
entropy

Article

A Residual Network and FPGA Based Real-Time Depth Map
Enhancement System

Zhenni Li 1, Haoyi Sun 1, Yuliang Gao 2 and Jiao Wang 1,*

����������
�������

Citation: Li, Z.; Sun, H.; Gao, Y.;

Wang, J. A Residual Network and

FPGA Based Real-Time Depth Map

Enhancement System. Entropy 2021,

23, 546. https://doi.org/10.3390/

e23050546

Academic Editor:

Fernando Morgado-Dias

Received: 11 March 2021

Accepted: 26 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
lizhenni@ise.neu.edu.cn (Z.L.); haoyisun@outlook.com (H.S.)

2 College of Artificial Intelligence, Nankai University, Tianjin 300071, China; gaoyuliang@mail.nankai.edu.cn
* Correspondence: wangjiao@ise.neu.edu.cn

Abstract: Depth maps obtained through sensors are often unsatisfactory because of their low-
resolution and noise interference. In this paper, we propose a real-time depth map enhancement
system based on a residual network which uses dual channels to process depth maps and intensity
maps respectively and cancels the preprocessing process, and the algorithm proposed can achieve real-
time processing speed at more than 30 fps. Furthermore, the FPGA design and implementation for
depth sensing is also introduced. In this FPGA design, intensity image and depth image are captured
by the dual-camera synchronous acquisition system as the input of neural network. Experiments on
various depth map restoration shows our algorithms has better performance than existing LRMC,
DE-CNN and DDTF algorithms on standard datasets and has a better depth map super-resolution,
and our FPGA completed the test of the system to ensure that the data throughput of the USB 3.0
interface of the acquisition system is stable at 226 Mbps, and support dual-camera to work at full
speed, that is, 54 fps@ (1280 × 960 + 328 × 248 × 3).

Keywords: depth map enhancement; residual network; FPGA; ToF

1. Introduction

Recently, with the proposal of depth map acquisition methods such as structured
light method [1] and time-of-flight (ToF) method [2], various consumer-image sensors
have been developed, such as the Microsoft Kinect and time-of-flight cameras. Meanwhile,
depth maps have also been extensively studied. Depth map is the most effective way to
express the depth information of 3D scenes, and is used to solve problems such as target
tracking [3], image segmentation [4], and object detection [5]. It is widely used in the
emerging applications, such as virtual reality, driving assistance and three- dimensional
reconstruction. However, the depth image obtained through sensors is often unsatisfactory,
and this will adversely affect back-end applications. Therefore, low resolution and noise
interference have become important issues in depth map research.

Many researchers have proposed various methods to reconstruct high-quality depth
maps. The depth map enhancement algorithm focuses on repair and super-resolution
(SR). General depth map repair algorithms have adopted the method of joint filtering. The
methods of depth map SR can be divided into three categories: (1) multiple depth map
fusion; (2) image-guided depth map SR; (3) single depth map SR [6]. Xu et al. [7] fused
depth maps through multi-resolution contourlet transform fusion, which not only retains
image contour information but also improves the quality of the depth map. Li et al. [8]
introduced synchronized RGB images to align with the depth image, and preprocessed
the color image and the depth image to extract the effective supporting edge area, which
ensured the edge details of the image while repairing the depth map. Zuo et al. [9] proposed
a frequency-dependent depth map enhancement algorithm via iterative depth guided affine
transformation and intensity-guided refinement, and improved performances based on
qualitative and quantitative evaluations are demonstrated.

Entropy 2021, 23, 546. https://doi.org/10.3390/e23050546 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23050546
https://doi.org/10.3390/e23050546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23050546
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23050546?type=check_update&version=1

Entropy 2021, 23, 546 2 of 23

To approximate the real depth map, it is hard to train the depth map to be repaired
directly, however, if the jump structure of residual network (ResNet) is adopted, then the
training goal becomes to approximate the difference, which is between the depth map to be
repaired and the real depth map. Besides, the most widely used implementation platforms
are graphics processing unit (GPU) and the field-programmable gate array (FPGA). GPUs
support parallel computing, which is essential to achieve real-time performance, although
they are very power-consuming and therefore not suitable for embedded applications. In
contrast, FPGA is able to support stereo vision system computations with lower power
consumption and cost. Therefore, FPGA design for stereo vision systems has become an
active research topic in recent years.

In this paper, we propose a depth map enhancement algorithm based on residual
network and introduce the FPGA design and implementation for depth sensing. The
network uses a fully convolutional network, which eliminates the preprocessing process
in the existing algorithm and deepens the network structure. For the problems in deep
network training, a batch standardization and residual structure is proposed. Our method
uses peak signal to noise ratio (PSNR) and root mean square error (RMSE) for evaluation.
Experiments show that the system has reached the predetermined performance index. In
summary, the main contributions of this paper are as follows:

(1) We design a dual-camera synchronous acquisition system based on FPGA and collect
intensity map and depth map at the same time as the input of neural network.

(2) We propose a depth map enhancement algorithm based on residual network, extract-
ing features from the acquired intensity map and depth map in two ways, and then
performing fusion and residual calculation. The result shows our proposed network
has better performance than existing low-rank matrix completion (LRMC) [10], de-
noise and enhance convolutional neural network (DE-CNN) [11] and data-driven
tight frame (DDTF) [12] algorithms on standard dataset.

(3) We have completed the test of the system to ensure that the data throughput of the
USB interface of the acquisition system is stable at 226 Mbps and support dual-camera
to work at full speed, 54 fps@ (1280 × 960 + 328 × 248 × 3).

However, some limitations of our proposal are as follows:

(1) The acquisition system consists of multiple development boards, which are bulky and
not flexible enough, so it is necessary to design an all-in-one board, which concentrates
the FPGA, TC358748, CYUSB3014 and other chips in the acquisition system on one
printed circuit board (PCB).

(2) The acquisition program runs on the central processing unit (CPU), but the current
single-threaded sequential processing will consume a lot of time, and the system will
become less real-time.

