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Objectives: Several studies have shown abnormal network topology in patients
with major depressive disorder (MDD). However, changes in functional brain
networks associated with electroconvulsive therapy (ECT) remission based on
electroencephalography (EEG) signals have yet to be investigated.

Methods: Nineteen-channel resting-state eyes-closed EEG signals were
collected from 24 MDD patients pre- and post-ECT treatment. Functional
brain networks were constructed by using various coupling methods and
binarization techniques. Changes in functional connectivity and network metrics
after ECT treatment and relationships between network metrics and clinical
symptoms were explored.

Results: ECT significantly increased global efficiency, edge betweenness centrality, local
efficiency, and mean degree of alpha band after ECT treatment, and an increase in these
network metrics had significant correlations with decreased depressive symptoms in
repeated measures correlation. In addition, ECT regulated the distribution of hubs in
frontal and occipital lobes.
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Conclusion: ECT modulated the brain’s global and local information-processing
patterns. In addition, an ECT-induced increase in network metrics was associated with
clinical remission.

Significance: These findings might present the evidence for us to understand how ECT
regulated the topology organization in functional brain networks of clinically remitted
depressive patients.

Keywords: electroconvulsive therapy, electroencephalography, major depressive disorder, functional
connectivity, graph theory analysis

INTRODUCTION

Major depressive disorder (MDD) is a complex psychiatry
disorder that includes three categories of clinical manifestations:
disorders of mood, cognitive function, and neurovegetative
functions (i.e., sleep and appetite function) (Lisanby, 2007),
which severely affects a patient’s quality of life and can even lead
to suicide. The prevalence of depression is about 2–4% worldwide
and 1.7–2% in China alone (Gu et al., 2013). Hence, effective
treatment of depression is a major public health challenge
(Sartorius, 2001). Nowadays, compared to some commonly
available treatments, such as cognitive behavioral therapy (Siegle
et al., 2006; Ritchey et al., 2011) and antidepressant medication
(Spronk et al., 2011), electroconvulsive therapy (ECT) (Bouckaert
et al., 2016; Yrondi et al., 2018; Takamiya et al., 2019) has long
been considered to be the most effective and rapid treatment
for depression, and around 70–90% of the depressed patients
showed an improvement when treated with ECT (Kellner et al.,
2014). However, the mechanisms underlying the action of ECT
are still not known.

Mounting evidence suggests that MDD is a system-level
disorder that is associated with the dysfunction of neuronal
network activity across multiple brain regions (Mayberg et al.,
2005). Some structural and functional neuroimaging studies have
investigated ECT-induced changes in the structural or functional
connectivity of depression by conducting a longitudinal study
(Abbott et al., 2013; Bouckaert et al., 2016; Wei et al.,
2018). Functional connectivity refers to the degree of temporal
correlation between neural signals coming from two different
regions (Fingelkurts et al., 2005). Electroencephalogram (EEG),
owing to its advantages such as high temporal resolution, non-
invasive nature, and a relatively inexpensive technique, becomes
a preferable choice for computing functional connectivity, which
can be widely applied in clinical and research fields (Sakkalis,
2011; van Diessen et al., 2015).

Existing studies indicated that ECT regulated resting-state
EEG oscillatory patterns in the frontal lobe (Farzan et al.,
2014) or central nodes of the default mode network (DMN)
(Takamiya et al., 2019). Some studies have found that ECT
decreased EEG complexity in the responded patients based on
the multi-scale entropy method (Okazaki et al., 2013; Farzan
et al., 2017). In addition, other EEG studies using low-resolution
electromagnetic tomography (LORETA) analysis revealed that
ECT-induced theta changes in the subgenual anterior cingulate

