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Abstract: We propose a computational workflow to design novel drug-like molecules by combining
the global optimization of molecular properties and protein-ligand docking with machine learning.
However, most existing methods depend heavily on experimental data, and many targets do not
have sufficient data to train reliable activity prediction models. To overcome this limitation, protein-
ligand docking calculations must be performed using the limited data available. Such docking
calculations during molecular generation require considerable computational time, preventing
extensive exploration of the chemical space. To address this problem, we trained a machine-learning-
based model that predicted the docking energy using SMILES to accelerate the molecular generation
process. Docking scores could be accurately predicted using only a SMILES string. We combined
this docking score prediction model with the global molecular property optimization approach,
MolFinder, to find novel molecules exhibiting the desired properties with high values of predicted
docking scores. We named this design approach V-dock. Using V-dock, we efficiently generated
many novel molecules with high docking scores for a target protein, a similarity to the reference
molecule, and desirable drug-like and bespoke properties, such as QED. The predicted docking
scores of the generated molecules were verified by correlating them with the actual docking scores.

Keywords: protein-ligand docking; computer-aided drug discovery; docking score prediction; quan-
titative estimation of drug-likeness (QED); conformational space annealing (CSA); Lipinski’s rule of
five; V-dock; MolFinder; deep learning; molecular property optimization

1. Introduction

Effective drug design requires optimizing various physicochemical properties, such as
molecular weight, log P, number of hydrogen-bonded donor-acceptors, the polar surface
area of molecules, and affinity with a target protein [1]. For efficient computational drug
design, molecules that are similar to known active molecules but highly dissimilar to known
molecules must be widely explored. However, obtaining biological data, such as binding
affinity, of molecules via experimentation requires considerable time and resources. Protein-
ligand docking calculations are commonly employed in the absence of binding affinity data.
However, due to the large chemical space size, performing extensive chemical space search
requires a prohibitively large number of computational resources. In this work, to overcome
this limitation and facilitate the computational drug design process, we propose a new
computational workflow. V-dock uses machine-learning algorithms to predict the docking
score, followed by the application of the global molecular property optimization algorithm,
MolFinder, to optimize the score [2]. We show that this new workflow significantly reduces
the required computational resources compared to conventional approaches based on
ligand docking and facilitates the design of novel drug-like molecules with the desired
properties.
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As machine learning (ML) algorithms have dramatically improved recently, various
computational methods using reinforcement learning have been widely studied for de-
signing novel drug-like molecules [3–8]. Gottipati et al. tried to enable molecular search in
the chemical space by directly embedding synthetic knowledge in new drug designs [3].
To achieve this, they used a reinforcement learning (RL) model called policy gradient for
forward synthesis to show that molecules are constrained to paths that can be synthesized
and that all molecules proposed by the algorithm can be easily generated. Based on a
graphical representation, the molecular deep Q-network (MolDQN) [4] algorithm uses
the Markov decision process (MDP) [9] and RL to create molecules that maximize the
selected properties. The MolDQN algorithm generates molecules that fit the purpose
by adding, deleting, or modifying the covalent bonds of input molecules. Popova et al.
suggested the ReLeaSE algorithm, which combines a stacked-RNN approach with RL
to design novel inhibitor candidates for JAK2 [7]. The reward function that predicts the
IC50 of a molecule is trained based on protein assay data. They showed that ReLeaSE
could generate novel molecules with high IC50 values. Similarly, Lim et al. suggested a
graph-based scaffold-constrained generative model using RL and predicted activity as a
reward function [10].

Although these RL-based methods successfully generated novel molecules with accu-
rate IC50 values, these RL-based models have a critical limitation. Most known RL-based
generative models use the predicted activity as a reward function. To get reliable results,
they require a large amount of experimental data to train an accurate reward function.
However, very few targets contain known active compounds [11]. More than 99% of the
protein activity bioassay data in the PubChem database [12] have been reported with fewer
than 100 compounds, demonstrating the lack of data clearly. In addition, approximately
94% of the targets have less than ten active compounds, which prevents the training of
an accurate activity prediction model due to the data imbalance. In other words, their
dependency on experimental data makes the existing RL algorithms challenging to apply
for novel drug targets.

To overcome this limitation, computational approaches that use ligand docking scores
as approximations of experimental data have been suggested. Recently, virtual screen-
ing [13–17] algorithms combining ML algorithms with docking scores have been suggested.
Gentile et al. [13] suggested a deep-docking approach that uses a docking score prediction
model to reduce the resources required for docking computations. Preliminary docking
calculations were conducted of a subset of ZINC15 [18]. Based on the docking results, a
model that predicted the docking score of an unprocessed molecule was trained. Using
this model, it was possible to increase screening enrichment by approximating the docking
results of 13 million molecules of ZINC15 without performing actual docking calculations.
Similarly, Berenger et al. suggested a lean-docking approach that used a linear support
vector regressor trained with docking scores of 10,000 molecules [14]. These results showed
that efficient massive virtual screening is possible using a docking score prediction model
without deteriorating the screening power.

