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Abstract
The survival of large carnivores is increasingly precarious due to extensive human 
development that causes the habitat loss and fragmentation. Habitat selection is in-
fluenced by anthropogenic as well as environmental factors, and understanding 
these relationships is important for conservation management. We assessed the en-
vironmental and anthropogenic variables that influence site use of clouded leopard 
Neofelis nebulosa in Bhutan, estimated their population density, and used the results 
to predict the species’ site use across Bhutan. We used a large camera- trap dataset 
from the national tiger survey to estimate for clouded leopards, for the first time in 
Bhutan, (1) population density using spatially explicit capture–recapture models and 
(2) site- use probability using occupancy models accounting for spatial autocorrela-
tion. Population density was estimated at ̂DBayesian=0.40 (0.10 SD) and 
̂Dmaximum−likelihood=0.30 (0.12 SE) per 100 km2. Clouded leopard site use was positively 
associated with forest cover and distance to river while negatively associated with 
elevation. Mean site- use probability (from the Bayesian spatial model) was 
ψ̂spatial=0.448 (0.076 SD). When spatial autocorrelation was ignored, the probability 
of site use was overestimated, ψ̂nonspatial=0.826 (0.066 SD). Predictive mapping al-
lowed us to identify important conservation areas and priority habitats to sustain the 
future of these elusive, ambassador felids and associated guilds. Multiple sites in the 
south, many of them outside of protected areas, were identified as habitats suitable 
for this species, adding evidence to conservation planning for clouded leopards in 
continental South Asia.
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1  | INTRODUC TION

Understanding species’ distributions and their responses to environ-
mental factors and anthropogenic influences are important aspects 

of conservation planning (Block & Brennan, 1993; MacKenzie et al., 
2006). Most management plans for endangered species are based 
on species–environment relationships and species range maps, 
and understanding the factors determining site suitability is an 
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important element of the landscape approach to carnivore conser-
vation (Chapron et al., 2014). For example, proportion of area occu-
pied (PAO) and extent of occurrence (EOO) are used extensively to 
calculate species distributions in the IUCN Red List (IUCN, 2001), 
thus enabling the identification of important areas for conservation 
management and protection. In addition, estimating reliable popula-
tion density is critical in animal ecology as inferences on the popula-
tion dynamics of species that naturally occur in low densities (such 
as most felids) are central to their effective conservation and man-
agement (Karanth, Nichols, Kumar, & Hines, 2006; Kéry, Gardner, 
Stoeckle, Weber, & Royle, 2010; Obbard, Howe, & Kyle, 2010). 
Density and habitat- use information are also important in assessing 
risk under climate, environmental, and land- use scenarios (Dormann 
et al., 2007).

The clouded leopard Neofelis nebulosa is the smallest of the large 
felids (Austin, Tewes, Grassman, & Silvy, 2007; Figure 1). It is clas-
sified as Vulnerable by the International Union for Conservation 
of Nature (IUCN) Red List of Threatened Species and is included in 
Appendix I of the Convention on International Trade in Endangered 
Species of Wild Flora and Fauna (CITES; Grassman et al., 2016). The 
species is not well known, and the rapidity of environmental change 
in Bhutan adds urgency to acquiring ecological data to inform its 
conservation (Penjor, 2016).

Illegal persecution and trade in skins and parts threaten 
clouded leopard survival (Nowell & Jackson, 1996; Nijman & 
Shepherd, 2015; Min et al., 2018). Rapid development, increas-
ing human population, deforestation and habitat fragmentation, 
and ineffective protected area management add to the press-
ing threats to the clouded leopard across its range (Choudhury, 
1993; D’Cruze & Macdonald, 2015; DeFries, Hansen, Newton, & 
Hansen, 2005; Rabinowitz, 1988). Against this background, a reli-
able estimate of the population is an important datum for the un-
derstanding of forest carnivore guilds in Southeast Asia and also 
important to underpin conservation planning (Murphy & Noon, 
1992).

There are two species of clouded leopards: N. nebulosa (main-
land) distributed from Nepal to Peninsular Malaysia and N. di-
ardi (Sunda) restricted to the islands of Sumatra and Borneo 
(Wilting et al., 2007). Until the mid- 2000s, information on the 
clouded leopard in the wild was scant (Grassman, Tewes, Silvy, 