The rest of this paper is organized as follows. In Section 2, we discuss the related work
including the residual network design and FPGA design of image acquisition system. In
Section 3, the details of the proposed algorithm are presented. Details of hardware architec-
tures and system implementation are shown in Section 4. In Section 5, the experimental
results are given in terms of the enhanced performance indicators of the depth map. Finally,
we conclude this paper in Section 6.

2. Related Work
2.1. Residual Network Design

High quality depth images are often applied in the field of computer vision, and many
works introduce deep learning into various image processing applications, such as depth
map enhancement. Ni et al. [13] proposed a color-guided convolutional neural network
method for depth map super resolution. They adopted a dual-stream convolutional
neural network, which integrates the color and depth information simultaneously, and
the optimized edge map generated by the high-resolution color image and low-resolution
depth map is used as additional information to refine the object boundary in the depth map.

Entropy 2021, 23, 546 3 of 23

The algorithm can effectively obtain depth maps, but cannot take the low super resolution
depth map and high super resolution color image as inputs and directly outputs the high
super resolution depth map. Zhou et al. [14] proposed a deep neural network structure that
implements end-to-end mapping between low-resolution depth maps and high-resolution
depth maps and proved that deep neural networks were superior to many state-of-the-art
algorithms. Chen et al. [15] proposed a single depth map super-resolution method based
on convolutional neural networks. Super-resolution is achieved by obtaining high-quality
edge maps from low-quality depth images, thereby using high-quality edge maps as the
weight of the regularization term in the total variation (TV) model. Korinevkava and
Makarov [16] proposed two deep convolutional neural networks to solve the problem
of single depth map super-resolution. This method has good performance on the RMSE
and PSNR indicators and can process depth map super-resolution in real time with over
25–30 frames per second rate. However, their method cannot be applied to other datasets
because the quality of the results varies heavily.

Li et al. [17] proposed an end-to-end convolution neural network (CNN) combined
with a residual network (ResNet-50) to learn the relationship between the pixel intensity
of RGB images and the corresponding depth map. He et al. [18] developed a model of
a fully connected convolutional auto-encoder where the middle layer information was
also used to estimate the depth. Kumari et al. [19] has developed a convolutional neural
network encoder decoder architecture and their model integrates residual connections
within pooling and up-sampling layers, and hourglass networks which operate on the
encoded feature. Siddiqui et al. [20] proposed a deep regression network using a transfer
learning approach, where an encoder is used to initialize it to extract dense features
and a decoder is used to upsample and predict the desired depth. Schlemper et al. [21]
proposed a framework for reconstructing sequences images from undersampled data using
a deep cascade of convolutional neural networks to accelerate the data acquisition process.
Li et al. [22] treated the depth estimation problem as a construction from a sequence-to-
sequence model, using location information and attention, with dense pixel matching
instead of cost volume.

Compared with existing works, CNN is a basic architecture in depth map enhance-
ment, and some algorithms added encoder and decoder, adopted some ResNet modules in
the hidden layers of the network, or used sequence-to-sequence model. This paper designs
a residual network, which uses dual channels to process depth maps and intensity maps
respectively, then calculates the residual of depth maps and the output of network and
cancels the preprocessing process. For the function of depth map restoration, this algorithm
improves PSNR by 3 dB. For the super-resolution function of depth map, this algorithm
reduces RMSE by more than 10 times. In addition, the processing speed of this algorithm
is also greatly improved, because it does not need CPU to participate in the calculation, so
GPU can be used to achieve good acceleration effects.

2.2. FPGA Design of Image Acquisition System

With the increasing non-repetitive engineering (NRE) cost and design cycle of applica-
tion specific integrated circuit (ASIC), FPGA design of stereo vision has gradually become
an active research topic in recent years [23]. FPGAs are able to find an optimal trade-off
between performance, energy efficiency, fast development and cost, therefore, they are
widely adopted in neural network applications [23–25]. And FPGA design of stereo vision
systems has become an active research topic in recent years.

With the progress of the stereo correspondence algorithms [26,27], a large number
of FPGA architectures have been proposed. Dong et al. [28] designed the image acqui-
sition and processing system of the color sorter based on FPGA. They completed the
construction of the hardware platform and the design of the image processing algorithms.
Their experiment confirmed that the system based on FPGA had high-speed and high-
precision performance. Manabe et al. [29] proposed a real-time processing system for
super-resolution moving images based on CNN. The system can perform super-resolution

Entropy 2021, 23, 546 4 of 23

between 960 × 540 and 1920 × 1080 at 60 fps. Shandilya et al. [30] applied image en-
hancement based on FPGA to the automatic vehicles number plate (AVNP) problem and
achieved image enhancement by estimating the best value of various aspects of image
quality. Prashant et al. [31] processed blurred or useless image information on a FPGA
SPARTAN 3 XC3S500E board and obtained high-quality images by image fusion. However,
the detailed FPGA implementation is not described. In contrast, Pfeifer et al. [32] imple-
mented an active stereo vision system on a Xilinx Zynq-7030 SoC. The system provides
a computation speed of 12.2 fps, at a resolution of 1.3 megapixel, but the system cannot
deal with higher resolutions. Lee et al. [33] designed a stereo matching accelerator that
achieved 41 fps@480 × 270 performance on the KU040 FPGA board, but it could not deal
with high-resolution images and needed to be converted to 480 × 270 resolution.

Compared with the above mentioned system, a synchronous real-time acquisition
system of dual cameras based on FPGA is implemented, which can accurately control ToF
camera and visible light camera to acquire images synchronously, and transmit the data to
the back-end acceleration platform in real time through USB3.0 interface. The FPGA design
in this paper has a certain improvement in computing speed and depth map quality. In
addition, the data throughput of the USB interface in the system proposed can be stabilized
at 226 Mbps, and supports dual cameras to work at full speed.

3. Materials and Methods

In this section, we have proposed a CNN-based model to estimate the depth informa-
tion from the single image by integrating the residual depth image.

