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Dataset of Speech Production in  
intracranial Electroencephalography
Maxime Verwoert   1 ✉, Maarten C. Ottenhoff1, Sophocles Goulis1, Albert J. Colon2, 
Louis Wagner2, Simon Tousseyn2, Johannes P. van Dijk2,3,4, Pieter L. Kubben1,5 & 
Christian Herff   1 ✉

Speech production is an intricate process involving a large number of muscles and cognitive processes. 
The neural processes underlying speech production are not completely understood. As speech is a 
uniquely human ability, it can not be investigated in animal models. High-fidelity human data can only 
be obtained in clinical settings and is therefore not easily available to all researchers. Here, we provide 
a dataset of 10 participants reading out individual words while we measured intracranial EEG from a 
total of 1103 electrodes. The data, with its high temporal resolution and coverage of a large variety of 
cortical and sub-cortical brain regions, can help in understanding the speech production process better. 
Simultaneously, the data can be used to test speech decoding and synthesis approaches from neural 
data to develop speech Brain-Computer Interfaces and speech neuroprostheses.

Background & Summary
Brain-Computer Interfaces (BCIs)1 that directly decode speech from neural activity have recently gained large 
attention as they could provide an intuitive means of communication for patients who lost the ability to speak2–7.

The creation of a speech neuroprosthesis depends on a firm understanding of the speech production process 
in the brain, the particular timing of brain regions involved and where to best decode them. Despite a number 
of existing models on the speech production process8,9, the precise role of all areas involved has yet to be under-
stood. Recent advances highlight that deeper brain structures, such as the hippocampus10–12 and thalamus13,14, 
are also involved in language in general and speech production specifically. A dataset providing accessible data 
for a simple speech production task in cortical and deeper brain structures could help to further understand 
this intricate process. This understanding may additionally aid functional language mapping prior to resective 
surgery in patients suffering from pharmaco-resistant epilepsy15.

Despite the fact that a full understanding of speech production is currently lacking, great advances have been 
made in the field of speech neuroprostheses recently. The decoding of a textual representation by decoding pho-
nemes16,17, phonetic18 or articulatory19 features, words20, full sentences21–24 or spotting of speech keywords25 is 
possible from neural recordings during actual speech production. Results are becoming robust enough for first 
trials in speech impaired patients7. To facilitate more natural communication, some studies aimed at directly 
synthesizing an audio waveform of speech from neural data recorded during speech production26–29. Initial 
results indicate that the decoding of speech processes is possible from imagined speech production from offline 
data30–32 and in real-time33,34.

Most of these recent advances employ electrocorticography (ECoG), an invasive recording modality of neu-
ral activity that provides high temporal and spatial resolution and high signal-to-noise ratio35. Additionally, 
ECoG is less affected by movement artifacts than non-invasive measures of neural activity. Other studies have 
used intracortical microarrays to decode speech36–39 or a neurotrophic electrode40 to synthesize formant fre-
quencies41,42 from the motor cortex. An alternative measure of intracranial neural activity is stereotactic EEG 
(sEEG), in which electrode shafts are implanted into the brain through small burr holes43. sEEG is considered 
to be minimally invasive, as a large craniotomy is not necessary and the infection risk is therefore smaller44. 
Additionally, the method of implanting the electrodes is very similar to that used in Deep Brain Stimulation 
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(DBS), a method that has been used in the treatment of Parkinson’s Disease for several decades. In DBS, elec-
trodes routinely remain implanted for many years, giving hope for the potential of sEEG for long-term BCIs.

Similar to ECoG, sEEG is used in the monitoring of epilogenic zones in the treatment of refractory epilepsy. 
Between 5 and 15 electrode shafts are typically implanted covering a large variety of cortical and sub-cortical 
brain areas. Here lies one of the main differences to ECoG: instead of high density coverage of specific regions, 
sEEG provides sparse sampling of multiple regions. This sparse sampling could provide great potential for var-
ious BCI applications as most of them involve processes in deep (sub-cortical or within sulci) and spatially 
disparate, bilateral, brain regions45. For example, besides the primary motor cortex, movement can also be 
decoded well from the basal ganglia46 and supramarginal gyrus47, amongst others. With sEEG, these areas can 
be recorded simultaneously, leveraging multiple sources of potential information.