& Kreetiyutanont, 2005) and mostly came from reports, an-
ecdotes, and captive animals (Rabinowitz, 1988; Yamada & 
Durrant, 1989 for N. nebulosa; Rabinowitz, Andau, & Chai, 1987 
for N. diardi). In the late 1980s and early 1990s, information was 
gathered through local sightings and survey reports across the 
distribution range of the two species of clouded leopard (e.g., 
Borneo, Rabinowitz et al., 1987; Nepal, Dinerstein & Mehta, 
1989; Thailand, Davies, 1990; India, Choudhury, 1993; Taiwan, 
Rabinowitz, 1988; for N. nebulosa; Sumatra, Santiapillai & Ashby, 
1988; for N. diardi). The only quantitative information available 
prior to 2006 was provided by a pugmark survey by Davies and 
Payne (1982; for N. nebulosa). Since 2006, there has been an up-
surge in studies estimating habitat use (Ngoprasert et al., 2012; in 
Thailand; Mohamad et al., 2015; and Tan et al., 2017; in Peninsular 
Malaysia for N. nebulosa; Haidir, Dinata, Linkie, & Macdonald, 
2013; in Sumatra; Sunarto, Kelly, Parakkasi, & Hutajulu, 2015; 
in Sumatra for N. diardi) and density (Borah et al., 2014, in India 
for N. nebulosa; Wilting, Fischer, Bakar, & Linsenmair, 2006; in 
Sabah, Malaysia; Wilting et al., 2012; and Brodie & Giordano, 
2012; in Sabah, Borneo; Cheyne, Stark, Limin, & Macdonald, 
2013; in Indonesia; Sollmann, Linkie, Haidir, & Macdonald, 2014; 
in Sumatra for N. diardi). These density estimation studies used 
widely accepted hierarchical modeling and spatially explicit 
methods (Table S6). Three studies, part of our rangewide study, 
have recently provided substantial information (Tan et al., 2017; 
Peninsular Malaysia; Singh & Macdonald, 2017; India; Naing, 
Ross, Burnham, Htun, & Macdonald, 2017; Myanmar). In Bhutan, 
there is no baseline information on clouded leopard numbers or 
threats (Penjor, 2016) despite it being protected under stringent 
legislation (RGoB, 1995). In 2013–2014, three cases involving 
the illegal poaching of clouded leopard were recorded in Bhutan 
(DoFPS, 2015) raising concerns that current legislation and pro-
tection effort are inadequate for conservation management. 
More broadly, development is rapid in Bhutan and forest loss is 
accelerating faster than expected (DoFPS, 2011).

We quantified the site use of clouded leopards using spatial oc-
cupancy models that account for spatial autocorrelation (SAC here-
after; Johnson, Conn, Hooten, Ray, & Pond, 2013) and for imperfect 
detection (MacKenzie et al., 2002, 2006). The spatial occupancy 
model partitions out the spatial component from the environmental 

F IGURE  1 Clouded leopard Neofelis 
nebulosa captured in one of the camera 
traps in the study area
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effects. This approach improves inference when observations are 
spatially autocorrelated and helps to reduce bias and overestimated 
precision when observations are not conditionally independent 
given the covariates (Johnson et al., 2013). Although MacKenzie 
et al., (2009) state that using appropriate covariates would account 
for SAC, we decided to include a spatial component in our model 
because of nonindependence between camera stations (the same 
individual clouded leopards were “captured” at multiple stations) and 
correlated variables (Broms, Johnson, Altwegg, & Conquest, 2014; 
Dormann et al., 2007; Johnson et al., 2013). Density is estimated 
using both maximum- likelihood (Efford et al., 2009) and Bayesian 
(Royle, Chandler, Sollmann, & Gardner, 2014) models, enabling us 
to compare the estimates from the two (Noss et al., 2012). These 
spatial capture–recapture (SCR) models incorporate spatial informa-
tion on detection and allow for heterogeneity based on sex, age, and 
response behavior of animals (Royle et al., 2014). These improve reli-
ability of the density estimates when compared to nonspatial models 
(Efford et al., 2009).

This study used data from the national tiger survey, the first 
comprehensive nationwide camera- trapping survey conducted 
to assess the tiger population in Bhutan. We aimed to (1) provide 
the first population density estimate of the clouded leopard in 
Bhutan, (2) identify the environmental and anthropogenic vari-
ables that influence site use, and (3) predict the site- use intensity 
across Bhutan and identify important areas for protection. We hy-
pothesized that clouded leopards would prefer forested habitat 
away from anthropogenic features such as settlements and roads 
(Austin et al., 2007; Sunarto et al., 2012).

2  | MATERIAL S AND METHODS

2.1 | Study area

Bhutan (27°24′14″N, 90°24′2″E) is a small landlocked country bor-
dered by the Tibetan Autonomous Region (China) in the north and 
India in the east, west, and south (Figure 2). The area of the country 
is 38,394 km2 with a total population of 779,666 (NSB, 2017). The 
climate is characterized by four distinct seasons: winter (December–
February), spring (March–May), summer (June–August), and autumn 
(September–November). Rainfall is persistent and heavy during the 
monsoon (July–September), largely fed by moisture- laden winds 
from the Bay of Bengal. Precipitation varies between 300 mm (north) 
and 5,000 mm (south) per year, and the temperature ranges from 
subzero in the north to above 35°C in the humid subtropical south. 
As a result, the vegetation type varies from lush subtropical broad-
leaved forest to dry alpine meadow as the altitude rises from <100 
to >5,000 m a.s.l.

2.2 | Field survey

The survey was organized in two major blocks: south and north. 
It was conducted between March 2014 and March 2015. The 
survey was not conducted at settlements, agriculture land, and 
areas above 4,500 m because we judged these areas as nonhabi-
tat and there was no previous record of clouded leopard reported 
at these places. After eliminations of these areas, a grid of 1,522 
grid cells and 25- km2 grid space was laid out across the country 
(Figure 2; for details of survey area refer to Table 3). In total, 1,129 

F IGURE  2 Location of Bhutan in continental Southeast Asia and camera locations
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(nnorth = 681; nsouth = 448) camera stations were deployed along 
animal tracks or locations where field signs suggested maximum 
detection probability. Five different camera models (Bushnell™, 
CuddeBack™, HCO- ScountGuard™, Reconyx™, and U- Way™) were 
used for the survey. In each station, two cameras were installed, 
45 cm above the ground and at least 5 m apart, facing each other. 
A minimum distance of 2 km between each station was maintained 
whenever possible in the context of impassable rivers, steep 
slopes, and settlements. The camera traps were deployed for four 
months in the south (March–June 2014) and 5 months in the north 
(October 2014–March 2015). Monthly checks were carried out to 
retrieve data, change batteries, and clear obstacles in front of the 
camera lenses.