3.1. CNN Architecture and ResNet

CNN architectures usually include a contractive part that progressively reduces the
resolution of the input image through a series of convolution and pooling operations,
however, in regression problems, if the output is expected to be a high-resolution image,
some form of upsampling is required to obtain a larger output map. However, with the
increasing number of network layers, a degradation problem might occur. ResNet [34] is a
deep convolutional network proposed in 2015, which addressed the degradation problem.

As shown in Figure 1, ResNet uses shortcut connection as the basic structure of the
network, and the output of network A can be defined as H(x) = F(x) + x, where x denotes
the output of network B and F(x) represents the residual mapping to be learned. After
adding the identity mapping, if F(x) converges to 0, then, which means that network A
achieves almost the same effect as network B.

Entropy 2021, 23, x FOR PEER REVIEW 4 of 23

experiment confirmed that the system based on FPGA had high-speed and high-precision
performance. Manabe et al. [29] proposed a real-time processing system for super-resolu-
tion moving images based on CNN. The system can perform super-resolution between
960 × 540 and 1920 × 1080 at 60 fps. Shandilya et al. [30] applied image enhancement based
on FPGA to the automatic vehicles number plate (AVNP) problem and achieved image
enhancement by estimating the best value of various aspects of image quality. Prashant et
al. [31] processed blurred or useless image information on a FPGA SPARTAN 3 XC3S500E
board and obtained high-quality images by image fusion. However, the detailed FPGA
implementation is not described. In contrast, Pfeifer et al. [32] implemented an active ste-
reo vision system on a Xilinx Zynq-7030 SoC. The system provides a computation speed
of 12.2 fps, at a resolution of 1.3 megapixel, but the system cannot deal with higher reso-
lutions. Lee et al. [33] designed a stereo matching accelerator that achieved 41 fps@480 ×
270 performance on the KU040 FPGA board, but it could not deal with high-resolution
images and needed to be converted to 480 × 270 resolution.

Compared with the above mentioned system, a synchronous real-time acquisition
system of dual cameras based on FPGA is implemented, which can accurately control ToF
camera and visible light camera to acquire images synchronously, and transmit the data
to the back-end acceleration platform in real time through USB3.0 interface. The FPGA
design in this paper has a certain improvement in computing speed and depth map qual-
ity. In addition, the data throughput of the USB interface in the system proposed can be
stabilized at 226 Mbps, and supports dual cameras to work at full speed.

3. Materials and Methods
In this section, we have proposed a CNN-based model to estimate the depth infor-

mation from the single image by integrating the residual depth image.

3.1. CNN Architecture and ResNet
CNN architectures usually include a contractive part that progressively reduces the

resolution of the input image through a series of convolution and pooling operations,
however, in regression problems, if the output is expected to be a high-resolution image,
some form of upsampling is required to obtain a larger output map. However, with the
increasing number of network layers, a degradation problem might occur. ResNet [34] is
a deep convolutional network proposed in 2015, which addressed the degradation prob-
lem.

As shown in Figure 1, ResNet uses shortcut connection as the basic structure of the
network, and the output of network A can be defined as Hሺxሻ = Fሺxሻ + x, where x denotes
the output of network B and Fሺxሻ represents the residual mapping to be learned. After
adding the identity mapping, if Fሺxሻ converges to 0, then, which means that network A
achieves almost the same effect as network B.

Figure 1. Shortcut connection.

In Inception-v4 [35], the author combined the residual and inception structures and
found that residual was able to accelerate the training of the inception network with a

Figure 1. Shortcut connection.

In Inception-v4 [35], the author combined the residual and inception structures and
found that residual was able to accelerate the training of the inception network with a
small improvement in accuracy. And in this paper, we design a CNN network combined
with a residual network, and specific improvements will be discussed in the next section.

Entropy 2021, 23, 546 5 of 23

3.2. Proposed Neural Network Design

The network structure designed in this paper is shown in Figure 2. The input is
the intensity map and depth map, referring to the full convolutional and multi-branch
design idea of GoogleNet [35]. The intensity map and depth map are input to the two
convolutional networks separately to extract the feature maps, followed by fusion and
residual calculation. Compared with DE-CNN [11], there are four major improvements in
our network structure:

1. Dividing the depth map and intensity map into two separate channels, which is
different from DE-CNN where the depth map and intensity map are placed in the
two channels of the input image;

2. Removing the pooling layer, which enables more accurate feature maps to be extracted;
3. Deepening the network structure, which provides better representation than the

shallow network in DE-CNN. Meanwhile, to address the problem of gradient van-
ishing and degradation problem when training deep neural networks, the batch
normalization and residual structure are adopted;

4. Remove pre-processing. CNN has a more robust performance compared to conven-
tional algorithms.

Entropy 2021, 23, x FOR PEER REVIEW 5 of 23

small improvement in accuracy. And in this paper, we design a CNN network combined
with a residual network, and specific improvements will be discussed in the next section.

3.2. Proposed Neural Network Design
The network structure designed in this paper is shown in Figure 2. The input is the

intensity map and depth map, referring to the full convolutional and multi-branch design
idea of GoogleNet [35]. The intensity map and depth map are input to the two convolu-
tional networks separately to extract the feature maps, followed by fusion and residual
calculation. Compared with DE-CNN [11], there are four major improvements in our net-
work structure:
1. Dividing the depth map and intensity map into two separate channels, which is dif-

ferent from DE-CNN where the depth map and intensity map are placed in the two
channels of the input image;

2. Removing the pooling layer, which enables more accurate feature maps to be ex-
tracted;

3. Deepening the network structure, which provides better representation than the shal-
low network in DE-CNN. Meanwhile, to address the problem of gradient vanishing
and degradation problem when training deep neural networks, the batch normaliza-
tion and residual structure are adopted;

4. Remove pre-processing. CNN has a more robust performance compared to conven-
tional algorithms.

Figure 2. The proposed network structure.

