP1 UEX01438.1 ORF1a polyprotein SARS-CoV-2 26.5 KKLKKSLT

SP1 UEX01439.1 ORF1ab polyprotein SARS-CoV-2 26.5 KKLKKSLT

SP1 UMA92726.1 ORF1ab polyprotein SARS-CoV-2 25.7 KKLKKSL L

SP2 UGC79169.1 ORF1ab polyprotein SARS-CoV-2 27.8 LPSYAAFA

SP2 UJY79755.1 ORF1ab polyprotein SARS-CoV-2 27.8 LPSYAAFA

SP2 UJE21816.1 ORF1ab polyprotein SARS-CoV-2 27.8 LPSYAAFA

FIGURE 3

NSP8 protein contains potential epitopes that could activate γδT cell. (A) The sequence alignment of two peptide candidates with the sequence
of SARS-CoV-2 and NSP8 protein sequence. (B,C) NSP8 protein could stimulate SARS-CoV-2 specific γδTCR transfected cells to produce more
IL-2. The control protein and NSP8 protein were pre-coated in a 24-well plate. The SARS-CoV-2-specific γδTCR transfected cells were then
added and cultured for 24 h. IL-2 secretion was measured either by RT-PCR (B) or by ELISA (C). (D) NSP8 protein could bind to natural
peripheral γδT cells. The control protein and NSP8 protein were pre-coated in a 24-well plate and incubated with γδT cells isolated from five
healthy donors’ peripheral blood. IFN-γ secretion was measured in supernatants collected 24 h after incubation. Data were presented as
mean ± SD from triplicate experiments. ∗Denotes p < 0.05; ∗∗Denotes p < 0.01.

NSP8 protein in SARS-CoV-2 ORF1ab
region contains potential epitopes that
could activate γδT cells

A BLAST search was performed to identify SARS-CoV-
2 proteins that contain SP1 and SP2 epitopes (Table 5).
The top hits were located in ORF1ab region that encodes
non-structural polyproteins involved in virus assembly,
transcription, and replication. Further analysis using
DNAMAN8 software revealed NSP8, among the ORF1ab
region-derived polypeptides, as the origin of these γδTCR-
specific epitopes (Figure 3A). NSP8 stimulates the production
of IL-2 in the SARS-CoV-2-specific γδTCR cells, which
were evident at both transcriptional (Real-time PCR,
Figure 3B) and translational (ELISA, Figure 3C) levels.
Furthermore, INF-γ production has been linked to γδT cell
activation (Xi et al., 2011b, 2013, 2021). Our findings also
demonstrated that NSP8 could activate peripheral γδT cells
isolated from healthy donors and increase INF-γ secretion

in these cells, implying that NSP8 could bind to natural γδT
cells (Figure 3D).

Discussion

Similar to αβT cells, γδT cells secrete granzyme and perforin
that target infected cells. This action normally is in conjunction
with the expressions of FasL and TNF related apoptosis inducing
ligand (TRAIL) that render targeted cells for apoptosis. In
parallel, γδT cells orchestrate other immune cells to participate
in antiviral responses, which is mainly mediated by cytokines
and membrane molecules derived from γδT cells (Holtmeier
and Kabelitz, 2005; Zhang et al., 2006; Carissimo et al., 2020;
Lo Presti et al., 2021). However, unlike the case of αβT subtype,
the recognition of antigens by γδT cells does not require antigen
presentation from antigen-presenting cells (APC) (Cao and
He, 2005; Xi et al., 2009, 2010), thus making this population
of T cells attractive for alternative anti-infectious therapeutic
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development (Odak et al., 2020; Rijkers et al., 2020). We
previously established a γδTCR ex vivo expression cell model for
identifying antigens recognizable by γδT cells (Xi et al., 2011a,b,
2013). Here we took this approach to identify potential antigens
of SARS-CoV-2 specific for γδT cells. SP1 and SP2 peptides
identified from the screen exhibited strong affinity toward
SARS-CoV-2-specific γδTCRs. Interestingly, it appeared that
SARS-CoV-2 ORF1ab regions harbor the sequences encoding
these epitopes. Specifically, NSP8, a non-structural protein,
contains the sequences matching both epitopes. Considering the
limitations within our screen model, further study is needed
to test the effects of NSP8 protein on COVID-19 patients’
peripheral γδT cells.

The polyprotein encoded by ORF1ab gene segment
is composed of sixteen non-structural proteins including
NSP8 (Biswas et al., 2021). NSP8 initiates the synthesis
of complementary short oligonucleotides and provides RNA
primers required by NSP12 during viral replication and
transcription (Imbert et al., 2006). It has been suggested
that NSP8, being engaged in specific cytoplasmic foci, can
form complexes with NSP7, NSP9, and NSP10 (Zhai et al.,
2005; Achour, 2021) and suppress protein integration into
cytoplasmic membrane thereby mitigate the interferon response
of host cells (Banerjee et al., 2020; Gu et al., 2022). Recent
studies highlighted the possibility of NSP8 as an antigenic target
of SARS-CoV-2 (Ahmad et al., 2020; Ong et al., 2020). Our
results reveal that NSP8 mediates the recognition of SARS-CoV-
2 by γδTCR (Figure 3). This finding provides new opportunities
for developing alternative vaccines through targeting non-
structural proteins, which is also encouraged by the study
of another non-structural protein, NS1, showing interesting
potentials in both promoting immune protection and reducing
viral replication (Salat et al., 2020). Moreover, antibodies
induced by non-structural protein vaccines can bypass the issue
with antibody-dependent enhancement (ADE).

SARS-CoV-2 variants can evade vaccine-induced
immunity, leading to increases in transmissibility, infectivity,
hospitalization, and mortality (Alkhatib et al., 2021; Singh
et al., 2021). Importantly, we did not detect any hotspots of
mutation related to all variants identified so far in SP1 and SP2
epitopes (data not shown). Few genomic alterations occur in the
NSP8-encoding sequences (Koyama et al., 2020), highly likely
due to the fact that no significant positive selection pressure
upon these sequences as indicated by the in silico analysis3

(data not shown).
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