cortex (ACC) (Reischies et al., 2005) were correlated with
decreased depressive scale scores (McCormick et al., 2009).
However, compared to neuroimaging studies, the number of
studies examining the alteration in ECT-induced functional
connectivity networks based on EEG is still small. Only a few EEG
studies based on functional connectivity methods reported that
ECT changed phase synchronization in the beta/delta frequency
band (Deng et al., 2015; Takamiya et al., 2019). Currently, graph
theory analysis based on functional connectivity is a simple and
straightforward approach to evaluate the topological structure
of complex brain networks (He and Evans, 2010; Rubinov and
Sporns, 2010). Moreover, graph measures have also been applied
to reveal the changes in network topology following seizure
therapy. One EEG study that used the graph theory technique
reported a decrease of functional connectivity in the beta
frequency band and deviation from the small-world architecture,
including increased characteristic path length and decreased
clustering coefficient, in depressive patients who received a single
session of treatment for seizure therapy [either ECT or magnetic
seizure therapy (MST)] (Deng et al., 2015). Similarly, another
study of EEG based on graph theory analysis suggested an
increased clustering coefficient and decreased characteristic path
length in the theta frequency band and decreased clustering
coefficient in the beta frequency band in depressive patients
who received a series of MST (Hill et al., 2021). These results
indicate that seizure therapy has the potential to modulate the
functional topology of the brain, but larger studies are needed
to evaluate the effects of single therapy alone to confirm these
preliminary findings. Hence, to expand current research, this
study will analyze the change mode of the whole brain topology
of depressive patients pre- and post-ECT treatment from the
perspective of a functional brain network based on EEG signals.

In this prospective, longitudinal study, we used resting-state
EEG signals to examine the functional brain networks in patients
with MDD (N = 24) at two time points: (1) prior to ECT and
(2) within 7–10 days of completion of ECT series. The first
objective of this study was to explore the differences between
brain network topology structure pre- and post-ECT in patients
with MDD, particularly based on the following three aspects:
changes in functional connectivity, changes in graph theoretical
measures (e.g., local/global efficiency), and changes in hubs
distribution. The second objective of this study was to investigate
whether the changes in these network measures correlated with
clinical response.
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MATERIALS AND METHODS

Participants
Twenty-four patients (men/women: 15/9, mean age:
33.54 ± 13.75 years) with MDD were recruited from the
Jining Daizhuang Hospital, Shandong, China. The study was
approved by the Local Research Ethics Committee, and written
informed consent was obtained from all the subjects before the
ECT treatment began. The inclusion criteria were as follows:
(1) all MDD patients met the diagnostic criteria for the Chinese
Guideline for Prevention and Treatment of Depression and
met the clinical indications of modified ECT therapy, and the
score of the 17-Hamilton Depression Rating Scale (HAMD-17)
(Hamilton, 1967) was ≥24; (2) the age should be between 18
and 65 years with a primary or higher educational level; and (3)
the MDD patients voluntarily agreed to receive the modified
ECT therapy and signed the informed consent. If the condition
seriously affected the capacity for civil conduct, the guardian
should decide whether to accept the modified ECT therapy
and sign informed consent. The exclusion criteria for all the
MDD patients were as follows: (1) suffering from other mental
disorders (e.g., delusional disorder and post-traumatic stress
disorder); (2) having physical and nervous system diseases
(e.g., cardiovascular and cerebrovascular diseases or Parkinson’s
disease); (3) struggling with any psychoactive substance abuse
or dependence (except nicotine); (4) diagnosed with epilepsy,
brain tumors, and brain trauma caused by the disorders of
consciousness, with loss of consciousness for more than 5 min,
and history of other neurological diseases; (5) the patients
believed to have somatic diseases that led to abnormal EEG
results, according to the assessment of EEG specialists; and
(6) having received ECT treatment within the last 3 months.
Depressive severity was assessed in patients using the HAMD-17
Scale within 3 days prior to the first ECT session and 7–10 days
after the last ECT session.

Electroconvulsive Therapy Procedure
Electroconvulsive therapy was administered using a
THYMATRON System IV device (Somatics, LLC, Lake Bluff,
IL, United States). All the 24 MDD patients received bitemporal
ECT stimulus delivery with a constant-current brief pulse (1 ms).
The duration of the electrical stimulation depended on the age
of the patients, which was typically 5 s and sometimes 7–8 s
for elderly patients. Treatments were performed 3–4 times a
week and were continued until a plateau was reached, and no
further improvement occurred. Atropine (0.5 mg) was used
to reduce respiratory secretions, propofol (1.5–2 mg/kg) was
used for general anesthesia, and succinylcholine (1 mg/kg)
was used to induce muscle relaxation. In this experiment,
blood pressure, heart rate, and oxygen saturation levels were
continuously monitored.