Invasive recordings of neural activity are usually obtained during a seizure localization procedure or glioma 
resection surgery and are therefore not available to many researchers working on traditional speech decod-
ing or speech synthesis technologies. These researchers are part of an active research community investigating 
the potential of non-invasive brain measurement technologies for speech neuroprostheses. Techniques include 
scalp-electroencephalography (EEG)48–54, providing high temporal resolution, especially the Kara One data-
base55 provides the foundation for many studies; Magnetoencephalography56,57, providing more localized infor-
mation than EEG due to a larger amount of sensors; and Functional Near Infrared Spectroscopy58–61, providing 
localized information of cortical hemoglobin levels. The advances made by this community could also benefit 
invasive speech neuroprostheses, a dataset that is provided to everyone could be used to evaluate and leverage 
their approaches.

To facilitate an increased understanding of the speech production process in the brain, including deeper 
brain structures, and to accelerate the development of speech neuroprostheses, we provide this dataset of 10 
participants speaking prompted words aloud while audio and intracranial EEG data are recorded simultaneously 
(Fig. 1).

Methods
Participants.  A total of 10 participants suffering from pharmaco-resistant epilepsy participated in our exper-
iment (mean age 32 years (range 16–50 years); 5 male, 5 female). Participants were implanted with sEEG elec-
trodes (Table 1) as part of the clinical therapy for their epilepsy. Electrode locations were purely determined based 
on clinical necessity. All participants joined the study on a voluntary basis and gave written informed consent. 
Experiment design and data recording were approved by the Institutional Review Boards of both Maastricht 
Unviversity and Epilepsy Center Kempenhaeghe. Data recording was conducted under the supervision of experi-
enced healthcare staff. All participants were native speakers of Dutch. Participants’ voices were pitch-shifted with 
a randomized offset between 1 and 3 semitones up or down that was constant over the entire recording to ensure 
anonymity.

Fig. 1  Intracranial EEG and acoustic data are recorded simultaneously while participants read Dutch words 
shown on a laptop screen. Traces on the right of the figure represent 30 seconds of iEEG, audio and stimulus 
data. The colors in the iEEG traces represent different electrode shafts.

sub-01 sub-02 sub-03 sub-04 sub-05 sub-06 sub-07 sub-08 sub-09 sub-10 Total

Implanted 133 234 184 117 61 155 134 56 119 124 1317

Recorded 127 127 127 115 60 127 127 54 117 122 1103

Table 1.  Number of implanted and recorded electrodes of each participant. Note that the recorded number 
does not include the reference electrode, which is inherently carried in all recorded electrodes.
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Experimental design.  In this study, participants were asked to read aloud words that were shown to them 
on a laptop screen (Fig. 1). One random word from the stimulus library (the Dutch IFA corpus62 extended with 
the numbers one to ten in word form) was presented on the screen for a duration of 2 seconds during which the 
participant read the word aloud once. This relatively large window accounts for differences in word length and 
pronunciation speed. After the word, a fixation cross was displayed for 1 second. This was repeated for a total of 
100 words, resulting in a total recording time of 300 seconds for each participant. The presented stimuli and tim-
ings were saved for later processing, hereafter referred to as stimulus data.

Data acquisition.  Participants were implanted with platinum-iridium sEEG electrode shafts (Microdeep 
intracerebral electrodes; Dixi Medical, Beçanson, France) with a diameter of 0.8 mm, a contact length of 2 mm 
and a inter-contact distance of 1.5 mm. Each electrode shaft contained between 5 and 18 electrode contacts.

Neural data was recorded using two or more Micromed SD LTM amplifier(s) (Micromed S.p.A., Treviso, 
Italy) with 64 channels each. Electrode contacts were referenced to a common white matter contact. Data 
were recorded at either 1024 Hz or 2048 Hz and subsequently downsampled to 1024 Hz. We used the onboard 
microphone of the recording notebook (HP Probook) to record audio at 48 kHz. Audio data was subsequently 
pitch-shifted to ensure our participants’ anonymity using LibRosa63. We used LabStreamingLayer64 to synchro-
nize the neural, audio and stimulus data.

Anatomical labeling.  Electrode locations (Fig. 2) were detected using the img_pipe Python package65 for 
anatomical labeling of intracranial electrodes. Within the package, for each participant, a pre-implantation ana-
tomical T1-weighted Magnetic Resonance Imaging (MRI) scan was parcellated using Freesurfer (http://surfer.
nmr.mgh.harvard.edu/), a post-implantation Computer Tomography (CT) scan was co-registered to the MRI 
scan and electrode contacts were manually localized. The anatomical location label of each contact was automat-
ically extracted from the Destrieux atlas66 based parcellation.