In addition to virtual screening, attempts have been made to generate molecules by
directly optimizing a docking score [19–22]. Recently, Boitreaud et al. [23] suggested the
OptiMol approach based on binding energy optimization for drug design using a generative
model and docking using adaptive sampling (CbAS) [24] to maximize the objective function.
They showed that the method finds compounds with high affinity for a given target protein
more efficiently than reinforcement-based algorithms. Ma et al. suggested a structure-based
de novo molecular generator approach, SBMolGen, by combining an RNN-based SMILES
generator and a Monte Carlo tree search with docking simulations [25]. In the SBMolGen
approach, a generated molecule is docked with a target protein, and the result is used to
provide feedback to the generator to optimize the docking score. Jeon and Kim developed
the MORLD method [20], which combines RL with docking using QVina2 [26]. An initial
molecule was modified through RL to optimize the docking score, drug-likeness [27], and
SA scores [28]. However, most docking-assisted molecular design approaches performed
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actual docking calculations to obtain docking scores during the optimization process.
Performing docking calculations hinder extensive sampling in chemical space because
it requires a significant amount of computational time. Additionally, to perform the
docking of a generated molecule, the molecule’s 3D structure and partial charge need to
be calculated, which is a bottleneck in the computational process. Therefore, due to the
vast size of chemical space, a much faster evaluation of the docking score is essential for its
extensive search.

This study proposes a V-dock approach to generate novel drug-like molecules effi-
ciently by combining the global optimization approach with a docking score predictor
for drug targets for which very little experimental data is available. We identified that
the docking score could be accurately predicted using only the 1D and 2D descriptors.
This significantly accelerates the molecular optimization process and enables extensive
exploration of the chemical space. Thus, to find novel drug-like and readily synthesizable
molecules efficiently, we devised an objective function to make molecules with higher
objective values more drug-like. The function consists of three terms: predicted docking
score, drug-likeness score (QED), and similarity to a reference molecule. The MolFinder [2]
algorithm, the global molecular property optimization algorithm using SMILES, was used
to optimize the given objective function. Previously, we demonstrated that MolFinder
generates more optimized molecules than known RL-based methods. The benchmarks
showed that MolFinder could generate novel molecules similar to a reference molecule
with high QED, SA-score values.

Using the V-dock approach, we generated possible inhibitors of Werner syndrome
ATP-dependent helicase (WRN) [29,30]. The number of known inhibitors of WRN is lim-
ited, making it a challenging target for existing reinforcement-based models, which heavily
depend on large amounts of biological activity data. Compared to existing generative mod-
els, MolFinder has the advantage of generating diverse molecules with desirable properties
without many experimental data because it samples novel molecules in a combinatorial
manner in the SMILES space [2]. In addition, we identified that our approach, which uses
a docking score predictor, accelerates the molecular optimization process 255.5 times com-
pared to actual docking calculations. Finally, we show that the predicted docking scores of
novel molecules designed via optimization correlate well with the actual docking results.
This suggests that our V-docking approach is a promising and generalized approach for
generating novel molecules that satisfy the specific properties of interest.

2. Results and Discussion
2.1. Docking Energy Prediction Model Training Result

Of the 100,000 molecules, 85,432 were docked, and the 14,568 for which docking
calculations were not completed were larger than 30 Å, the size of the set grid box. As
a result of the docking calculations for 85,432 molecules, the minimum value of docking
energy calculated was −16.4 kcal/mol. The maximum value of docking energy calculated
was −0.4 kcal/mol, and the average score was −7.47 kcal/mol (Figure 1a).

Using the docking energy prediction model, the Pearson correlation coefficient be-
tween the predicted values and the actual docking energy values of the test set was 0.94. A
mean square error value of 0.34 kcal/mol (Figure 1b) was obtained. The Pearson correlation
coefficient of the training set was 0.85, and that of the whole set was 0.89. These results
showed that the docking energy could be predicted accurately using only the SMILES
representation.

The average computational time taken for the actual docking calculation of a molecule
was 15.21 s. Meanwhile, the average computational time of the docking energy predictor
for a single molecule was 0.0595 s (Figure 2). Therefore, using the predictive model is
255.5 times faster than an actual docking calculation. This indicates that using the docking
energy predictor enables molecular design via docking energy optimization using global
optimization approaches or reinforcement algorithms with accessible computational time
and reasonable accuracy.
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Figure 1. (a) Distribution of the docking energies of 100,000 random molecules from ChEMBL. (b) A comparison of the 
true Autodock Vina scores and the predicted scores with the trained predictor. Docking results of 85,161 molecules of the 
SureChEMBL dataset are represented. Currently, the minimum value of the docking energy is −16.4 kcal/mol, the maxi-
mum value is −0.4 kcal/mol, and the average is −7.87 kcal. When the docking calculation result of the SureChEMBL dataset 
and the docking energy prediction values are compared, the correlation coefficient is 0.95. The mean square error value is 
0.34 kcal/mol. 
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cule was 15.21 s. Meanwhile, the average computational time of the docking energy pre-
dictor for a single molecule was 0.0595 s (Figure 2). Therefore, using the predictive model 
is 255.5 times faster than an actual docking calculation. This indicates that using the dock-
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global optimization approaches or reinforcement algorithms with accessible computa-
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Figure 1. (a) Distribution of the docking energies of 100,000 random molecules from ChEMBL. (b) A comparison of the
true Autodock Vina scores and the predicted scores with the trained predictor. Docking results of 85,161 molecules of
the SureChEMBL dataset are represented. Currently, the minimum value of the docking energy is −16.4 kcal/mol, the
maximum value is −0.4 kcal/mol, and the average is −7.87 kcal. When the docking calculation result of the SureChEMBL
dataset and the docking energy prediction values are compared, the correlation coefficient is 0.95. The mean square error
value is 0.34 kcal/mol.

Figure 2. Comparison of computational times of docking energy calculations with Autodock Vina
and the prediction model.