Electroencephalography Acquisition and
Pre-processing
The first EEG recording was performed within 1–3 days of
the first ECT session, and the second EEG recording was done

within 7–10 days after the completion of the last ECT session.
EEG data were collected on Nihon Kohden EEG machines
(Neurofax EEG-1200C) by trained technicians. Ten minutes of
eyes-closed resting-state EEG data were recorded from 19 scalp
locations according to the standard international 10/20 system
(Fp1/2, F3/4, C3/4, P3/4, O1/2, F7/8, T3/4, T5/6, Fz, Cz, and Pz)
referenced to linked ears. The sampling frequency was 500 Hz.
Electrode impedance was kept below 5 k� .

The Automagic toolbox (Pedroni et al., 2019) was used for
data import and pre-processing. To provide noise reduction,
high-pass and low-pass filters were set with 1 Hz and 40 Hz
cutoff frequencies, respectively. The Fz channel signal was used
for electrooculogram (EOG) regression (Croft and Barry, 2000)
to eliminate the EOG of other channels. Then Multiple Artifact
Rejection Algorithm (MARA) (Winkler et al., 2011) was adopted
to reject other artifacts. The reconstructed and cleaned EEG
signals were re-reference to the average reference. Next, the EEG
recordings were continuously divided into 2 s for each epoch.
For all the epochs, we calculated three indicators: ratio of data
with overall high amplitude (OHA), ratio of time points of high
variance (THV), and ratio of channels of high variance (CHV).
Then, these epochs were classified into “Good,” “Ok,” or “Bad”
according to the indicators and default threshold. If OHA < 0.1,
THV < 0.1, and CHV < 0.15, the data were classified as “Good;”
if 0.1 < OHA < 0.2, 0.1 < THV < 0.2, and 0.15 < CHV < 0.3,
the data were classified as “Ok”; and if 0.2 < OHA < 30,
0.2 < THV < 15, and 0.3 < CHV < 15, the data were classified
as “Bad.” Finally, for each subject, the first 60 epochs marked as
“Good” were selected for the subsequent analysis. As a note, we
chose 16 electrodes (Fp1/2, F3/4, C3/4, P3/4, O1/2, F7/8, T3/4,
and T5/6) to construct the functional brain network, which has
been used previously in the studies on depression (Akdemir Akar
et al., 2015; Li X. et al., 2016). The tool used for data processing
was MATLAB R2017a.

Functional Connectivity Matrices
The first step in constructing a functional brain network is to
calculate the connectivity matrix, in which each node represents
the electrode and each edge represents the connection strength
between the electrodes. To construct a functional connectivity
matrix, coherence (Coh), imaginary part of coherence (ICoh),
and phase lag index (PLI) were used in this study (a
brief description of the three coupling methods is given in
Supplementary Section 1). We calculated the Coh/ICoh/PLI
matrix for 60 epochs, and then all the Coh/ICoh/PLI matrices
were averaged across all epochs to obtain the functional
connectivity matrix for each subject. The dimension of the
functional connectivity matrix is 16 ∗ 16, where 16 is the number
of electrode channels. The frequency bands of analysis include
delta band (1–4 Hz), theta band (4–8 Hz), alpha band (8–13 Hz),
and beta band (13–30 Hz).

Binarization Methods
The second step in constructing a functional brain network
is to extract a binary network from the weighted connectivity
matrices obtained by the above-mentioned methods. Original
weighted connectivity matrices usually present some weak and
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spurious connections, so we should use a method to remove
the non-significant links and alleviate the noise level. In
this study, we adopted state-of-the-art non-arbitrary unbiased
binarization approaches Cluster-Span Threshold (CST) and
Minimum Spanning Tree (MST), which have been proved to
show good performance in the modeling of EEG network
topology (Smith et al., 2015, 2017; Li X. et al., 2017) (a
brief description of the two binarization methods is given in
Supplementary Section 2).