By far the most electrodes are located in white matter (40.3%) and unknown areas (12.6%). Unknown areas 
are contacts that were not able to be labelled through the Freesurfer parcellation, for example a contact located 
just outside of the cortex. Thereafter, electrodes are predominantly located in the superior temporal sulcus, hip-
pocampus and the inferior parietal gyrus. See Fig. 3 for a full breakdown of anatomical regions and the number 
of electrodes implanted in those areas.

Fig. 2  Electrode locations of each participant in the surface reconstruction of their native anatomical MRI. 
Each red sphere represents an implanted electrode channel.
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Data Records
The SingleWordProductionDutch-iBIDS dataset67 is available at https://doi.org/10.17605/OSF.IO/NRGX6. The 
raw data files (XDF format) were converted to Neurodata Without Borders (NWB; https://www.nwb.org/) for-
mat and organised in the iBIDS68 data structure format using custom Python scripts. The NWB format allows 
for compact storage of multiple data streams within a single file. It is compatible to the iBIDS structure, a 
community-driven effort to improve the transparency, reusibility and reproducibility of iEEG data.

The data is structured following the BIDS version 1.7.0 specification (https://bids-specification.readthe-
docs.io/en/stable/). The root folder contains metadata of the participants (participants.tsv), subject specific data 
folders (i.e., sub-01) and a derivatives folder. The subject specific folders contain .tsv files with information 
about the implanted electrode coordinates (_electrodes.tsv), recording montage (_channels.tsv) and event mark-
ers (_events.tsv). The _ieeg.nwb file contains three raw data streams as timeseries (iEEG, Audio and Stimulus), 
which are located in the acquisition container. Descriptions of recording aspects and of specific .tsv columns are 
provided in correspondingly named .json files (i.e., participants.json). The derivatives folder contains the pial 
surface cortical meshes of the right (_rh_pial.mat) and left (_lh_pial.mat) hemisphere, the brain anatomy (_
brain.mgz), the Destrieux atlas (_aparc.a2009s + aseg.mgz) and a white matter atlas (_wmparc.mgz) per subject, 
derived from the Freesurfer pipeline. The description column in the _channels.tsv file refers to the anatomical 
labels derived from the Destrieux atlas66.

The iBIDS dataset passed a validation check using the BIDS Validator (https://bids-standard.github.io/
bids-validator/) and manual inspection of each datafile.

Technical Validation
We validate the recorded data by demonstrating that a spectral representation of speech can be reconstructed 
from the neural recordings using a simple linear regression model. This analysis is similar to a previous analysis 
in ECoG69.

Checking for acoustic contamination.  Acoustic contamination of neural recordings has been reported 
by Roussel et al.70. To check the presented dataset for acoustic contamination in the neural timeseries, we apply 
the method provided by the authors and correlate spectral energy between audio and neural data. We do not find 
any significant correlations (p > 0.01) on the diagonal of the contamination matrix for any of the participants. The 
risk for falsely rejecting the hypothesis of no contamination is therefore smaller than 1%.

Feature extraction.  We extract the Hilbert envelope of the broadband high-frequency activity (70–170 Hz) 
for each contact using an IIR bandpass filter (filter order 4). To attenuate the first two harmonics of the 50 Hz line 

Fig. 3  Number of electrode contacts in cortical and subcortical areas across all participants. Colors indicate 
participants. Lengths of the bars show the number of electrodes in the specified region. Note the deviant x-axis 
for the white matter and unknown regions.
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noise, we used two IIR bandstop filters (filter order 4). All filters were applied forward and backward so that no 
phase-shift is introduced. We averaged the envelope over 50 ms windows with a frameshift of 10 ms. To include 
temporal information into the decoding process, non-overlapping neighboring windows up to 200 ms into the 
past and future were stacked. Features are normalized to zero mean and unit variance using the mean and stand-
ard deviation of the training data. The same transform is then applied to the evaluation data.

The audio data is first downsampled to 16 kHz. To extract features for the audio data, we subsequently cal-
culated the Short-Term-Fourier-Transform in windows of 50 ms with an frameshift of 10 ms. As the frameshift 
between neural and audio data is the same, there is a correspondence between audio and neural feature vectors. 
The resulting spectrogram is then compressed into a log-mel representation71 using 23 triangular filter banks.

Decoding model.  To reduce the dimensionality of our decoding problem, we compress the feature space to 
the first 50 principal components. Principal components are estimated for each fold individually on the train-
ing data. The first 50 principal components explain between 29% and 76% of the variance depending on the 
participant.

We reconstruct the log-mel spectrogram from the high-frequency features using linear regression models. 
In these models, the high-frequency feature vector is multiplied with a weight matrix to reconstruct the log-mel 
spectrogram. The weights are determined using a least-squares approach.