We used images from stations that captured both flanks of 
clouded leopard to estimate their density. At some stations, the 
clouded leopard was captured at only one camera trap. Such sin-
gle images cannot be identified as individuals and so were excluded 
from the density estimation but not the occupancy analysis (Foster 
& Harmsen, 2012). We used data from the south block only to es-
timate clouded leopard population density because the sample size 
was adequate (nsouth = 448) and the cameras were deployed on a 
single season (March–June 2014). The number of captures in the 
north block was few (9 of 681 stations), and while this is a reveal-
ing result in itself, the numbers were too low for density estimation 
(Figure S2). We used the entire sample to analyze site- use probabil-
ity (ntotal = 849).

2.3 | Data analysis

2.3.1 | Site use

The photographic records of clouded leopard were converted into 
binary detection histories representing 1 for detection and 0 for 
nondetection (MacKenzie et al., 2002). To minimize the risk of vio-
lating the closure assumption when estimating site use, the cap-
ture period used for the analysis was the first 120 days of each 
camera station’s history (Rota, Fletcher, Dorazio, & Betts, 2009). 
Further, only one survey had deployment >120 days (Table S7). 
The 120- day subset was collapsed into sampling periods to in-
crease temporal independence among occasions and overall de-
tection probability (Dillon & Kelly, 2007; Otis, Burnham, White, & 
Anderson, 1978; Tan et al., 2017). The optimum number of days 
per occasion was selected based on chi- square goodness- of- fit test 
for the multivariate global model (MacKenzie & Bailey, 2004). A 
15- day period proved optimal and was used for further occupancy 
analyses (Table S3).

Occupancy ψ is defined as the probability that a species will oc-
cupy a random site at a given time period (MacKenzie et al., 2006). 
We refer to ψ as the probability of site use (MacKenzie et al., 
2006, p. 105), which is the probability of clouded leopard using a 
sampling unit (camera station; Mohamad et al., 2015). Occupancy 
models can accommodate covariates, and hence, detection and oc-
cupancy probabilities can be modeled as a function of a survey and 

site- specific covariates (MacKenzie et al., 2006). Site covariates 
were selected based on literature on clouded leopards (Mohamad 
et al., 2015; Tan et al., 2017). Site covariates for the whole of 
Bhutan were processed using QGIS 2.14 (QGIS Development 
Team, 2016) and ArcGIS 10.2 (ESRI, 2011). Each site covariate 
value was the mean of raster cells bound within concentric circles 
of 500 m radius around each camera- trap station. It was calculated 
using the “zonal statistics” tool in QGIS. This radius distance was 
chosen to represent the average site characteristics around each 
camera station. Elevation, slope, and aspect values were extracted 
from a 30- m resolution digital elevation model raster data (DEM; 
USGS, 2016). Vegetation data came from two different sources: 
(1) a 250- m resolution vegetation continuous field (VCF) which 
shows the percentage of pixels covered by vegetation above 5 m 
height (DiMiceli et al., 2011) and (2) a 30- m resolution global forest 
change (GFC) cover for the year 2014 (the camera traps were de-
ployed in that year) (Hansen et al., 2013). With the GFC layer, users 
can define the percentage of tree cover to be considered as for-
est. GFC thresholds of 30%, 50%, 75%, and 90% tree cover were 
tested independently for their effects on occupancy via univariate 
modeling (Table S2). The different threshold levels were chosen to 
avoid subjective selection as we did not have supplementary data 
or field verification (Tan et al., 2017; Tropek et al., 2013). Distance 
to major rivers, settlements, roads, protected areas, and commer-
cially logged forest was generated using the Euclidean distance 
tool in ArcGIS. These vector layers were rasterized to generate the 
distances in meters.

We ran single- season, single- species occupancy models with 
the R package “unmarked” (Fiske & Chandler, 2011) to estimate 
the maximum- likelihood probability of site use, accounting for im-
perfect detection (MacKenzie et al., 2006). Comparison between 
all possible models of covariates was made using the R package 
“AICcmodavg” (Mazerolle, 2015). We used AICc corrected for small 
sample size (AICc) for model selection (Burnham & Anderson, 2004). 
All multivariate models within ΔAICc < 2 of the best- performing 
multivariate models were considered to be strongly supported by 
the data (Burnham & Anderson, 2004). The parameter estimate of 
each covariate was averaged using the R package “MuMIn” (Barton, 
2016).

Detection probability p was modeled as a function of survey co-
variates viz., survey area and effort (number of active camera- trap 
days during each sampling occasion). Site- use probability ψ was 
modeled as a function of site covariates (aspect, elevation, distance 
to logged forest, GFC and VCF forest cover, distance to river, dis-
tance to road, distance to protected area, distance to settlement, 
and slope). A two- stage modeling approach was adopted to reduce 
the number of combinations of every possible covariate (Long, 
Donovan, MacKay, Zielinski, & Buzas, 2011). First, we modeled the 
detection p(.), while keeping ψ(.) constant by running possible com-
binations for detection covariates (effort and survey area) additively, 
that is, p(variable) ψ(.). Probabilities of detection might differ among 
survey areas, which could be due to various factors such as distur-
bance level in the survey area or topography (Tan et al., 2017). We 
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then retained significant detection covariates and ran multivariate 
models for occupancy with site covariates.