Network Metrics
In the following experiments, we used the graph theory analysis
method to quantitatively evaluate the topological properties
of these binary brain networks, particularly from information
integration and segregation. In this study, we computed global
efficiency (GE) (Latora and Marchiori, 2001), edge betweenness
centrality (EBC) (Freeman, 1978), node betweenness centrality
(NBC) (Freeman, 1978), local efficiency (LE) (Latora and
Marchiori, 2001), and mean degree (meanD) (Rubinov and
Sporns, 2010) (mathematical formula for the network metrics is
given in Supplementary Section 3). The network metrics were
calculated by using Brain Connectivity Toolbox.1

In addition, hubs play a vital role in efficient communication
and network resilience to insult (Bullmore and Sporns,
2009). Recent studies have shown abnormalities in the hub
configuration (e.g., number and distribution of hubs) of brain
functional networks in neuropsychiatric diseases (e.g., depression
and schizophrenia) (Alexander-Bloch et al., 2013; Sun et al.,
2019), which suggest an important association between hub
regions and pathophysiological mechanisms. So this study also
analyzed the characteristics of topology distribution of hubs in
pre- and post-ECT patients with MDD. We computed hubs for
the binary connectivity matrix of each subject; if the frequency of
a node as the hub was greater than 30% of the number of subjects,
the node was defined as the hub of the group. A node can be
considered as a hub if its degree is at least one standard deviation
above the mean degree of the network (Hosseini et al., 2012). The
degree of a node is the number of links connected to it.

Statistical Analysis
The functional connectivity values and network metrics were
compared in pre- and post-ECT patients with MDD. The
statistical threshold was calculated by performing a pseudo-
paired t-test based on the permutation test (n = 10,000, p = 0.05).
First, a t-value was calculated for each studied metric (functional
connectivity values, GE, EBC, NBC, LE, and meanD) as an
observed test statistic between pre- and post-ECT MDD groups.
Next, each subject in the pre- and post-ECT MDD group was
randomly shuffled, so after permutation, the number ratio of
pre- and post-ECT MDD groups was still 24:24. The t-values
were recalculated for the permutated groups 10,000 times, and
the null distribution of test statistics was obtained for the group
difference. Finally, the proportion of sampled permutations,
where the t-values were greater than the observed test statistic,

1https://www.nitrc.org/projects/bct/

was determined as the p-value of the observed group difference.
A level of significance was p < 0.05.

For the functional connectivity value or network metrics
having significant differences, we conducted repeated measures
correlation (rmcorr) (Bakdash and Marusich, 2017) based on
bootstrapping (nrep = 1,000) to test if the change in these
metrics was correlated to the change in the HAMD scores.
Repeated measures correlation is suitable for analyzing the
common linear association between paired repeated measures
for multiple individuals, which has been adopted in the related
studies (Nuninga et al., 2020; Gbyl et al., 2021; Takamiya
et al., 2021). As an additional analysis, we also conducted
a Pearson correlation analysis based on a permutation test
(n = 10,000, p = 0.05) between changed values of measures
(post-functional connectivity value/network metric subtract pre-
functional connectivity value/network metric) and changed
HAMD scores (pre-HAMD score subtract post-HAMD score).
The method of Pearson correlation analysis, based on a
permutation test, was similar to that of the pseudo-paired
t-test based on a permutation test. The observed test statistic
was defined as the correlation coefficient between the changed
measures and changed HAMD scores. Like the Pearson
correlation, the rmcorr coefficient (rrm) represents the linear
correlation between two variables, and the value ranges from –
1 to 1.

RESULTS

Demographic Variables and Clinical
Characteristics
Demographic variables and clinical characteristics of patients
with MDD are presented in Table 1. The HAMD scores of pre-
and post-ECT are shown in Figure 1. The HAMD scores of
patients with MDD pre- and post-ECT were 29.21 ± 2.78 and
4.67 ± 2.35, respectively. According to previous treatment studies

TABLE 1 | Demographic variables and clinical characteristics of
patients with MDD.

Characteristic Remitted group

Age, years 33.54 ± 13.75

Education, years 9.43 ± 4.55

Gender (male/female) 15/9

Marital status (married/unmarried) 14/10

Age at onset, years 29.08 ± 13.62

Number of depressive episodes 2.42 ± 1.14

Duration of current episode, months 1.91 ± 2.36

Number of ECT treatments 11.05 ± 1.56

Time between the pre-EEG and the first ECT, days 1–3

Time between the last ECT and post-EEG, days 7–10

HAMD-17 total score

Pre-ECT 29.21 ± 2.78

Post-ECT 4.67 ± 2.35

MDD, major depressive disorder; HAMD-17, 17-Hamilton Depression Rating Scale,
the values in the table are expressed as mean ± standard deviation.
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FIGURE 1 | The Hamilton Depression Rating Scale-17 (HAMD-17) scores of
pre- and post-ECT patients with MDD. The bar chart represents the mean
values of HAMD-17 scores in pre- and post-ECT treatments. The * indicates a
significant difference (p < 0.05).

of depression, the response was defined as a reduction in the
HAMD score of more than 50%, while remission was defined as
the HAMD score less or equal to 7 (Keller, 2003; Brunoni et al.,
2016; Wei et al., 2020). So in this study, the clinical response rate
was 100% (24/24), and the clinical remission rate was 95.83%
(23/24). The number of ECT treatments was 11.05 ± 1.56.