2.2. Optimization Results for Generated Molecules

To optimize the weight parameters, we generated molecules via global optimization
of the objective function of Equation 1 by using MolFinder with different weight parame-
ters. The MolFinder calculations were repeated 100 times each using a weight parameter,
ωD = 0.1, 0.05, 0.03, and 0.01, and the properties of the generated molecules were investi-
gated with the weight changes (Figure 3). To reduce computational complexcity, ωQ and ωS
are fixed to the initial value, one. For the MolFinder calculations, the number of preferred
molecules (seed) was set to 120, and 500 molecules were generated for each iteration. The
distributions of the predicted docking energy, QED, and the similarity of the generated
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molecules to ML216 confirm that the targeted properties are optimized compared to those
present in the existing SureChEMBL dataset.

Using the lowest weight of 0.01, molecules with higher (worse) docking energies
than the 500 molecules having the lowest docking energy in the SureChEMBL datasets
were obtained. The generated molecules are shown in Supplementary Figure S1 However,
using larger weights, it was confirmed that all of them led to molecules with lower (better)
docking energies than the existing molecules in SureChEMBL. Molecules designed with
ωD values of 0.1 and 0.05 had lower docking energies than those generated with an ωD
value of 0.03. However, QED values were similar to those generated with a ωD value
of 0.03, and the similarities to ML216 were relatively low, less than 0.4. In other words,
among all the tested ωD values, when the ωD value was 0.03, molecules with low docking
energy, high QED, and high similarity were obtained. These results indicated that if only
docking energy was considered, it could be further lowered by increasing the value of the
weight. However, because the purpose of this study is to generate a drug molecule that has
biological activity on the desired target protein and satisfies various physical properties,
only the ωD value of 0.03 was used for subsequent calculations.

Figure 3. Cont.



Int. J. Mol. Sci. 2021, 22, 11635 6 of 18

Figure 3. Distributions of the docking score (top), QED (middle), and a similarity to the reference
(bottom) of the generated molecules with the known molecules in SureChEMBL while varying the
weight coefficient of the docking score term. The distribution of the (top) docking energy, (middle)
QED, and (bottom) similarity according to the weight change are plotted. Purple indicates the
distribution of the SureChEMBL dataset (the 500 molecules with the lowest docking energy), and
blue indicates results when an ωD value of 0.01 is used. Orange is the property distribution of
molecules generated using a ωD value of 0.03, green indicates the results using a ωD value of 0.05,
and red indicates the results using a ωD value of 0.1. We can see that the docking energy of the
SureChEMBL dataset using the lowest value of ωD (0.01) is lower than that of the SureChEMBL
dataset. Still, QED and similarity show the highest distribution. When using an ωD value of 0.03, we
found that the docking energy of the generated molecule was lower than that of the SureChEMBL
dataset value, and the QED generated had higher values than that of the dataset. With ωD values of
0.1 and 0.05, the molecules with the lowest docking energy were generated using high weights. The
QED and the similarity were found to be lower than the values generated using an ωD value of 0.03.

We generated 500 molecules with an ωD value of 0.03 and compared their properties
with those of the existing molecules in SureChEMBL. SureChEMBL was filtered using
Lipinski’s rule to identify the molecules with the lowest docking energy. The ten molecules
having the lowest docking energy among the filtered molecules are shown in Figure 4a.
Forty additional molecules with the lowest docking energies are illustrated in Supplemen-
tary Figure S2. The mean QED of the ten best molecules from SureChEMBL was lower than
0.53, and the mean of similarity was also low (less than 0.34). The ten best molecules with
the lowest objective values among the finally generated molecules are shown in Figure 4b.
Forty additional best molecules are illustrated in Supplementary Figure S3. We found that
the mean QED of the top ten generated molecules was 0.76, and the mean similarity was
0.83, which were much higher than the values for the best molecules from SureChEMBL.

The generated molecules have a structure that is partially similar to ML216, an in-
hibitor of BLM. None of the 500 molecules generated in the last iteration were found in
SureChEMBL. They also did not exist within the entire ChEMBL dataset. These results
confirm that all 500 molecules are novel and have desirable properties.

The distributions of the total objective function and QED values of 500 generated
molecules with the highest similarity to the reference molecule were compared with those
of SureChEMBL (Figure 5a). Given that the generated molecules had a low objective
function distribution ranging from −1.7 to −1.8, it was confirmed that the molecules had
been optimized for the desired properties. Meanwhile, SureChEMBL distributed objective
function values between −0.6 and −1.5.
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Figure 4. Comparison of existing and generated molecules. (a) The ten molecules with the lowest docking energy in the
SureChEMBL dataset passed Lipinski’s rule of five. (b) The best ten molecules generated by MolFinder. The generated
molecules are more similar to ML216 than the known molecules, with high QED and low docking energy values.