In this paper, we adopt the Caffe framework to implement the network as shown in
Figure 2. The basic data structure of Caffe is a four-dimensional array called Blob, in order
from outside to inside, starting from N (the number of input images per batch, axis = 0),
C (the number of channels of the image, axis = 1), H (the height of the image, axis = 2) and
W (the width of the image, axis = 3), i.e., 𝑁 × 𝐶 × 𝐻 × 𝑊. We place the depth data in chan-
nel 0 and the intensity data corresponding to the depth data in channel 1. Thus, the data
is first split from the C dimension (axis = 1) using the Slice layer provided by Caffe. And
after extracting the features of the depth map and the intensity map separately, the two
parts of the feature map are connected along the C dimension (axis = 1) using the Concat
layer.

Figure 2. The proposed network structure.

In this paper, we adopt the Caffe framework to implement the network as shown in
Figure 2. The basic data structure of Caffe is a four-dimensional array called Blob, in order
from outside to inside, starting from N (the number of input images per batch, axis = 0), C
(the number of channels of the image, axis = 1), H (the height of the image, axis = 2) and W
(the width of the image, axis = 3), i.e., N × C× H ×W. We place the depth data in channel
0 and the intensity data corresponding to the depth data in channel 1. Thus, the data is first
split from the C dimension (axis = 1) using the Slice layer provided by Caffe. And after
extracting the features of the depth map and the intensity map separately, the two parts of
the feature map are connected along the C dimension (axis = 1) using the Concat layer.

As shown in Figure 2, the convolutional layers can be divided into 2 categories. The
first class of convolutional layers consists of 4 parts: convolution, bias, batch normalization
and ReLU activation function. Assume that in the lth convolutional layer, the ith output
feature map and its corresponding bias terms are ql

i and bl
i , the jth input feature map is pl

j,

and the feature map pair
(

ql
i , pl

j

)
corresponds to the convolution kernel W l

ij.The first class
of convolutional layers can be represented as:

Entropy 2021, 23, 546 6 of 23

ql
i = f

(
BNγ,β

(
∑

j

(
W l

ij ∗ pl
j

)
+ bl

i

))
(1)

The second class of convolutional layer consists of convolution and bias operations
only, without batch normalization and ReLU activation functions. The second class of
convolutional layers can be represented as:

ql
i = ∑

j

(
W l

ij ∗ pl
j

)
+ bl

i (2)

It is very difficult to directly train the depth map to be repaired to approximate the
real depth map. However, if the structure of ResNet is adopted, the training goal becomes
to approximate the difference between the depth map to be repaired and the real depth
map, which needs to be normalized to [0, 1] before the image is input to the network, so the
approximate difference is relatively small, and empirically it is easier for ResNet to train
such data successfully.

According to Inception-v4 Network, some of the convolution kernels are 1× 1, 3× 3,
and in paper [36], the author argues two 3× 3 convolution filters are equivalent to one
5× 5 convolution filter, with fewer parameters than one 5× 5 convolution filter and make
network deeper and extract more complex features. So 3× 3 convolution filter is adopted
in this architecture. Besides, the image is padded with zero to make the output image the
same size as the input image. And there are three similarities between the settings of the
above two classes of convolutional layers:

(1) The size of the convolution kernel is 3 × 3;
(2) The strides are set to one and the edges are padded with zero;
(3) MSRA [31] initialization is applied.

Assuming that the input is a feature vector X = (x1, x2, . . . xm), and the output feature
vector is Y = (y1, y2, . . . ym), with the scaling factor γ and the translation parameter
β initialized to 1 and 0 respectively, then the batch normalization can be described as
Algorithm 1.

Algorithm 1. Compute Batch Normalization. Default settings are γ = 1, β = 1, λ = 0.99,
ε = 0.01

Input: The feature vector X = (x1, x2, . . . xm)
Output: The feature vector Y = (y1, y2, . . . ym)
1: function BATCH NORMALIZATION (X)
2: µX ← 1

m ∑m
i=1 xi (Calculate the mean of Batch)

3: σ2
X ←

1
m ∑m

i=1
(

xi − µβ
)2 (Calculate the variance of Batch)

4: St+1 ← λSt−1 + (1− λ)St (Update the sliding mean and variance)
5: X′ ← X−µX√

σ2
X+ε

(Normalize Z-score)

6: Y ← γX′ + β

7: return Y
8: end function

The batch normalization in Caffe consists of two parts, the BatchNorm layer and the
Scale layer, so the first class of convolutional layers requires five Caffe-defined layers for
implementation including Conv, Bias, BatchNorm, Scale and ReLU, while the second class
of convolutional layers requires only two Caffe-defined layers, Conv and Bias.

The BatchNorm layer corresponds to line 2–5, and the Scale layer corresponds to line
6. During the training process, the BatchNorm layer runs in line 2–5, and in addition to
calculating the sliding mean and sliding variance, the scaling factor γ and the translation
parameter β are updated according to the gradient descent algorithm, and these four
parameters are stored in the Caffemodel file after training. Instead, line 2–4 are ignored

Entropy 2021, 23, 546 7 of 23

in the test BatchNorm layer and step 5 is calculated directly using the sliding mean and
sliding variance stored in the Caffemodel file, which avoids depending on the Batch Size
during testing and improves the generalization ability of the network.

3.3. Dataset and Network Training

Binary large object (BLOB) is the standard array structure and unified storage interface
for the entire framework. Caffe uses Blob to store, exchange and manipulate information,
its data type is a four-dimensional array. Encoded image formats such as PNG cannot be
used directly. Instead, Caffe supports three data structures including lightning memory-
mapped database (LMDB), level data base (LevelDB) and hierarchical data format (HDF-5),
which can convert training samples and labels, according to image size, Batch Size and
number of samples, into a four-dimensional array corresponding to the Blob format and
integrate them into a single file. In this paper, HDF-5 is adopted.

Two depth datasets, Middlebury and MPI Sintel [37], are used to provide the training
and test sets. The Middlebury dataset is a depth map taken from the real world using
structured light, which allows for better training of the network, and is also used as a
benchmark when comparing the performance of various depth map restoration algorithms.
However, as shown in Figure 3a, the depth map in the dataset has some holes, which will
affect the training of the restoration function, so we need to pre-process the images in
this dataset.