Electroconvulsive Therapy-Induced
Changes in Functional Connectivity
Longitudinal changes in the functional connectivity of patients
with MDD pre- and post-ECT in delta, theta, alpha, and beta
frequency bands are shown in Figure 2. There was a marginally
reduced (t23 = 1.966, p = 0.062) functional connectivity post-ECT
(0.676 ± 0.039) when compared to that pre-ECT (0.696 ± 0.054)
in alpha frequency band, only when functional connectivity
was calculated by Coh. No significant differences were found
in other frequency bands based on the other two coupling
methods (ICoh, PLI).

Electroconvulsive Therapy-Induced
Changes in Network Metrics
When CST was used for binarization, ECT-induced network
metrics showed the following changes (Figures 3–5): for
delta frequency band, when the connectivity values were
estimated by Coh, there was a marginal increase in NBC (pre-
ECT: 12.41 ± 1.64, post-ECT: 12.92 ± 1.40, t23 = 2.008,
p = 0.057) (Figure 3).

For theta frequency band, when coupling method ICoh
was used, there were marginal increases in GE (pre-ECT:
0.759 ± 0.005, post-ECT: 0.764 ± 0.011, t23 = 1.948, p = 0.064)
and meanD (pre-ECT: 7.864 ± 0.161, post-ECT: 7.974 ± 0.288,
t23 = 1.728, p = 0.097) (Figure 4).

For alpha frequency band, when coupling method Coh was
used, network metrics GE (pre-ECT: 0.436 ± 0.050, post-
ECT: 0.460 ± 0.057, t23 = 2.546, p = 0.018), EBC (pre-ECT:
1.443 ± 0.158, post-ECT: 1.513 ± 0.129, t23 = 2.467, p = 0.022),
LE (pre-ECT: 0.517 ± 0.035, post-ECT: 0.543 ± 0.048, t23 = 2.425,
p = 0.024), and meanD (pre-ECT: 3.529 ± 0.376, post-ECT:
3.734 ± 0.428, t23 = 2.934, p = 0.008) showed a significant increase
after ECT treatment, and there was a marginal increase in NBC

(pre-ECT: 12.224 ± 1.474, post-ECT: 12.785 ± 1.176, t23 = 1.821,
p = 0.082) (Figure 3). Likewise, when the connectivity values
were estimated by ICoh, there was a marginal increase in GE
(pre-ECT: 0.760 ± 0.009, post-ECT: 0.764 ± 0.010, t23 = 1.780,
p = 0.088) (Figure 4). When coupling method PLI was used,
post-ECT patients with MDD exhibited marginal increase in LE
(pre-ECT: 0.621 ± 0.043, post-ECT: 0.639 ± 0.037, t23 = 1.854,
p = 0.077) (Figure 5).

For beta frequency band, when coupling method ICoh
was used, there was a marginal increase in GE (pre-ECT:
0.766 ± 0.008, post-ECT: 0.770 ± 0.012, t23 = 1.820, p = 0.082)
and meanD (pre-ECT: 8.026 ± 0.229, post-ECT: 8.141 ± 0.328,
t23 = 1.861, p = 0.076). Network metric of NBC (pre-ECT:
7.020 ± 0.248, post-ECT: 6.902 ± 0.354, t23 = 1.716, p = 0.100)
showed marginal reduction after ECT treatment (Figure 4).
When PLI was used, a marginal reduction in NBC was also
noticed (pre-ECT: 9.649 ± 0.561, post-ECT: 9.114 ± 1.008,
t23 = 1.962, p = 0.062) (Figure 5).

However, we found that network metrics showed no
significant differences in pre- and post-ECT patients with MDD
in four bands when MST combined with Coh, ICoh, or PLI was
used. In addition, the network sparsity of CST was significantly
higher than that of MST (detailed results are provided in
Supplementary Section 4).