All continuous site covariates were z- standardized x− x̄∕σ to a 
mean of 0 and unit standard deviation prior to analysis in order to 
facilitate model convergence and comparisons among covariates 
(Stanton, Thompson, & Kesler, 2015). A preliminary set of 13 co-
variates was tested for collinearity using Pearson’s correlation in 
R 3.3.1 (R Core Team, 2016). Any pairwise combination with coef-
ficient |r| ≥ 0.6 was considered correlated (Table S1). Multivariate 
collinearity among predictor variables is often found to hinder the 
analysis of ecological processes, thus producing biased estimates 
(Cade, 2015). Therefore, from the correlated pairs, the covariate 
that performed better (low AICc) in the univariate single- season 
occupancy models was retained for the multivariate model. The 
goodness- of- fit test for the most parameterized multivariate model 
was performed with 1,000 bootstraps (MacKenzie & Bailey, 2004).

To account for SAC in the occupancy models, we used R package 
“stocc” (Johnson, 2015) to perform the spatial occupancy modeling 
of site use (Johnson et al., 2013). The best model from the maximum- 
likelihood analysis was fitted using a Bayesian framework following 
Broms et al. (2014; Kéry & Schaub, 2012). This method employs 
restricted spatial regression (RSR) using the probit link formulation 
(Johnson et al., 2013). RSR improves computational efficiency, min-
imizes confounding between parameters, and corrects for spatial 
effects in the covariates (see Johnson et al., 2013; and Broms et al., 
2014, for details). The final model describing the site- use probability 
was

where β̂0 refers to intercept, β̂i are the coefficient estimates of the 
covariates, i is the site surveyed, ηi(τ) represents the spatial process 
for the ith site, and τ ~ Gamma (0.5, 0.0005) is a parameter that con-
trols the spatial process. Following Johnson et al. (2013), the prior 
for the τ heavily weights large value (implying less spatial autocor-
relation). As a result, any spatial effect seen is strong evidence for 
spatial autocorrelation.

The Moran cut used in the spatial model was 10% of the total 
number of camera stations (0.1 × 849 = 84.9; Hughes & Haran, 
2010). The Moran statistic is a measure of SAC, analogously inter-
preted as the correlation coefficient for the correlation in site- use 
probabilities across sites (see Johnson et al., 2013; for details). The 
threshold of 8.7 km was used. This indicates that all sites within 
this distance are considered neighbors and this distance was cho-
sen based on the movement parameter derived from spatial cap-
ture–recapture analysis (see 3.2 estimates in the Section 3; Table 4). 
Each Bayesian model was run with 1 chain for 50,000 iterations. 
We discarded the first 10,000 as burn- in and employed a thinning 
rate of 5.

The mean untransformed beta coefficients and 95% credi-
ble intervals (CRI) were used to examine the degree and direction 
of the covariate effect on the site- use probability. We considered 

covariates to have a strong influence on the clouded leopard’s site 
use if their 95% CRI did not include 0.

We used coefficient estimates from the Bayesian model cor-
rected for SAC to predict clouded leopard site use in forested pixels 
across Bhutan. Univariate modeling revealed that GFC (forest cover) 
was an important variable influencing clouded leopard site use. For 
each forested pixel (for the year 2014), we extracted values of im-
portant covariates using a 90- m resolution. We then predicted site 
use for these pixels with parameter estimates from the best multi-
variate model. These pixels were then imported into QGIS to map 
out clouded leopard site suitability across Bhutan.

2.3.2 | Density

Density was estimated using maximum- likelihood and Bayesian 
approaches both of which are spatially explicit capture–recapture 
(SCR) methods (Efford et al., 2009; Royle et al., 2014). We chose to 
apply both methods to the same dataset for comparison (Noss et al., 
2012). Spatial methods address edge effects using temporal and spa-
tial information in addition to detection data. Further, they eliminate 
ad hoc estimation of the effective survey area (Efford, Borchers, & 
Byrom, 2009; Noss et al., 2012). The R package “secr” (Efford, 2016) 
was used to estimate maximum- likelihood density (Efford et al., 
2009), and the package “SPACECAP” (Gopalaswamy et al., 2014) 
was used to estimate density using a Bayesian modeling framework. 
It is assumed that animals have circular home ranges with fixed cent-
ers (Royle et al., 2014). The half- normal detection function was used 
to model home range, and this is comprised of two parameters: g0, 
the encounter rate at the home range centre, and the scale param-
eter σ, which describes the decline of the encounter rate from home 
range centers (Tobler & Powell, 2013).

A spatial mask comprising of a 25- km buffer was created 
around the outermost camera- trap stations (Soisalo & Cavalcanti, 
2006). This buffer distance corresponds to approximately 3× the 
scale parameter (σ) (8.7 km) and is large enough to contain po-
tential home range centers of all clouded leopards caught on our 
survey grid. All unsuitable habitats, such as settlements, roads, 
and large rivers, were assigned 0 as opposed to suitable habitats 
(assigned 1). Equidistant points in the space mask represented po-
tential activity centers. The spacing between points was entered 
as 500 m. This is the shortest distance allowable and enables fine- 
scale modeling of where actual home range centers might be based 
on the camera- trap data (Efford & Efford, 2016; Gopalaswamy 
et al., 2014). For the SPACECAP analysis, the input data were pre-
pared as prescribed in the SPACECAP manual (Gopalaswamy et al., 
2014). We executed 60,000 Markov chain Monte Carlo (MCMC) 
iterations, a burn- in of 10,000, and a thinning rate of 1. The data 
augmentation value was set to 190 (10 times the number of the 
total number of identified individuals). Geweke diagnostic scores 
were used to check convergence of chains (Gopalaswamy et al., 
2012). We report posterior means with standard deviations and 
95% highest posterior density intervals (HPDI). Due to ambiguity 

probit(ψi)=β̂0+β̂eleelevationi+β̂forforest coveri

+β̂rivdistance to riveri+ηi(τ)
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in photographs, sex- based identification was not possible; thus, 
we did not report the sex- specific density estimates in both 
approaches.