Figure 5. Comparison of (a) objective function values in the SureChEMBL dataset with generated molecules, (b) the
distribution of docking energy, QED, and similarity. The yellow distribution is the SureChEMBL dataset, for 500 molecules
with the highest similarity. Blue is a molecule generated using MolFinder. We can see that the generated molecules have a
low objective function value distribution between −1.6 and −1.8 and are optimized for the desired properties. The objective
function distribution of the SureChEMBL dataset has a value between −0.6 and −1.5, and a higher distribution than the
generated molecules. In the figure on the right, the size of the circle denotes similarity, and a larger circle indicates higher
similarity to the reference molecule. The x-axis is QED, and the y-axis is docking energy. The QED of the generated molecule
has a much higher value than the SureChEMBL dataset. Since the docking energy is optimized by considering similarity,
we can see that it is optimized near −8.5 kcal which is the docking energy of ML216.
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The distribution of the individual properties of the objective function is illustrated
in Figure 5b. The distributions demonstrate that our workflow successfully optimized
the three selected properties of interest simultaneously. The generated molecules have
much higher docking scores, QED values, and more remarkable similarities to the reference
than the known molecules. The docking score of ML216, a known inhibitor of BLM, was
−8.5 kcal/mol. Our approach generated many molecules with better docking energies
than ML216, indicating that these molecules can be potential leads for the development of
WRN inhibitors.

Overall, molecules with higher QED values had worse docking scores. This indi-
cated that it is difficult to discover molecules from the database satisfying two criteria
simultaneously: a high QED score and a high docking score. The QED values of the
generated molecules had a value between 0.6–1.0 and are significantly higher than that
of SureChEMBL, which are mostly less than 0.6. Furthermore, the docking energies of
the generated molecules were distributed between approximately −10 kcal/mol and
−6 kcal/mol, while the docking energies of the SureChEMBL molecules were lower and
more widely distributed. At the same time, the generated molecules had much higher
similarities to the reference than the known molecules. Molecules with a similarity ≥ 0.5
with the reference molecule do not exist in the SureChEMBL dataset (85,161 molecules).
This demonstrated that the generation of molecules depended on the objective function
and not the input data. We also calculated the distributions of the QED and similarity of
ChEMBL, which are displayed in Supplementary Figures S4 and S5. In ChEMBL, only 97
out of 1,941,412 molecules had a similarity of more than 0.5 with the reference molecule.
However, all molecules generated by V-Dock had higher than 0.8 similarities to ML216.
In summary, we demonstrated that V-Dock successfully generated novel molecules that
satisfied multiple criteria.

To further investigate the effect of the weights of the other terms, QED and a sim-
ilarity to the reference, we performed additional calculations with different ωQ values
(Supplementary Figures S6–S9. When ωQ is reduced to 0.5 from 1.0, the average QED of
generated molecules reduced from 0.92 to 0.81~0.84. With ωQ = 0.1, the average QED
reduced significantly to 0.14. When ωQ is increased to 5.0, the average QED increased to
0.944.

We also performed additional calculations with different weights for the similarity
term, ωS = 0.7 and 0.4 (Supplementary Figure S10). When ωS is reduced to 0.7, the average
similarity slightly reduced from 0.58 to 0.51. The generated molecules are sharing similar
fragments with ML216 (Supplementary Figure S11). When ωS is reduced further to 0.4,
the average similarity significantly dropped to 0.28. The resulting molecules are highly
different from the reference (Supplementary Figure S12). These results show that the
average of each term can be tuned by changing the weight parameters.

2.3. Molecular Validation Designed with V-Dock

We performed a re-docking computation using the generated molecules to verify
whether the molecules designed with the V-dock method showed good docking scores
(Figure 6, Supplementary Figures S13–S15. We performed docking simulations using
100 generated molecules with the lowest objective function values. The trained docking
energy prediction model compared the predicted docking energy with the true docking
energy value obtained, with a correlation coefficient value of 0.61 (Figure 6). This correlation
confirmed that molecules generated via optimization of the predicted docking score had
good docking energies, indicating that our method can generate promising drug candidates.
In addition, these results showed that the docking energies of molecules could be estimated
quickly using the trained predictor. In summary, we proved that the V-dock approach
generates molecules with desirable drug-like properties and predicts them much faster
and more accurately than docking calculations for such molecules that lack experimental
information.
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Figure 6. The correlation coefficient between the calculated docking energy and the predicted docking
energy. The correlation coefficient between the calculated docking energy and the predicted docking
energy is 0.61, using 100 molecules with the lowest objective function value among the generated
molecules. This implies that the trained prediction model predicts the dataset and the docking energy
of the newly generated molecules accurately.

2.4. Possible Limitations of the V-Dock Approach

The fundamental assumption of V-dock is that the docking score of a novel molecule is
correlated with its true binding affinity to a target protein. In other words, the efficiency of
V-dock heavily depends on the accuracy of the docking score. Thus, one of the most critical
limitations of V-dock is that the correlation between docking scores and experimental
binding affinities varies by targets [31,32]. Although no existing docking score is perfectly
correlated with all protein-ligand complexes in general, the large-scale benchmark by Wang
et al. with 2002 protein-ligand complexes showed that the scoring function of Autodock
Vina is correlated with experimental binding affinities reasonably well [33]. Autodock
Vina achieved the best scoring power from the benchmark, the highest correlation between
docking scores and experimental affinities, with an average Pearson correlation coefficient
of 0.564, among all tested docking programs, including commercial programs. In summary,
the Autodock Vina score is one of the best approximations available at present.