Entropy 2021, 23, x FOR PEER REVIEW 7 of 23

The BatchNorm layer corresponds to line 2–5, and the Scale layer corresponds to line
6. During the training process, the BatchNorm layer runs in line 2–5, and in addition to
calculating the sliding mean and sliding variance, the scaling factor 𝛾 and the translation
parameter 𝛽 are updated according to the gradient descent algorithm, and these four pa-
rameters are stored in the Caffemodel file after training. Instead, line 2–4 are ignored in
the test BatchNorm layer and step 5 is calculated directly using the sliding mean and slid-
ing variance stored in the Caffemodel file, which avoids depending on the Batch Size dur-
ing testing and improves the generalization ability of the network.

3.3. Dataset and Network Training
Binary large object (BLOB) is the standard array structure and unified storage inter-

face for the entire framework. Caffe uses Blob to store, exchange and manipulate infor-
mation, its data type is a four-dimensional array. Encoded image formats such as PNG
cannot be used directly. Instead, Caffe supports three data structures including lightning
memory-mapped database (LMDB), level data base (LevelDB) and hierarchical data for-
mat (HDF-5), which can convert training samples and labels, according to image size,
Batch Size and number of samples, into a four-dimensional array corresponding to the
Blob format and integrate them into a single file. In this paper, HDF-5 is adopted.

Two depth datasets, Middlebury and MPI Sintel [37], are used to provide the training
and test sets. The Middlebury dataset is a depth map taken from the real world using
structured light, which allows for better training of the network, and is also used as a
benchmark when comparing the performance of various depth map restoration algo-
rithms. However, as shown in Figure 3a, the depth map in the dataset has some holes,
which will affect the training of the restoration function, so we need to pre-process the
images in this dataset.

(a)

(b)

Figure 3. The Aloe scene in Middlebury data set: (a) original; (b) processed by LRMC.

LRMC was a better depth map restoration algorithm, and Figure 3b shows the results
of the LRMC algorithm for the Aloe scene in the Middlebury dataset. Although Si Lu’s
team did not make the code publicly available, the Middlebury dataset processed by the
LRMC algorithm, including 30 sets of RGBD images, is published on the website. In this
paper, 24 of these images were selected for the training set and 2 for the test set. However,
the training sets produced with these images could only train the network up to the level
of the LRMC algorithm at best. Comparing Figure 3a,b, LRMC algorithm blurs the image
edge details, causing some deviation in the correct depth values. The depth map in the
MPI Sintel data set is obtained from the 3D micro animation Sintel using the optical flow
method. Although it is not like the Middlebury data set which can restore the real scene,
it has the advantage of being accurate and free of holes. In order to compensate for the
degraded accuracy of the LRMC-processed depth maps, 64 sets of RGBD images from the
Sintel dataset were selected to supplement the training set, and another 4 sets were se-
lected to supplement the test set. From a data-driven perspective, such a training set al-
lows the network to learn the features of real scenes while considering accuracy issues.

Figure 3. The Aloe scene in Middlebury data set: (a) original; (b) processed by LRMC.

LRMC was a better depth map restoration algorithm, and Figure 3b shows the results
of the LRMC algorithm for the Aloe scene in the Middlebury dataset. Although Si Lu’s
team did not make the code publicly available, the Middlebury dataset processed by the
LRMC algorithm, including 30 sets of RGBD images, is published on the website. In this
paper, 24 of these images were selected for the training set and 2 for the test set. However,
the training sets produced with these images could only train the network up to the level
of the LRMC algorithm at best. Comparing Figure 3a,b, LRMC algorithm blurs the image
edge details, causing some deviation in the correct depth values. The depth map in the
MPI Sintel data set is obtained from the 3D micro animation Sintel using the optical flow
method. Although it is not like the Middlebury data set which can restore the real scene,
it has the advantage of being accurate and free of holes. In order to compensate for the
degraded accuracy of the LRMC-processed depth maps, 64 sets of RGBD images from the
Sintel dataset were selected to supplement the training set, and another 4 sets were selected
to supplement the test set. From a data-driven perspective, such a training set allows the
network to learn the features of real scenes while considering accuracy issues.

To be specific, Ground Truth consists of two parts: 26 depth maps from the Middlebury
dataset processed by LRMC algorithm and 68 original depth maps from the Sintel dataset,
which need to be normalized. And the depth map used in the sample was not processed
by LRMC algorithm. The following methods are adopted to add noise and holes to the
original Y-D image: the selected RGB image is first converted to a greyscale map and
normalized into the range of [0, 1], and then Additive White Gaussian Noise (AWGN) is
added as the Y channel of the input sample; next the original depth map is normalized

Entropy 2021, 23, 546 8 of 23

into the range of [0, 1], and 13% of the pixels of this image are randomly set to 0 as the D
channel of the input sample.

Deep learning requires training samples of at least 104 orders of magnitude, therefore
a simple but efficient data augmentation method is applied to guarantee sufficient training
samples. To be specific, as shown in Figure 4 for Ground Truth and noise-added Y-D
images, the data augmentation in the training process is implemented through flipping left
to right operation, along with rotation 90◦ in up, down, left and right four directions, so we
can get 8 times the data set. Then the stride is set to 20 with 50× 50 patches and discard
patches with lack strides. Finally, there are 400,512 sets of Ground Truth and training
samples in the training set, and 2590 sets of Ground Truth and test samples in the test set.
During the training, we input a batch sample with a batch size of 128 per iteration, and
iterate all batches per epoch.

Entropy 2021, 23, x FOR PEER REVIEW 8 of 23

To be specific, Ground Truth consists of two parts: 26 depth maps from the Middle-
bury dataset processed by LRMC algorithm and 68 original depth maps from the Sintel
dataset, which need to be normalized. And the depth map used in the sample was not
processed by LRMC algorithm. The following methods are adopted to add noise and holes
to the original Y-D image: the selected RGB image is first converted to a greyscale map
and normalized into the range of ሾ0,1ሿ, and then Additive White Gaussian Noise (AWGN)
is added as the Y channel of the input sample; next the original depth map is normalized
into the range of ሾ0,1ሿ, and 13% of the pixels of this image are randomly set to 0 as the D
channel of the input sample.