A surface density map was generated to depict posterior esti-
mates of pixel densities. The final discrete habitat map consisted of 
equally spaced grid cells of 0.25 km2, for visualizing the fine- scale 
variation in density across southern Bhutan (Figure S3).

3  | RESULTS

We retrieved camera traps from 849 stations (of 1,129 stations), the 
rest were lost to animal damage, theft, and malfunction. All stations 
in the south were recovered (448 of 448), while only 401 of 681 sta-
tions were recovered from the northern block.

3.1 | Site use

Clouded leopards were detected in 114 of 849 stations totaling an ef-
fort of 62,739 trap days and giving the overall naïve occupancy esti-
mate of 0.134. All the GFC forest cover variables were correlated with 
one another and with VCF. Within each correlated pair, the covari-
ate performing better in the univariate occupancy models were GFC 
at 90% threshold (GFC90), elevation (ELE), slope (SLO), aspect (ASP), 

distance to logged forest (LOG), distance to major river (RIV), distance 
to protected area (PA), distance to road (ROA), and distance to settle-
ment (SET). MacKenzie and Bailey (2004) goodness- of- fit test of the 
most parameterized multivariate model with uncorrelated covariates 
showed no evidence of overdispersion (ĉ = 0.74, χ2 = 872.70, p = .206).

The probability of detection was influenced by survey area and 
effort (number of active camera- trap days per sampling occasion; 
Table 1). The effort was positively correlated with detection probabil-
ity β̂( ̂SE)=0.085 (0.023) and varied across the surveyed areas (Table 3; 
Figure S4). The model with elevation, forest cover, and distance to river 
had the highest support from the likelihood- based analysis (Table 2). 
As for the Bayesian analyses, a slightly lower posterior predictive loss 
criterion was reported for the spatial model as compared to the non-
spatial model (PPLCspatial = 316.806; PPLCnonspatial = 317.085). This 
indicates that the inclusion of the spatial random effect could be nec-
essary. Similarly, for the spatial model, the posterior distribution of the 
spatial variance parameter (σ=1∕

√

τ) was not very far from zero (95% 
CRI: 0.053–34,104.68), implying that additional spatial effect contrib-
uted to the variability of site use (Johnson et al., 2013) but not to a 
large extent. The spatial occupancy model resulted in lower site- use 
probability and narrower CRI compared to likelihood- based estimates 
(ψ̂nonspatial=0.829 (0.066 SE) versus ψ̂spatial=0.448 (0.076 SE); Table 3, 
Figure 4). There was strong evidence to suggest that site use was neg-
atively associated with elevation and positively associated with for-
est cover and distance to rivers as the 95% CRIs did not include zero 
(Table 3). The mean predicted site- use probability in forested areas is 
0.448 (0.076 SE). Distance to logged forests and protected areas were 
negatively associated with site- use probability, while site- use proba-
bility was positively associated with distance to road, slope, and as-
pect. However, these effects were at best weak, with high standard 
errors and 95% CIs overlapping zero (Table S4).

In estimating site- use probabilities, we found that the mean site- 
use probabilities of protected and nonprotected areas were similar 
(ψ̂PA=0.431(0.056 SE); ψ̂outsidePA=0.451 (0.060 SE)). Sites inside and 
outside of protected areas in the southern region were predicted to 
have higher use probability than sites inside and outside protected 
areas in the north (Figure 4; Figure S1).

TABLE  1 Detection probability (p) models

Model AICc ΔAICc AICcWt −2logLik K

p (Survey 
Area + Effort)

1,288.50 0.00 1.00 −635.14 9

p (Survey Area) 1,304.99 16.49 0.00 −644.41 8

p (Effort) 1,351.64 63.14 0.00 −672.81 3

p(.) 1,372.91 84.41 0.00 −684.45 2

Covariates are different surveyed areas (Survey Area) and total number 
of active camera- trap days (Effort). AICc, Akaike information criterion 
corrected for small sample size; ΔAICc, relative difference between AICc 
of subsequent models compared to the top model; AICcWt, AICc weight 
and K, number of parameters. Occupancy was held constant ψ(.).

Model AICc ΔAICc AICcWt −2logLik K

ψ(ELE + GFC90 + RIV) 1,271.55 0.00 0.23 −623.59 12

ψ(ELE + GFC90 + LOG + RIV + ROA) 1,272.35 0.80 0.15 −621.92 14

ψ(ELE + GFC90 + RIV + ROA) 1,272.47 0.92 0.14 −623.02 13

ψ(ELE + GFC90 + RIV + SLO) 1,272.51 0.96 0.14 −623.04 13

ψ(ELE + GFC90 + LOG + RIV) 1,272.70 1.15 0.13 −623.13 13

ψ(ELE + GFC90 + PA + RIV) 1,272.80 1.25 0.12 −623.18 13

ψ(ASP + ELE + GFC90 + RIV) 1,272.54 1.99 0.08 −623.55 13

ψ(NULL) 1,372.91 92.22 0.00 −684.45 2

Models strongly supported by the data (ΔAICc < 2) are shown. Site covariates tested: elevation (ELE), 
global forest change of 90% tree cover threshold (GFC90), slope (SLO), aspect (ASP), distance to riv-
ers (RIV), to logged forest (LOG), to road (ROA), to settlement (SET), and to protected area (PA). All 
models include different survey areas (Survey Area) and the number of active camera days per sam-
pling occasion (Effort) as detection covariates, p(Survey Area + Effort).