2.5. Drug-likeness of the Generated Molecule

To further confirm the drug-likeness of the generated molecules, the seven properties
considered for QED (molecular weight, log P, number of hydrogen bond donors, number of
rotatable bonds, number of aromatic rings, and surface area of molecules) were compared
with SureChEMBL (Figure 7). The seven physicochemical properties of a given molecule
are calculated using the RDKit library version 2019.09. The comparison showed that the
molecules generated using the V-Dock method satisfy Lipinski’s rule of five better than
those present in SureChEMBL. For the molecules generated using the V-Dock method,
there were no molecules with a molecular weight of 500 Da or more and a log P of 5 or
higher. The numbers of H-bond acceptors and donors were not more than ten and five,
respectively. Finally, the number of rotatable bonds, the number of aromatic rings, and the
total polar surface area were found to be 10, 5, and 140 Å2 or less, respectively. Therefore, we
confirmed that the physical properties of the generated molecules had favorable conditions
for drug-likeness. For molecules present in SureChEMBL, the molecular weights were
widely distributed, and there were molecules with molecular weights higher than 500 Da
and many molecules with log P values greater than 5. In these molecules, five other
properties were also widely distributed without satisfying Lipinski’s rule of five.
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Figure 7. Properties of the 500 molecules produced (molecular weight, log P, number of H-bond donor-acceptors, number
of aromatic rings, number of rotatable bonds, and total polar surface area) compared to the corresponding properties of the
500 molecules from SreChEMBL with the highest similarity.
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3. Materials and Methods
3.1. Overall Workflow of V-Dock

The workflow of this study is shown in Figure 8. As the first step, we randomly
selected 100,000 molecules from the SureChEMBL database. Docking calculations were
performed using this subset, and these data were used to train a docking energy predic-
tion model based on SMILES. Using this predictive model and the molecular sampling
algorithm, MolFinder, we designed molecules via global optimization of the desired physic-
ochemical properties. Finally, the predicted docking energies of the generated molecules
were confirmed using docking calculations. Through this, we demonstrated that with the
assistance of predicted docking scores, novel molecules with high docking energies and
desirable physical properties could be quickly generated using only SMILES, even with
limited experimental data.
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3.2. Molecular Database

Molecules from the SureChEMBL dataset retrieved on 20 August 2020, were used to
train predictive models for predicting docking energy and carrying out docking compu-
tations [34]. The SureChEMBL database consists of publicly patented molecules related
to biological targets. There were 20,227,433 molecules in the database, of which we used
the SMILES representation of 100,000 randomly extracted molecules. SMILES strings in
this dataset were used for protein-ligand docking calculations. For MolFinder calcula-
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tions, we used the ChEMBL [35] dataset (containing 1,941,412 molecules) to select the
initial molecules. ChEMBL was used to increase the diversity of the initial bank than
SureChEMBL. The ChEMBL dataset version 27, published in May 2020, was downloaded
and used. Among the molecules available in the dataset, 500 randomly extracted molecules
were used as the MolFinder input.

3.3. Protein-Ligand Docking Energy Calculations

In this study, Werner syndrome helicase (WRN) was used as the target protein [36]
(Figure 9). The crystal structure of the protein was downloaded and used from the RCSB
Protein Data Bank (PDB) dataset with a PDB ID of 6YHR [37]. We converted the PDB file
to the pdbqt format to perform docking calculations using the SMILES of ligands obtained
from the SureChEMBL dataset. The openbabel program was used to convert the dataset
with the pdbqt format [38]. The partial charges of atoms were calculated using the Gasteiger
partial charge calculation method, which is the default option for openbabel [39]. The -h
option was used to add hydrogens to the molecule, and the—gen3d option was used to
create the 3D structure of the molecule. The Autodock-tools program was used to prepare
binding pockets where proteins and ligands interact. Using Autodock tools, we calculated
the center of mass where adenosine diphosphate (ADP) (x = −21.277, y = −13.171 and
z = 38.710), a native ligand of 6YHR, was attached and set it as the origin. Subsequently, the
ADP was deleted, and a 30 Å three-dimensional grid box with the number of x-elements,
y-elements, and z-elements of 31 was generated and used as a binding pocket.

Figure 9. (a) Crystal structure of WRN. (b) Ligands binding to proteins. Proteins are expressed in the form of blue ribbons
and ligands are expressed in the form of sticks. The ligand shown (ADP) is a na-tive ligand of WRN.

AutoDock Vina version 1.1.2 [40] was used for protein-ligand docking. The nrun
option, the number of independent docking simulations per molecule, was set to 9. The
lowest docking energy was used as the docking energy for that molecule. It required about
12 h with 168 Xeon Gold 6132 cores to complete the docking of 100,000 molecules of the
ChEMBL library with Autodock Vina.

To predict the docking scores of newly generated molecules via MolFinder, these data
were used as training data for docking energy prediction models. Furthermore, docking
calculations of 100 molecules were performed with the best objective function value among
the newly generated molecules using MolFinder. They were then compared with the lowest
docking energy among 100,000 random molecules from SureChEMBL.

3.4. Docking Score Prediction Model

One of the fundamental assumptions of this study is that docking calculations of many
molecules can be used to extract information on protein-ligand interactions even when
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experimental data is insufficient. We started with the SMILES strings of the SureChEMBL
dataset as input data and generated pre-computed docking scores as output data. We also
converted SMILES into feature vectors using an RDKit to use SMILES in machine learning
algorithms for predictive model learning. Feature vectors consist of the RDKfingerprint [41],
MACCS key [42], and molecular descriptors.

In this study, SMILES was converted to RDKit fingerprint (2048 bit) and used. In
addition to this 2048 RDKit fingerprint, MACCS key-based fingerprints of 166 bits were
combined. A total of 17 molecular descriptors were additionally used to consider the
overall physical properties of the molecule (Table 1). In summary, a single SMILES string
was converted into a 2232-dimensional vector by combining the molecular descriptors with
the fingerprint bits.