Deep learning requires training samples of at least 10ସ orders of magnitude, there-
fore a simple but efficient data augmentation method is applied to guarantee sufficient
training samples. To be specific, as shown in Figure 4 for Ground Truth and noise-added
Y-D images, the data augmentation in the training process is implemented through flip-
ping left to right operation, along with rotation 90° in up, down, left and right four direc-
tions, so we can get 8 times the data set. Then the stride is set to 20 with 50 × 50 patches
and discard patches with lack strides. Finally, there are 400,512 sets of Ground Truth and
training samples in the training set, and 2590 sets of Ground Truth and test samples in the
test set. During the training, we input a batch sample with a batch size of 128 per iteration,
and iterate all batches per epoch.

Figure 4. Data augmentation.

The Adam gradient descent algorithm in Caffe Solver is adopted in this paper, and
the parameters 𝛽ଵ, 𝛽ଶ and ϵ use the default values in the literature [38], i.e., 𝛽ଵ = 0.9, 𝛽ଶ = 0.999 and ϵ = 10ି଼. The base learning rate is fixed at 10ିହ. Different from Caffe
model which sets the learning rate of the bias term to twice the learning rate of the weights,
the additional learning rate of the weights is set to 1 and the learning rate of the bias term
is set to 0.1 in this paper.

Assuming that M denotes the number of samples, 𝐷௜ீ ் denotes ground truth, W de-
notes the weight, and 𝑓ሺ𝐷௜, 𝑌௜, 𝑊ሻ denotes the forward function of the whole network, we
can mathematically describe the MSE loss term as follows:

Lሺ𝑊ሻ = 1𝑀 ෍ 12 ฮ𝑓ሺ𝐷௜, 𝑌௜, 𝑊ሻ − ሺ𝐷௜ − 𝐷௜ீ ்ሻฮଶெିଵ
௜ୀ଴ (3)

By adding the L2 regular term, where the default decay weight is set to 5 × 10ିସ, the
MSE error can be denoted as: 𝐽ሺ𝑊ሻ = 𝐿ሺ𝑊ሻ + λ‖𝑊‖ଶ (4)

The server CPU model is an Intel Core i7 6700K with 64 GB of random-access
memory (RAM) and the GPU model is NAVIDA GTX1080 with 8 GB of video memory.
The software environment includes Ubuntu 16.04.4 LTS, Caffe 1.0, CUDA 8.0, CuDNN
6.0.21, TensorRT 4.0.0.3, Python 3.5 and MATLAB 2018a. In addition, two GPUs are re-
quired when setting batch size to 128 for Linux terminal training, otherwise an insufficient
video memory error is prompted.

Figure 4. Data augmentation.

The Adam gradient descent algorithm in Caffe Solver is adopted in this paper, and
the parameters β1, β2 and ε use the default values in the literature [38], i.e., β1 = 0.9,
β2 = 0.999 and ε = 10−8. The base learning rate is fixed at 10−5. Different from Caffe
model which sets the learning rate of the bias term to twice the learning rate of the weights,
the additional learning rate of the weights is set to 1 and the learning rate of the bias term
is set to 0.1 in this paper.

Assuming that M denotes the number of samples, DGT
i denotes ground truth, W

denotes the weight, and f (Di, Yi, W) denotes the forward function of the whole network,
we can mathematically describe the MSE loss term as follows:

L(W) =
1
M

M−1

∑
i=0

1
2
‖ f (Di, Yi, W)−

(
Di − DGT

i

)
‖

2
(3)

By adding the L2 regular term, where the default decay weight is set to 5× 10−4, the
MSE error can be denoted as:

J(W) = L(W) + λ‖W ‖2 (4)

The server CPU model is an Intel Core i7 6700K with 64 GB of random-access memory
(RAM) and the GPU model is NAVIDA GTX1080 with 8 GB of video memory. The software
environment includes Ubuntu 16.04.4 LTS, Caffe 1.0, CUDA 8.0, CuDNN 6.0.21, TensorRT
4.0.0.3, Python 3.5 and MATLAB 2018a. In addition, two GPUs are required when setting
batch size to 128 for Linux terminal training, otherwise an insufficient video memory error
is prompted.

The training error and test error were recorded every 100 iterations and a Snapshot file
was saved. After running 60,000 iterations, the Iteration-Loss curve as shown in Figure 5
can be obtained. It can be seen that as the training proceeds, the loss value decreases
smoothly and eventually the training and testing errors stabilize around 0.5. The best
performance was tested for the 56,000th iteration, and the Caffemodel file from this iteration
will be used to test the performance of the network in the next section.

Entropy 2021, 23, 546 9 of 23

Entropy 2021, 23, x FOR PEER REVIEW 9 of 23

The training error and test error were recorded every 100 iterations and a Snapshot
file was saved. After running 60,000 iterations, the Iteration-Loss curve as shown in
Figure 5 can be obtained. It can be seen that as the training proceeds, the loss value de-
creases smoothly and eventually the training and testing errors stabilize around 0.5. The
best performance was tested for the 56,000th iteration, and the Caffemodel file from this
iteration will be used to test the performance of the network in the next section.

Figure 5. Iteration-Loss curve.

4. Full-Pipeline FPGA Implementation
4.1. Hardware Architecture Overview

The physical connection is shown in Figure 6. The USB 3.0 controller CYUSB3014 [39],
is a chip that internally integrates the physical layers of USB 2.0 and USB 3.0, the 32-bit
microprocessor ARM926EJ-S, and general programmable interface II (GPIF II), a second-
generation general-purpose programmable interface for communication with microcon-
trollers, FPGAs or image sensors. An ON Semiconductor AR0135CS was selected as the
sensor for the visible camera and OPN8008 of OPNOUS was selected as the sensor for the
ToF camera. The camera serial interface 2 (CSI-2) interface used by the OPN8008 is a high-
speed differential serial interface for camera data transmission under the mobile industry
processor interface (MIPI) interface.