TABLE  2 Multivariate model selection 
results of clouded leopard site- use 
probability
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3.2 | Density

We used 321 images and 20 videos from south stations only (nsta-

tions = 448) for the year 2014 for SCR analysis. The total effort was 
23,249 trap days. The mean spacing between the successful sta-
tions was 2,963 m (±1,238 m SD); however, the distance between 
all stations was not uniform due to terrain (range: 80–16,600 m). 
Nineteen individuals were identified. The number of captures and 

recaptures ranged from one to three for identified individuals (mean 
±SD = 1.37 ± 0.58; Figure S2).

Results from the Bayesian analysis are presented in Table 4. 
Estimated clouded leopard density in south Bhutan was 0.40 (±0.10 
SD) per 100 km2. We present the key parameters of baseline encoun-
ter rate (λ0) of clouded leopard individuals at the stations, the scale 
parameter (σ), and density in the space state (D). Geweke diagnos-
tic scores showed model convergence <±1.6 (λ0 = −1.12, σ = −0.53, 
ψ = 1.13, Nsuper = 1.13). Further, Bayesian p- value (=.47) indicates 
that our model adequately described the data. Abundance through-
out the effective sampled area (ca. 20,500 km2) is estimated at 80 
(±32 SD) individuals (95% HPDI: 32–149). The basal encounter rate 
(λ0) was 0.26 (±0.15 SD), and the scale parameter (σ) was 8.7 km 
(±2.5 km SD).

The maximum- likelihood density estimate for clouded leop-
ards was 0.30 (±0.12 SE) individuals per 100 km2. We ran only 
three models for the maximum- likelihood analysis (Table S5). Due 
to computational limits and a small number of captures/recaptures 
(Figure S2), complex models of more than one parameter and the 
time- based model were unable to run. The addition of parameters, 
however, did not improve the model, and we reported our results 
from the most parsimonious model, g0 ~ 1(Table 4). Capture proba-
bility at home range centre (g0) was estimated at 0.30 (±0.10 SE) per 
100 km2, and the scale parameter σ was 7.59 km (±1.73 km SE). The 
density estimates from the two approaches were similar (Table 4). 
There were pockets of high- density regions in the south (Figure 
S3), most of which were overlapping with high predicted site use 
(Figure 4).

4  | DISCUSSION

Using bycatch from national tiger survey, we have estimated density 
and site- use probability of a cryptic species, the clouded leopard, 
following methodologies developed in previous studies (Borah et al., 
2014; Mohamad et al., 2015 for N. nebulosa; Sollmann et al., 2014; 
Haidir et al., 2013 for N. diardi).

The naïve site- use probability of 13.4% was underestimated 
compared to the overall estimated probability of 44.8%, which was 
approximately three times the former. This confirmed the need to ac-
count for imperfect detection and doing so substantially improved the 
predictive ability of occupancy models. For a notoriously elusive spe-
cies, failure to detect them when they are present at a site will induce 
a common source of survey bias (Linkie, Dinata, Nugroho, & Haidir, 
2007). Thus, explicitly estimating detectability is important to estimate 
spatial distribution reliably. Probabilities of detection differed among 
survey areas which might be due to behavioral responses (e.g., to dis-
turbance level in the survey areas or to the season; Tan et al., 2017). 
Other factors that might influence clouded leopard abundance and/
or detectability include the availability of prey (Mohamad et al., 2015) 
and/or other large carnivores such as tigers and leopards (Tan et al., 
2015). As the focus of this study is on the influence of geographical 
factors, the effects of interspecific interactions on the detection of 

F IGURE  3 Effect of site covariates (a) elevation, (b) forest cover, 
and (c) distance to river on the clouded leopard site- use probability 
in Bhutan (ψ̂). Red line = posterior mean; gray lines = relationship 
based on a random posterior sample of 300 to visualize uncertainty 
(95% Bayesian credible intervals)

(a)

(b)

(c)
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the clouded leopard remain to be explored. Our study did not include 
covariates such as prey species and sympatric species. Obviously, an 
important determinant of carnivore presence is prey (Barber- Mayer 
et al., 2013) and predator abundance is strongly associated with prey 
richness (Sandom et al., 2013). To enable sympatry within a guild, car-
nivores may adopt spatiotemporal segregation (Karanth et al., 2017).