Table 1. Types of molecular descriptors.

Feature Name Describe

HBD Number of hydrogen bond donors
HBA Number of hydrogen bond acceptors

Rotatable bond Number of rotatable bonds
Ring Number of rings

Radical Number of radicals
Heteroatoms Number of hetero atoms
Heterocycles Number of heterocycles
LipinskiHBA Number of Lipinski H-bond acceptors
LipinskiHBD Number of Lipinski H-bond donors

AromaticCarbocycles Number of Aromatic carbocycles
AromaticHeterocycles Number of Aromatic heterocycles

AmideBonds Number of Amide bond
AliphaticCarbocycles Number of Aliphatic carbocycles
AliphaticHeterocycles Number of Aliphatic heterocycles

FractionCSP3 Fraction of C atoms that are SP3 hybridized
LabuteASA Labute Accessible Surface Area

TPSA Topological polar surface area

As the first step in this conversion process, SMILES must be converted to mol-type
variables in RDKit to use RDKit modules. Of the 100,000 molecules, 85,432 molecules were
used to complete the docking calculations, of which 85,161 were converted to mol types.
The docking simulations of 14,568 molecules were not completed, mainly because of their
large sizes, which were larger than the grid box size of 30 Å. These molecules were ignored
in further calculations.

Thus, 85,161 molecules were used as the final dataset. Of these, 80% (68,129) were
used as training data, and 20% (17,032) were used as the test data. The PyTorch [43] deep
learning library was used to train the predictive models. The structure of the docking
energy prediction model is a multilayer perceptron (MLP) model (Figure 10a).

Before inputting data into the first dense layer, the input vectors were batch-normalized.
After batch normalization, the input dimension was put into the first layer, and output was
set as 1024 dimensions through the ELU activation function [44]. The output value in the
1024 dimension was used as the input layer of the second layer, and an output vector in
528 dimensions was obtained through the activation function. Finally, 528-dimensional
vectors were used as the input layer of the third layer, and the value of the last layer was
recorded as the output value. This single scalar value was considered as the predicted
docking energy of the molecule. This network structure was trained for 200 epochs, and
Adam [45] was used as the optimizer. The learning rate was used as the default value of
0.001, and the dropout rate was 0.3 for the training.
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Figure 10. (a) Structure of the network of docking energy prediction models. (b) Results of training the prediction model.
The network’s input used a 2232-dimensional feature vector that combines 17 molecular descriptors, including RDKit
fingerprint, MACCS key, and RDKit fingerprint obtained from the molecule’s SMILES. The network output is the predicted
docking energy for the Autodock Vina docking energy. In this network, the activation function used the ELU function and
Adam as an optimizer. A total of 200 epochs were calculated.

3.5. Objective Function

An objective function is a function that quantitatively evaluates the desired properties
of a molecule. In this study, the objective function was designed as a linear combination
of three properties: the predicted docking score, the QED value [27] indicating the drug-
likeness of a molecule, and the similarity to a reference molecule.

The equation of the objective function used in this study is:

R(m) = ωDD(m)− ωQQ(m)− ωSS(m ; mref) (1)

Equation (1). Purpose function for the molecular design for WRN.
In the above equation, D(m) is the docking energy obtained from the previously

trained docking energy prediction model and indicates the predicted value of the binding
energy between the desired target protein and the ligand. ωD is the weight of D(m). In this
work, the values of ωD were calculated to be 0.1, 0.05, 0.03, and 0.01. Q(m) is a quantitative
evaluation of the drug-likeness of a given molecule as a QED [27] ranging between 0 and
1; the closer it is to 1, the higher is the drug-likeness. ωQ is the weight of Q(m). Finally,
similarity S(m;mref) was considered to obtain a molecule similar to the reference molecule.
ωS is the weight of S(m; mref). Initially, ωQ and ωS are set to one because both terms range
from 0 to 1. After obtaining the RDKit fingerprint (2048 bits) of the molecules, the Tanimoto
similarity was calculated to calculate this. As the target protein of this study, WRN, has
few known inhibitors, we used the information of the inhibitor of BLM [46,47], a very
similar protein to WRN (Figure 11 and Supplementary Figure S16). In other words, we
attempted to generate a molecule with high similarity to a molecule that acts as a known
inhibitor of BLM. In this study, we used ML216, an inhibitor of BLM helicase, as a reference
molecule [46] (Figure 11).
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Finally, we also wanted to satisfy Lipinski’s rule of five to generate more drug-like
molecules. We penalized the objective function value by adding an arbitrarily large number
of 1000 to the predicted docking energy if the molecular weight was greater than 500 Da
and the log P was greater than 5. In addition, the radicals were penalized.

Figure 11. ML216, the known inhibitor of BLM and WRN helicases.

3.6. Molecular Generation Using MolFinder

This work aims to design drug-like molecules with desirable properties by combining
docking score prediction models and the global molecular property optimization approach,
MolFinder [2]. MolFinder performs global optimization of a given objective function
through combinatorial optimization of SMILES based on the conformational space anneal-
ing (CSA) algorithm. The algorithm has the advantage of maintaining the diversity of a set
of molecules rather than performing physical optimization based on one molecule, and
thus generating more diverse molecules. Previously, we showed that MolFinder gener-
ates molecules with better objective function values compared to the existing generative
models using reinforcement learning [2]. It should be noted that MolFinder is a general
optimization program that finds optimal molecules with any given objective function. In
addition, V-Dock can be combined with any optimization method. For example, various
RL approaches can be used for V-Dock by using a docking score predictor as a reward
function or a part of it.