Figure 6. Physical connection diagram of the acquisition system.

Then an overview of the proposed FPGA system is discussed here. As shown in
Figure 7, the design of the FPGA mainly includes the initialization module, the clock gen-
eration module and the video capture module. The clock generation module is imple-
mented in FPGA, which uses the VCU118 on-board crystal as the clock source and the
FPGA on-chip clock management module to generate the clock, providing a 27 MHz ref-
erence clock for the AR0135CS, TC358748 and OPN8008, and a 60 MHz DMA clock for
the GPIF II interface.

Figure 5. Iteration-Loss curve.

4. Full-Pipeline FPGA Implementation
4.1. Hardware Architecture Overview

The physical connection is shown in Figure 6. The USB 3.0 controller CYUSB3014 [39],
is a chip that internally integrates the physical layers of USB 2.0 and USB 3.0, the 32-bit
microprocessor ARM926EJ-S, and general programmable interface II (GPIF II), a second-
generation general-purpose programmable interface for communication with microcon-
trollers, FPGAs or image sensors. An ON Semiconductor AR0135CS was selected as the
sensor for the visible camera and OPN8008 of OPNOUS was selected as the sensor for
the ToF camera. The camera serial interface 2 (CSI-2) interface used by the OPN8008 is
a high-speed differential serial interface for camera data transmission under the mobile
industry processor interface (MIPI) interface.

Entropy 2021, 23, x FOR PEER REVIEW 9 of 23

The training error and test error were recorded every 100 iterations and a Snapshot
file was saved. After running 60,000 iterations, the Iteration-Loss curve as shown in
Figure 5 can be obtained. It can be seen that as the training proceeds, the loss value de-
creases smoothly and eventually the training and testing errors stabilize around 0.5. The
best performance was tested for the 56,000th iteration, and the Caffemodel file from this
iteration will be used to test the performance of the network in the next section.

Figure 5. Iteration-Loss curve.

4. Full-Pipeline FPGA Implementation
4.1. Hardware Architecture Overview

The physical connection is shown in Figure 6. The USB 3.0 controller CYUSB3014 [39],
is a chip that internally integrates the physical layers of USB 2.0 and USB 3.0, the 32-bit
microprocessor ARM926EJ-S, and general programmable interface II (GPIF II), a second-
generation general-purpose programmable interface for communication with microcon-
trollers, FPGAs or image sensors. An ON Semiconductor AR0135CS was selected as the
sensor for the visible camera and OPN8008 of OPNOUS was selected as the sensor for the
ToF camera. The camera serial interface 2 (CSI-2) interface used by the OPN8008 is a high-
speed differential serial interface for camera data transmission under the mobile industry
processor interface (MIPI) interface.

Figure 6. Physical connection diagram of the acquisition system.

Then an overview of the proposed FPGA system is discussed here. As shown in
Figure 7, the design of the FPGA mainly includes the initialization module, the clock gen-
eration module and the video capture module. The clock generation module is imple-
mented in FPGA, which uses the VCU118 on-board crystal as the clock source and the
FPGA on-chip clock management module to generate the clock, providing a 27 MHz ref-
erence clock for the AR0135CS, TC358748 and OPN8008, and a 60 MHz DMA clock for
the GPIF II interface.

Figure 6. Physical connection diagram of the acquisition system.

Then an overview of the proposed FPGA system is discussed here. As shown in
Figure 7, the design of the FPGA mainly includes the initialization module, the clock
generation module and the video capture module. The clock generation module is im-
plemented in FPGA, which uses the VCU118 on-board crystal as the clock source and
the FPGA on-chip clock management module to generate the clock, providing a 27 MHz
reference clock for the AR0135CS, TC358748 and OPN8008, and a 60 MHz DMA clock for
the GPIF II interface.

Entropy 2021, 23, 546 10 of 23
Entropy 2021, 23, x FOR PEER REVIEW 10 of 23

Figure 7. Top-level design of FPGA.

4.2. Initialization Module
The core of the initialization module is MicroBlaze Soft Processor Core, and the sys-

tem connection is shown in Figure 8. A local memory with a capacity of 64 KB is used as
the processor running memory, and its internal structure is shown in Figure 9.

The AXI4 bus and all intellectual property (IP) cores are 100 MHz clock drivers gen-
erated by the clock wizard clk_wiz_1. clk_wiz_1 is set to high level and the reset pin is
locked to the CPU_RESET button on the VCU118; the clock source is the 250 MHz differ-
ential clock source on the board VCU118.

A MicroBlaze core has only one set of AXI4 master ports, as shown in Figure 9.
M_AXI_DP is the data channel, while the command channel M_AXI_IP is not used at this
time. Xilinx provides AXI SmartConnect IP cores for mounting multiple devices on the
AXI4 bus. In this design, three AXI IIC IP cores are mounted on the AXI4 bus for inter-
integrated circuit (I2C) communication, one AXI general-purpose input/output (GPIO) IP
core is used to generate reset signals for external modules and chips, and one AXI Uartlite
IP core is used to print the operating status from the serial port.

The XGpio_Initialize function is used to initialize the GPIO core, then XGpio_
DiscreteWrite is used to pull up rstn_pll to unlock the reset of the clock generation module.
Since the clock has been stabilized after a delay of 50 μs, the rstn_camera is pulled up
again at this time to unlock the reset of the image sensor and TC358748, finally completing
the power-up process of the external chip.

The initial configuration of the three external chips, including OPN8008, is completed
by operating the corresponding AXI IIC IP cores. In this paper, the I2C core operates in the
default 100 KHz standard mode, and we complete the I2C writing operations by writing
byte sequences to three registers 0x100, 0x108 and 0x120 through the Xil_Out32 function
[40]. The register values and addresses of OPN8008 are 8 bits, and that of AR0135CS and
TC358748 are 16 bits.