Electroconvulsive Therapy-Induced
Alteration in Hubs Characteristic
As the network metrics of the alpha frequency band show a
significant difference between pre- and post-ECT treatments, in
the subsequent analysis, we investigated how ECT modulated
the hubs distribution in the alpha frequency band. From
Figure 6, the hubs in the pre-ECT patients with MDD were
mainly distributed in the right frontal lobes (Fp2 and F4).
However, the hubs in the post-ECT patients with MDD
were mainly distributed in the frontal (Fp1/2 and F3/4) and
occipital (O1/2) lobes.

Correlation Between Changes in
Network Metrics and Clinical Response
According to the obtained statistical results of network metrics,
correlation analysis was conducted between network metrics
having significant differences (GE, LE, EBC, and meanD of
alpha frequency band) and clinical response. Repeated measures
correlation revealed that the increase in the values of network
metrics GE [rrm(23) = −0.453, p = 0.023], LE [rrm(23) = −0.449,
p = 0.024], EBC [rrm(23) = −0.476, p = 0.016], and meanD
[rrm(23) = −0.502, p = 0.011] was moderately correlated to the
decrease in the HAMD-17 scores after ECT treatment (Figure 7).
Pearson correlation suggested that there was no significant
correlation between these changed network metrics and changed
HAMD-17 scores (Supplementary Section 5).

DISCUSSION

This study used functional connectivity and graph theory
analysis to explore the topological changes in resting-state EEG
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FIGURE 2 | The functional connectivity (FC) values of pre- and post-ECT patients with MDD obtained by three coupling methods [coherence (Coh), imaginary part of
coherence (ICoh), and phase lag index (PLI)] in delta, theta, alpha, and beta frequency bands. The bar chart represents the mean values of FC in pre- and post-ECT
treatments. The ∗’ represent marginally significant difference (0.05 < p < 0.1, pseudo-paired t-test based on permutation test, n = 10,000, p = 0.05).

functional brain network of depressive patients pre- and post-
ECT treatment. For clinically remitted patients with a HAMD-17
score ≤ 7 and no relapse within 3 months, our main findings
were as follows: (1) ECT marginally significantly decreased
functional connectivity in the alpha frequency band. (2) ECT
increased GE, EBC, LE, and meanD values, which revealed that
depressive patients tended to have a superior network structure
after ECT treatment. Also, changes in these network metrics
had significantly moderate correlations with clinically remitted
depressive symptoms in repeated measures correlation. (3) ECT
changed the distribution of hubs, mainly in frontal and occipital
lobes. Collectively, these findings provided insight into the role
of the functional brain network in the underlying mechanism of
action of ECT for the treatment of depressive patients.

In this pilot study, when Coh was used to calculate the
functional connectivity value, there was a marginal but significant
decrease in functional connectivity in the alpha frequency band

after ECT treatment. Although normal subjects were not included
in this study, the obtained results could be verified with the
previous literature. Leuchter et al. (2012) used quantitative EEG
coherence to examine differences in the resting-state functional
connectivity between patients with MDD and healthy controls.
Significantly higher overall coherence in the delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), and beta (12–20 Hz) frequency
bands were found in the subjects with MDD. Despite the
contrary findings, most studies on depressive patients over the
age of 30 years have reported increased functional connectivity
(Bohr et al., 2012; Li et al., 2015). The increased functional
connectivity of MDD patients indicated that the depressive
patients had abnormally activated or overloaded brain activity
(Rotenberg, 2004), which might result from the low efficiency of
network organization. Moreover, the most significant increases
in coherence were found in the alpha frequency band, which
could be explained by the failure of the top-down control
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FIGURE 3 | Network metrics of pre- and post-ECT patients with MDD obtained by coupling method Coh and binarization approach Cluster-Span Threshold (CST) in
delta, theta, alpha, and beta frequency bands. Network metrics include global efficiency (GE), edge betweenness centrality (EBC), node betweenness centrality
(NBC), local efficiency (LE), and mean degree (meanD). The bar chart represents the mean value of network metrics in pre- and post-ECT MDD patients. The
* indicates a significant difference (p < 0.05), the *’ represent marginally significant difference (0.05 < p < 0.1), Pseudo-paired t-test was conducted based on
permutation test, n = 10,000, p = 0.05.