MolFinder randomly selects a set number of molecules from ChEMBL and stores them
in a bank. Here, the molecules with higher objective function values are preferred molecules.
The preferred molecules were selected to generate child molecules using crossover and
mutation operations. For each preferred molecule, the crossover operation produced
20 child molecules. The mutation operation on 20 child molecules through replacement,
removal, and addition, resulted in 80 child molecules for one preferred molecule [2].
Generated child molecules were compared to the bank molecules, and they were compared
with the objective functions of the most similar molecules. At this point, the molecules
in the bank were updated with molecules having higher objective function values. If the
similarity between a molecule and a child molecule in the bank was lower than the average
similarity divided by 2, replacement with a molecule having a better objective function
value took place after comparing it to the molecule with the worst objective function value
in the bank. By iterating these methods, the desired molecules were optimized by updating
the bank. Therefore, we set the number of molecules (Nbank) in the input and output of
the molecular bank as 500 and the value of the preferred molecule (Nseed) as 300. We
also iterated the MolFinder calculations 100 times to generate molecules with the highest
objective function value.

4. Conclusions

This work proposes a computational workflow for generating drug-like molecules by
combining the docking energy predictor using SMILES and the efficient global optimization
of molecular properties. We used the MolFinder molecular property optimization method
to generate molecules that satisfied the desired properties. In this study, we attempted
to generate novel molecules that simultaneously satisfied three properties: high docking
score, QED, and similarity to a reference molecule. We showed that the average docking
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energy of the generated 500 novel molecules was −7.81 kcal/mol, which is comparable
to that of the known inhibitor, ML216. The mean QED and the mean similarity to ML216
were 0.91 and 0.58, respectively. These results demonstrate that the V-Dock workflow is a
highly efficient and novel molecular property optimization scheme. When calculating and
comparing the seven properties of QED (molecular weight, log P, number of hydrogen-
bonded donor-acceptors, and surface area of molecules) of the generated molecules, we
identified that the generated molecules satisfied Lipinski’s rule of five very well. We also
showed that V-dock is 255 times faster than actual docking computations and offers an
accurate prediction with a correlation coefficient of 0.61. These results demonstrate that
using V-Dock enables the fast generation of novel inhibitor candidates for target molecules
without sufficient experimental data. As many target molecules do not contain many
experimental data, we believe that our V-Dock approach will expand and accelerate the
scope of computational drug discovery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222111635/s1.

Author Contributions: Conceptualization, J.L.; methodology, J.L.; software, J.C.; validation, J.L. and
J.C.; data curation, J.L. and J.C.; writing—original draft preparation, J.C.; writing—review and editing,
J.C. and J.L.; supervision, J.L.; project administration, J.L.; funding acquisition, J.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grants
funded by the Korean government (MSIT) (Nos.2019M3E5D4066898). This work was also supported
by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No.2018R1C1B600543513). This work was supported by the Korea Environment Industry & Technol-
ogy Institute (KEITI) through the Technology Development Project for Safety Management of House-
hold Chemical Products, funded by the Korea Ministry of Environment (MOE) (KEITI:2020002960002
and NTIS:1485017120).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code and all data are freely available at https://github.com/knu-
chem-lcbc/V-dock (accessed on 19 August 2021).

Acknowledgments: Authors thank Junsu Ha for helping developing a docking score predictor.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, M.-Q.; Wilkinson, B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol. 2007, 18, 478–488. [CrossRef]

[PubMed]
2. Kwon, Y.; Lee, J. MolFinder: An evolutionary algorithm for the global optimization of molecular properties and the extensive

exploration of chemical space using SMILES. J. Chemin. 2021, 13, 24. [CrossRef] [PubMed]
3. Gottipati, S.K.; Sattarov, B.; Niu, S.; Pathak, Y.; Wei, H.; Liu, S.; Blackburn, S.; Thomas, K.; Coley, C.; Tang, J.; et al. Learning

to navigate the synthetically accessible chemical space using reinforcement learning. In Proceedings of the 37th International
Conference on Machine Learning (ICML 2020), Vienna, Austria, 12–18 July 2020; pp. 3668–3679.

4. Zhou, Z.; Kearnes, S.; Li, L.; Zare, R.N.; Riley, P. Optimization of Molecules via Deep Reinforcement Learning. Sci. Rep. 2019, 9,
10752. [CrossRef] [PubMed]

5. Horwood, J.; Noutahi, E. Molecular Design in Synthetically Accessible Chemical Space via Deep Reinforcement Learning. ACS
Omega 2020, 5, 32984–32994. [CrossRef]

6. Yoshimori, A.; Kawasaki, E.; Kanai, C.; Tasaka, T. Strategies for Design of Molecular Structures with a Desired Pharmacophore
Using Deep Reinforcement Learning. Chem. Pharm. Bull. 2020, 68, 227–233. [CrossRef]

7. Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018, 4, eaap7885. [CrossRef]
8. Domenico, A.; Nicola, G.; Daniela, T.; Fulvio, C.; Nicola, A.; Orazio, N. De Novo Drug Design of Targeted Chemical Libraries

Based on Artificial Intelligence and Pair-Based Multiobjective Optimization. J. Chem. Inf. Model. 2020, 60, 4582–4593. [CrossRef]
9. White, C.C.; White, D.J. Markov decision processes. Eur. J. Oper. Res. 1989, 39, 1–16. [CrossRef]
10. Lim, J.; Hwang, S.-Y.; Moon, S.; Kim, S.; Kim, W.Y. Scaffold-based molecular design with a graph generative model. Chem. Sci.