As a baseline, we chose 1000 random split points, at least 10% distant from the beginning and end of the data, 
and swapped the audio spectrogram on this split point. In this procedure, which is also called random circular 
shift, the temporal structure and auto-regressive properties of speech are maintained. We then correlated these 
spectrograms with the original spectrogram to estimate a distribution of chance correlation coefficients.

Waveform reconstruction.  The log-mel spectrogram does not contain the phase information anymore 
and an audio waveform can thus not be reconstructed directly. We utilize the method by Griffin and Lim72 for 
waveform reconstruction, in which the phase is initialized with noise and then iteratively modified. For a good 
algorithmic discription of the method, see73.

Results.  All results are obtained in a non-shuffled 10-fold cross validation in which 9 folds are used for train-
ing and the remaining fold is used for evaluation. This process is repeated until each fold has been used for eval-
uation exactly once.

Spectrograms can be reconstructed.  We evaluate the spectral reconstructions in terms of Pearson correlation 
coefficient between the spectral coefficients of the spectrogram of the original speech and the reconstructed 
spectrogram. For all 10 participants, speech spectrograms can be reconstructed from the neural data using 
linear regression (Fig. 4a) with higher correlations than all 1000 randomizations. Reconstruction results were 
consistent across all 23 mel-scaled spectral coefficients (Fig. 4b) and consistently above all randomization in all 
frequency ranges. Inspecting the spectrograms further (Fig. 5a), it can be seen that the results are mostly driven 
by the accurate reconstruction of speech versus silence. The spectral variations within speech are not captured 
by the linear regression approach. The Pearson correlation is not a perfect evaluation metric as this lack of detail 
during speech does not have a large impact on the score. We utilize the Pearson correlation here as a better met-
ric has yet to be identified. By providing this open dataset, we hope that researchers developing more advanced 
metrics, such as the Spectro-Temporal Glimpsing Index (STGI)74 or the extended Short-Time Objective 
Intelligibility (eSTOI)75, will have the means to address this problem. Similarly, we hope that the dataset will 

Fig. 4  Results for the spectral reconstruction. (a) Mean correlation coefficients for each participant across all 
spectral bins and folds. Reconstruction of the spectrogram is possible for all 10 participants. Whiskers indicate 
standard deviations. Results of individual folds are illustrated by points. (b) Mean correlation coefficients for 
each spectral bin. Correlations are stable across all spectral bins. Shaded areas show standard errors.
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be useful for developing and evaluating models that improve the quality of the reconstructed speech, such as 
those that are more informed about speech processes (e.g. Unit Selection29) or neural network approaches with 
enough trainable parameters to produce high-quality speech26,27,76–78.

Waveforms of speech can be reconstructed.  Using the method by Griffin and Lim72, we can recreate an audio 
waveform from the reconstructed spectrograms (Fig. 5b). The timing between original and reconstructed wave-
forms is very similar, but listening to the audio shows that a substantial part of the audio quality is lost due to the 
synthesis approach. This is particularly clear when listening to the audio recreated from the original spectrog-
ams (_orig_synthesized.wav). State-of-the-art synthesis approaches, such as WaveGlow79 or WaveNet80, may be 
applied to the current dataset to evaluate an improvement in the reconstruction quality.

Usage Notes
iBIDS data.  Scripts to handle the data can be obtained from our Github repository: https://github.com/
neuralinterfacinglab/SingleWordProductionDutch.

Data loading and feature extraction.  Neural traces, synchronized audio and experimental markers can be 
loaded using the provided extract_features.py script. High-frequency features are subsequently extracted and 
aligned to logarithmic mel-scaled spectrograms. Electrode channel names are also loaded.

Spectrogram reconstruction & waveform synthesis.  Reconstruction of the spectrogram as well as the resynthesis 
to an audio waveform is performed in the reconstruction_minimal.py script.

Anatomical data.  Electrode locations can be found in the participant folder (_electrodes.tsv) and then be 
visualized using the cortical meshes (_lh_pial.mat and _rh_pial.mat) within the derivatives folder. These mesh 
files contain vertices coordinates and triangles, which are described by indices corresponding to vertex numbers. 
The T1-weighted brain anatomy, the Destrieux parcellation and a white matter parcellation can also be found in 
the derivatives folder.

Code availability
All Python code to re-run the technical validation described in this report can be found on our Github: https://
github.com/neuralinterfacinglab/SingleWordProductionDutch. The code relies on the numpy81, scipy82, pynwb83, 
scikit-learn84 and pandas85 packages.
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