The best model for predicting clouded leopard site use was the 
Bayesian spatial model with elevation, forest cover, and distance to 
river covariates. In contrast to the findings of earlier studies conducted 
in Southeast Asia (albeit on N. diardi selecting higher elevation, Haidir 

et al., 2013; positive association of N. nebulosa habitat use and eleva-
tion, Ngoprasert et al., 2012; Mohamad et al., 2015; Tan et al., 2017), 
elevation was negatively associated with clouded leopard site use in 
our study (Table 3, Figure 3a). We suspect that the lowest altitude 
in Bhutan might be close to the highest in more tropical landscapes; 
hence, our finding of clouded leopards in lower elevations may not 
be at odds with those from earlier studies. This also suggests that 
clouded leopards are less likely to be found at higher elevations in 
Bhutan. Nonetheless, one capture was made at an altitude of 3,600 m 
a.s.l. (also recorded in Nepal by Can et al., submitted), revealing that 

F IGURE  4 Derived clouded leopard 
site- use probability in Bhutan. Top: 
nonspatial (maximum- likelihood not 
accounting spatial autocorrelation); 
bottom: spatial (Bayesian accounting 
spatial autocorrelation; EPSG: 5266)

TABLE  4 Clouded leopard density estimates (with associated uncertainties) (per 100 km2) from maximum- likelihood and Bayesian 
frameworks

Parameters

Maximum- likelihood Bayesian

Mean (SE) 95% CI Posterior mean (SD) 95% CRI

σ (m) 7,594.36 (1,738.03) 4,877.16, 11,825.38 8,698.38 (2,532.86) 5,155.60, 13,976.76

g0/λ0 0.003 (0.001) 0.002, 0.008 0.0025 (0.0015) 0.002, 0.0055

̂D 0.30(0.12) 0.15, 0.63 0.40 (0.10) 0.16, 0.75

CI, confidence intervals; CRI, credible intervals.
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forested habitat at high elevations may be used by clouded leopards. 
Elsewhere, studies have concluded that elevation was the main de-
terminant of occupancy (Haidir et al., 2013 for N. diardi), while oth-
ers concluded it was an indirect factor operating through an effect 
on prey abundance (Mohamad et al., 2015 for N. nebulosa). An earlier 
study in Bhutan suggested that elevation was not correlated with the 
abundance of putative prey of clouded leopards (Penjor et al., 2016), 
although knowledge of this felid’s diet is poor (Mohamad et al., 2015).

We found that a higher percentage of forest cover in the 500 m 
buffer area of each camera station favored clouded leopard site use 
(Figure 3b). This supports our hypothesis and concurs with a previous 
study that demonstrated the clouded leopard preference for forest 
cover in Peninsular Malaysia (Tan et al., 2017). The use of forested 
habitat over grassland and secondary vegetation by clouded leopard 
has also been shown in previous studies (e.g., Austin et al., 2007). 
Clouded leopards are suspected to be arboreal (Rabinowitz et al., 
1987) and forest- obligate species; forest cover is thought to play a 
vital role in providing concealment while hunting (Nowell & Jackson, 
1996). Our findings indicate that it is important to protect large tracts 
of forest both inside and outside protected areas. Contiguous forest 
cover over extensive landscapes may facilitate movement of clouded 
leopards, serving as corridors for dispersal. High forest cover has the 
potential to provide high- value habitat that could serve as a refuge and 
food resources within the species’ home range (Galvez et al., 2013). 
High turnover of site- use probability in corridors and areas beyond 
the protection offered by protected areas could reflect the impor-
tance of forest cover. Forest cover can affect the hunting success of 
carnivores, providing concealment (Balme, Hunter, & Slotow, 2007). 
Forest protection is affected by infrastructure development. Recently, 
Bhutan has seen the extensive construction of road network to con-
nect all remote villages to district headquarters. In the process, the 
forest (largely subtropical broadleaved forest) has undergone major 
loss (Reddy et al., 2016). We suspect such losses are malign indicators 
of the decrease in important wildlife habitat.

Clouded leopards avoided habitat close to rivers (Figure 3c). 
Most settlements are concentrated near major rivers, probably con-
tributing to their unattractiveness for clouded leopards (see Sunarto 
et al., 2012; and Tan et al., 2017). Our findings are at a grain too 
coarse to comment on the role of smaller rivers deeper in forests.

Failure to account for SAC resulted in overprediction, evident 
in the predictive map derived from the nonspatial model (Figure 4). 
Sites to the north and central Bhutan, with human settlement and 
higher elevation, were predicted to have high site use by the clouded 
leopard. However, based on field experiences of authors (U.P., S.W., 
and T.), those sites were unlikely to be used by clouded leopards. 
These effects showed that the lack of spatial independence in detec-
tion rates resulted in overestimated site- use probability. The clouded 
leopards were moving between stations on a single occasion (as sug-
gested by the high 8.7 km movement parameter), and hence, the de-
tection rates of trap stations closer to one another are more similar. 
The spatial model, when taking into account this similarity, produced 
a lower site- use probability than the nonspatial model. The large 
difference in occupancy estimates between spatial and nonspatial 

models suggests that the spatial structure is prominent; that is, we 
had tight concentrations of high detection rates versus low detec-
tion rates. Additionally, models accounting for SAC revealed residual 
spatial correlation that better captured the clouded leopard’s pres-
ence. Hence, when planning space use and protection of forests, the 
use of the range map accounting for SAC would be more conserva-
tive and appropriate.