imposed by rhythmic alpha activity (Leuchter et al., 2012). In this
study, post-ECT depressive patients had marginally significantly
reduced functional connectivity in the alpha frequency band

compared to the pre-ECT depressive patients. Hence, we could
speculate that ECT treatment could modulate the abnormal brain
pattern in depressive patients and improve the efficiency of
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FIGURE 4 | Network metrics of pre- and post-ECT patients with MDD obtained by coupling method ICoh and binarization approach CST in delta, theta, alpha, and
beta frequency bands. Other descriptions are as in Figure 3.

brain information communication. Furthermore, a resting-state
functional magnetic resonance imaging (fMRI) ECT study had
proposed the “hyper-connectivity” hypothesis, which suggested
that treatment responses during depressive episodes might be
related to decreased seed-voxel connectivity within some brain
networks (e.g., cognitive control network and DMN) (Sheline

et al., 2010; Perrin et al., 2012). However, another fMRI
ECT study showed that the functional connectivity of the left
angular gyrus significantly increased after ECT in depression
patients, which is accompanied by improved mood (Wei et al.,
2018). A related EEG ECT study found increased functional
connectivity in the theta frequency band between the posterior
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FIGURE 5 | Network metrics of pre- and post-ECT patients with MDD obtained by coupling method PLI and binarization approach CST in delta, theta, alpha, and
beta frequency bands. Other descriptions are as in Figure 3.

cingulate cortex and the anterior prefrontal cortex, and decreased
functional connectivity in the beta frequency band between the
posterior cingulate cortex and the temporal regions (Takamiya
et al., 2019). So, from the inconsistent research results, we
consider that the ECT treatment-induced increased or decreased
functional connectivity might depend on the brain regions.
Future studies should focus on the effect of ECT on functional
connectivity of the whole and local brain regions to validate our
findings and those of previous studies.

To objectively represent the topological structure of complex
brain networks, we adopted two novel binarization methods,
CST and MST, to construct the binary brain networks based
on the functional connectivity matrix calculated by Coh, ICoh,
and PLI, and then extracted network metrics to evaluate
the topological characteristics of the networks. It was found
that network metrics constructed using the Coh coupling
method and CST binarization method showed more significant
differences between pre- and post-ECT treatments. However, the

Frontiers in Human Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 852657

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-852657 May 13, 2022 Time: 13:10 # 10

Sun et al. ECT-Induced Changes in Brain Network

FIGURE 6 | Distribution of hubs of pre- and post-ECT patients with MDD in
the alpha band. The enlarged spheres represent the network hubs. Red color
nodes represent the frontal lobe; yellow color nodes represent the central
lobe; green color nodes represent the temporal lobe; and blue color nodes
represent the parietal-occipital lobe.

network metrics obtained from ICoh/PLI and CST only showed
marginally significant differences between pre- and post-ECT
patients, which might be affected by the epoch length of EEG

signals (Bonita et al., 2014; Fraschini et al., 2016). Though the
Coh coupling method was influenced by the artifacts of volume
conduction, relevant studies reported that voltage correlation
due to volume conduction would be unimportant for electrodes
at intervals of 4 cm or more (Doesburg et al., 2005), and a
small amount of sparsely distributed electrodes could reduce the
effect of volume conduction (Kim et al., 2013). In addition, the
network sparsity of CST was significantly higher than that of
MST, and the network sparsity of CST was different for every
subject (Supplementary Figure 4). The results demonstrated
that CST captured differences at low and high thresholds, which
might make various network measures more sensitive (Sun et al.,
2019). However, MST resulted in a highly sparse network where
important edges might be removed, leading to insensitivity to
subtle differences in the brain network (Smith et al., 2016). So, for
the 19-channel EEG systems, we concluded that combining the
coupling method Coh with the binarization technique CST could
facilitate the construction of a valid functional brain network.