2020, 11, 1153–1164. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms222111635/s1
https://www.mdpi.com/article/10.3390/ijms222111635/s1
https://github.com/knu-chem-lcbc/V-dock
https://github.com/knu-chem-lcbc/V-dock
http://doi.org/10.1016/j.copbio.2007.10.005
http://www.ncbi.nlm.nih.gov/pubmed/18035532
http://doi.org/10.1186/s13321-021-00501-7
http://www.ncbi.nlm.nih.gov/pubmed/33736687
http://doi.org/10.1038/s41598-019-47148-x
http://www.ncbi.nlm.nih.gov/pubmed/31341196
http://doi.org/10.1021/acsomega.0c04153
http://doi.org/10.1248/cpb.c19-00625
http://doi.org/10.1126/sciadv.aap7885
http://doi.org/10.1021/acs.jcim.0c00517
http://doi.org/10.1016/0377-2217(89)90348-2
http://doi.org/10.1039/C9SC04503A


Int. J. Mol. Sci. 2021, 22, 11635 17 of 18

11. Tran-Nguyen, V.-K.; Rognan, D. Benchmarking Data Sets from PubChem BioAssay Data: Current Scenario and Room for
Improvement. Int. J. Mol. Sci. 2020, 21, 4380. [CrossRef]

12. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021:
New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [CrossRef]

13. Gentile, F.; Agrawal, V.; Hsing, M.; Ton, A.-T.; Ban, F.; Norinder, U.; Gleave, M.E.; Cherkasov, A. Deep Docking: A Deep Learning
Platform for Augmentation of Structure Based Drug Discovery. ACS Cent. Sci. 2020, 6, 939–949. [CrossRef]

14. Berenger, F.; Kumar, A.; Zhang, K.Y.J.; Yamanishi, Y. Lean-Docking: Exploiting Ligands’ Predicted Docking Scores to Accelerate
Molecular Docking. J. Chem. Inf. Model. 2021, 61, 2341–2352. [CrossRef]

15. Svensson, F.; Norinder, U.; Bender, A. Improving Screening Efficiency through Iterative Screening Using Docking and Conformal
Prediction. J. Chem. Inf. Model. 2017, 57, 439–444. [CrossRef]

16. Yanagisawa, K.; Komine, S.; Suzuki, S.D.; Ohue, M.; Ishida, T.; Akiyama, Y. Spresso: An ultrafast compound pre-screening
method based on compound decomposition. Bioinformatics 2017, 33, 3836–3843. [CrossRef]

17. Cherkasov, A.; Ban, F.; Li, Y.; Fallahi, M.; Hammond, G.L. Progressive Docking: A Hybrid QSAR/Docking Approach for
Accelerating In Silico High Throughput Screening. J. Med. Chem. 2006, 49, 7466–7478. [CrossRef]

18. Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [CrossRef]
19. McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: Molecular docking

with deep learning. J. Cheminformatics 2021, 13, 1–20. [CrossRef]
20. Jeon, W.; Kim, D. Autonomous molecule generation using reinforcement learning and docking to develop potential novel

inhibitors. Sci. Rep. 2020, 10, 22104. [CrossRef]
21. Krishnan, S.R.; Bung, N.; Bulusu, G.; Roy, A. Accelerating De Novo Drug Design against Novel Proteins Using Deep Learning. J.

Chem. Inf. Model. 2021, 61, 621–630. [CrossRef]
22. Guo, J.; Janet, J.P.; Bauer, M.R.; Nittinger, E.; Giblin, K.A.; Papadopoulos, K.; Voronov, A.; Patronov, A.; Engkvist, O.; Margreitter,

C. DockStream: A Docking Wrapper to Enhance De Novo Molecular Design. Theor. Comput. Chem. 2021. [CrossRef]
23. Boitreaud, J.; Mallet, V.; Oliver, C.; Waldispühl, J. OptiMol: Optimization of Binding Affinities in Chemical Space for Drug

Discovery. J. Chem. Inf. Model. 2020, 60, 5658–5666. [CrossRef]
24. Brookes, D.; Park, H.; Listgarten, J. Conditioning by adaptive sampling for robust design. In Proceedings of the 36th International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 773–782.
25. Ma, B.; Terayama, K.; Matsumoto, S.; Isaka, Y.; Sasakura, Y.; Iwata, H.; Araki, M.; Okuno, Y. Structure-Based de Novo Molecular

Generator Combined with Artificial Intelligence and Docking Simulations. J. Chem. Inf. Model. 2021, 61, 3304–3313. [CrossRef]
26. Alhossary, A.; Handoko, S.D.; Mu, Y.; Kwoh, C.-K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics

2015, 31, 2214–2216. [CrossRef]
27. Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012,

4, 90–98. [CrossRef]
28. Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and

fragment contributions. J. Chemin. 2009, 1, 8. [CrossRef]
29. Mojumdar, A. Mutations in conserved functional domains of human RecQ helicases are associated with diseases and cancer: A

review. Biophys. Chem. 2020, 265, 106433. [CrossRef]
30. Kategaya, L.; Perumal, S.K.; Hager, J.H.; Belmont, L.D. Werner Syndrome Helicase Is Required for the Survival of Cancer Cells

with Microsatellite Instability. iScience 2019, 13, 488–497. [CrossRef]
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