The density estimates from maximum- likelihood and Bayesian 
approaches were similar ( ̂Dmaximum−likelihood=0.30∕100 km

2 and 
̂DBayesian=0.40∕100 km2). These estimates are comparable to, 
though lower than, those from produced by SCR models in previ-
ous studies (Table S5). Although little is known of clouded leopard 
spatial organization, female clouded leopards probably have home 
ranges of about 16–40 km2 with a core of about 5.4 km2 (radii of 
core and home range = 1.3 km and 2.99 km, respectively; Austin 
et al., 2007; Hearn et al., 2016). The grid of 5 km × 5 km with mean 
spacing between stations of 2.96 km (±1.24 km SD) can certainly 
miss such cores, leaving “holes” in the grid (Noss et al., 2012). The 
camera traps would be placed further apart for a survey grid de-
signed for tigers than for clouded leopards. This spacing would help 
in minimizing the violation of the assumption of occupancy analysis 
that the “detection of the species at a site is independent of detect-
ing the species at any other sites.” However, for density estimation, 
this spacing would introduce “holes” and likely yield conservative 
estimates. Our analyses also do not account for biases such as a 
possible difference in detecting males and females on and off trails 
(Balme, Hunter, & Slotow, 2009; Wegge, Pokheral, & Jnawali, 2004). 
Such methodological biases are widely recognized and deserve fur-
ther research (Foster & Harmsen, 2012; see also Sollmann et al., 
2011; Broekhuis & Gopalaswamy, 2016). Our study provides the 
first density estimates of the clouded leopard in Bhutan. This infor-
mation sets an important benchmark for clouded leopard monitor-
ing programs and underscores the rarity of this species to prompt 
conservation planning.

4.1 | Methodological considerations

Although we successfully used the same dataset to estimate both den-
sity and occupancy (site use), there are certain assumptions underly-
ing SCR and occupancy modeling that must be adhered to strictly in 
order to reduce bias in estimates. SCR requires adequate captures and 
recaptures at multiple sites, while occupancy, on the other hand, re-
quires spatial independence between sites. Notwithstanding the risk 
of violating the underlying assumptions, we reconciled these require-
ments by explicitly modeling occupancy (site use) using the restricted 
spatial regression (RSR) method incorporating both detection prob-
ability and correcting for spatial autocorrelation (see Johnson et al., 
2013 for details). The RSR model had two main effects: a decrease 
in the average probability of site use and narrowing of the width of 
confidence intervals of the covariates (Table 3). The posterior predic-
tive loss criterion (PPLC) favored the spatial model over the nonspa-
tial model, although the difference was small. The performance of 
PPLC for hierarchical models is still unknown and therefore should be 
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interpreted with care. It is analogous to Akaike information criterion 
(AIC) for model selection but does not show whether the model fits 
the data well (Broms et al., 2014).

4.2 | Management implications

A suite of species–habitat relationships for clouded leopard was 
identified, some of which accords well with the results of previous 
studies, whereas others are new. For example, we found a negative 
relationship between site use and elevation, the opposite of previ-
ous studies (Tan et al., 2017 for N. nebulosa; Haidir et al., 2013 for 
N. diardi), probably due to differences in altitude ranges between 
studies. We recommend, therefore, that future studies on clouded 
leopards in Bhutan place camera traps at lower altitudes. Our use 
of bycatch information derived from the large- scale tiger survey il-
lustrates the great potential for additional returns on investment in 
camera- trap studies (Mohamad et al., 2015; Sollmann et al., 2014). 

The predictive mapping indicated that forests inside and outside 
protected areas were equally suitable for the clouded leopard 
(Figure S1). Habitat suitability was high in the low- altitude areas of 
the southern region (Table 5). Clouded leopards have considerable 
potential as ambassador species, fostering the protection of sym-
patric carnivores (Asiatic golden cat Catopuma temminckii, marbled 
cat Pardofelis marmorata, and leopard cat Prionailurus bengalensis; 
Singh & Macdonald, 2017). Although growing human footprint is a 
cause for concern, we did not find evidence that it exerts pressure 
on the current distribution of clouded leopard. Nevertheless, our 
finding of an effect of distance to river may indicate an indirect ef-
fect of disturbance on habitat selection. Management should seek 
to minimize loss of forest cover and identify, at a finer scale, the 
limiting factors influencing site use in particular areas. The predic-
tive spatial occupancy map, together with the density map, also 
revealed many isolated but seemingly optimal sites for the clouded 
leopard conservation beyond protected areas (Figures S1 and S3). 
We hope these maps will prove useful for future land- use and con-
servation planning.
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TABLE  5 Predicted mean site- use probabilities of the clouded 
leopard in Bhutan

Site Mean SD

Wangchuck Centennial National Park 
(WCNP)

0.362 0.056

Sakteng Wildlife Sanctuary (SWS) 0.370 0.055

Royal Manas National Park (RMNP) 0.513 0.062

Phipsoo Wildlife Sanctuary (PWS) 0.485 0.021

Phrumsengla National Park (PNP) 0.420 0.053

Jomotshangkha Wildlife Sanctuary 
(JWS)

0.501 0.064

Jigme Singye Wangchuck National 
Park (JSWNP)

0.454 0.095

Jigme Khesar Strict Nature Reserve 
(JKSNR)

0.423 0.055

Jigme Dorji National Park (JDNP) 0.378 0.064

Bumdelling Wildlife Sanctuary (BWS) 0.401 0.063

Bumthang Division 0.400 0.053

Gedu Division 0.461 0.066

Mongar Division 0.472 0.056

Paro Division 0.402 0.046

Samtse Division 0.445 0.058

Sarpang Division 0.524 0.076

Samdrupjongkhar Division 0.481 0.066

Trashigang Division 0.445 0.056

Thimphu Division 0.390 0.040

Tsirang Division 0.482 0.072

Wangdue Division 0.452 0.076

Zhemgang Division 0.458 0.059

Bold values indicate that the 95% CI of the mean predicted site use is 
below and not overlapping the overall average of 0.448. Divisions are 
nonprotected areas. Refer to Supporting information Figure S1 for site 
location.
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