Based on this combination method, our results found
that in the alpha frequency band, network measures (GE,
EBC, LE, and meanD) of post-ECT patients with MDD were
significantly higher than those of pre-ECT patients with MDD.
In addition, increased GE and LE values indicated a general
increase in network efficiency. Previous research indicated
that compared to normal controls, the shorter characteristic

FIGURE 7 | Relationship between the network metrics and the clinical response in individual patients with MDD in the alpha band.
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path length and greater GE, as well as lower clustering
coefficient and LE, were found in patients with MDD (Li
et al., 2015; Li H. et al., 2017). These studies concluded
that functional brain networks in subjects with MDD were
closer to a randomized network architecture, which might
prove that ECT could effectively modulate neuronal network
organization and optimize the topological structure of the brain
networks in patients with MDD. The results of the evaluation
of the network metrics (GE, LE, NBC, EBC, and meanD)
in normal controls might reveal that ECT treatment could
modulate the abnormal brain pattern of depressive patients
tended to normalization, and then improve the efficiency
of brain information communication (described in detail in
Supplementary Section 6). A recent resting-state fMRI study
has indicated that patients with MDD had significantly increased
normalized clustering coefficient, normalized path length, and
normalized small-worldness after ECT treatment (Sinha et al.,
2019). However, an ECT study based on the functional brain
network of EEG had reported an opposing conclusion. They
found that the brain network of MDD patients deviated
from the small-world structure after an ECT session, with
a significant increase in the characteristic path length and a
significant decrease in the clustering coefficient post-treatment
(Deng et al., 2015). However, analysis of only one ECT session
might not be able to predict the cumulative neurocognitive
changes after multiple ECT treatment sessions, and hence
the inconsistent conclusion was also reasonable. Moreover,
in Figures 1–5, we can observe that there are individual
differences among depressive patients, which may translate
into the variability of derived indicators of brain network
measures. Hence, a larger sample is required to confirm and
generalize our results.

Furthermore, by analyzing the distribution characteristics
of hubs, it was found that the hubs mainly existed in the
right frontal lobe of patients with MDD before the ECT
treatment in the alpha frequency band. These results might
reflect the unsuccessful effort of MDD to overcome dysfunction
(Rotenberg, 2004). However, after the ECT treatment, the hubs
were mainly distributed in the frontal and occipital brain
regions of patients with MDD. One relevant study suggested
that ECT induced slow-wave oscillations in the frontal brain
region (Farzan et al., 2014). Another study found that ECT
increased theta-current source density in the ACC and increased
connectivity between the anterior frontal cortex and the posterior
cingulate cortex regions (Takamiya et al., 2019). Therefore,
it is tempting to speculate that ECT might act to rebalance
hemispheric activity by regulating the connectivity between
frontal and occipital brain regions, thereby alleviating the
depressive symptoms.

The results of repeated measures correlation suggested that
within the individuals, an increase in the GE, LE, EBC, and
meanD values of the alpha frequency band is moderately
correlated with a decrease in HAMD-17 scores. From Figure 7, it
can be observed that the changes in network metrics and HAMD-
17 scores between pre- and post-ECT treatments showed the
same trend in most of the patients with MDD, that is, the value of
network metrics increased and the depression score decreased.

Therefore, we could consider that the increase in network
metrics between the pre- and post-ECT treatments correlates
with the remission of depressive symptoms. In contrast to
repeated measures correlation, the results of Pearson’s correlation
showed no association between these changed network metrics
and changed HAMD-17 scores. These inconsistent results of the
two statistical methods were consistent with the previous studies
(Nuninga et al., 2020; Gbyl et al., 2021; Takamiya et al., 2021).
In contrast to Pearson correlation analysis, repeated measures
correlation estimated the common regression slope, that is,
the correlation shared among individuals. Moreover, repeated
measures correlation utilized the longitudinal data measured
before and after ECT treatment, which greatly improves the
statistical accuracy (Bakdash and Marusich, 2017). Therefore,
future research studies should try to use repeated measures
correlation to reproduce our results.

Several issues need to be addressed further. First, the
sample size was relatively small, and there was a lack of
comparison with the normal controls under similar experimental
conditions and equipment. Hence, larger populations were
required to validate and generalize our results. Second, this
study used a 19-channel EEG system at the sensor level
to investigate functional brain networks. However, to bridge
the gap between EEG and fMRI findings of subjects with
MDD, high-density EEG (128 and 256 channels) recording
combined with source localization technique should be adopted
in future studies, as high-density EEG recording could improve
topology accuracy (Holmes et al., 2010). Finally, to determine
whether the network metrics can act as effective biomarkers to
evaluate the efficacy of ECT treatment, future studies may be
required to adopt data mining and deep learning algorithms to
classify the remission and non-remission patients with MDD
after ECT treatment.
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