All three chips have software to generate the configuration and the byte sequence
according to the selected function, and then operate the I2C core as described above to
send the generated bytes out. The configuration of the Register Wizard software provided
by ON Semiconductor shows that the image size and frame rate of the AR0135CS is 1280 × 960@54fps. Since the AR0135CS is required to work in trigger mode in this paper,
it also has to write 0x19D8 to the 0x301A register, which is not included in the byte se-
quence generated by the software.

Figure 7. Top-level design of FPGA.

4.2. Initialization Module

The core of the initialization module is MicroBlaze Soft Processor Core, and the system
connection is shown in Figure 8. A local memory with a capacity of 64 KB is used as the
processor running memory, and its internal structure is shown in Figure 9.

The AXI4 bus and all intellectual property (IP) cores are 100 MHz clock drivers
generated by the clock wizard clk_wiz_1. clk_wiz_1 is set to high level and the reset pin
is locked to the CPU_RESET button on the VCU118; the clock source is the 250 MHz
differential clock source on the board VCU118.

A MicroBlaze core has only one set of AXI4 master ports, as shown in Figure 9.
M_AXI_DP is the data channel, while the command channel M_AXI_IP is not used at this
time. Xilinx provides AXI SmartConnect IP cores for mounting multiple devices on the
AXI4 bus. In this design, three AXI IIC IP cores are mounted on the AXI4 bus for inter-
integrated circuit (I2C) communication, one AXI general-purpose input/output (GPIO) IP
core is used to generate reset signals for external modules and chips, and one AXI Uartlite
IP core is used to print the operating status from the serial port.

The XGpio_Initialize function is used to initialize the GPIO core, then XGpio_Discrete
Write is used to pull up rstn_pll to unlock the reset of the clock generation module. Since
the clock has been stabilized after a delay of 50 µs, the rstn_camera is pulled up again
at this time to unlock the reset of the image sensor and TC358748, finally completing the
power-up process of the external chip.

The initial configuration of the three external chips, including OPN8008, is completed
by operating the corresponding AXI IIC IP cores. In this paper, the I2C core operates in the
default 100 KHz standard mode, and we complete the I2C writing operations by writing
byte sequences to three registers 0x100, 0x108 and 0x120 through the Xil_Out32 func-
tion [40]. The register values and addresses of OPN8008 are 8 bits, and that of AR0135CS
and TC358748 are 16 bits.

All three chips have software to generate the configuration and the byte sequence
according to the selected function, and then operate the I2C core as described above to
send the generated bytes out. The configuration of the Register Wizard software provided
by ON Semiconductor shows that the image size and frame rate of the AR0135CS is
1280× 960@54fps. Since the AR0135CS is required to work in trigger mode in this paper, it
also has to write 0x19D8 to the 0x301A register, which is not included in the byte sequence
generated by the software.

Entropy 2021, 23, 546 11 of 23

Entropy 2021, 23, x FOR PEER REVIEW 11 of 23

Figure 8. Initialization module. Figure 8. Initialization module.

Entropy 2021, 23, 546 12 of 23

Entropy 2021, 23, x FOR PEER REVIEW 12 of 23

Figure 9. Internal structure of local memory.

4.3. Clock Generation Module
The schematic of the clock generation module is shown in Figure 10. The clock source

of clk_wiz_0 and clk_wiz_1 both use the on-board crystal of VCU118. The reset input re-
setn is active low and is driven by the initialization module. The output of the IP core locked
is active high and locked is set to 1 when the phase-locked loop output is stable. The out-
puts of the Not And (Nand) operation of locked_0 and locked_1 are used as the high active
reset signal rst for the video capture module. clk_usb is the 60 MHz Direct Memory Access
(DMA) clock used to drive the video capture module and GPIF II interface. clk_tof, clk_mipi
and clk_color are the 27 MHz reference clocks for OPN8008, TC358748 and AR0135CS.

Figure 10. Clock generator schematic.

The output double data rate register (ODDR) is located in the IOB of FPGA, and
sending the above 4 clocks through ODDR is good for synchronization of clocks and data
on the bus. However, for the three external chip reference clocks such as clk_tof, the use of
ODDR or not has almost no effect on the performance. The OSERDESE3 (Output SerDes,
Output Serializer) in Figure 10 is a specific implementation of ODDR in the UltraScale+
family of chips [41]. The simulation result of the clock generation module shows that the
outputs of both PLLs are stable after about 6.692μs.

4.4. Video Capture Module
The structure diagram of the video capture module is shown in Figure 11, including

three sub-modules, that is, Trigger, Pixel2RAM and usb_controller. Among them, the
Pixel2RAM module is the storage controller, and there are two instances of Depth_a and
Depth_b in Depth Branch, which is responsible for storing the depth data from the parallel
port input of TC358748 into UltraRAM. PixelClkD, HsyncD and PixelD are pixel clock,
field synchronization and pixel data respectively.

Clocking Wizard IP Core
clk_wiz_0

clk_wiz_1
Clocking Wizard IP Core

OSERDESE3
OSERDESE3

OSERDESE3

locked_0

locked_1

sysclk_125_p
sysclk_125_n

sysclk_300_p
sysclk_300_n

clk_usb_out
clk_mipi

clk_tof
clk_color

clk_tof_out
clk_color_out

clk_mipi_out

rstresetn

OSERDESE3
clk_usb

Figure 9. Internal structure of local memory.

4.3. Clock Generation Module

The schematic of the clock generation module is shown in Figure 10. The clock source
of clk_wiz_0 and clk_wiz_1 both use the on-board crystal of VCU118. The reset input resetn
is active low and is driven by the initialization module. The output of the IP core locked is
active high and locked is set to 1 when the phase-locked loop output is stable. The outputs
of the Not And (Nand) operation of locked_0 and locked_1 are used as the high active
reset signal rst for the video capture module. clk_usb is the 60 MHz Direct Memory Access
(DMA) clock used to drive the video capture module and GPIF II interface. clk_tof, clk_mipi
and clk_color are the 27 MHz reference clocks for OPN8008, TC358748 and AR0135CS.

Entropy 2021, 23, x FOR PEER REVIEW 12 of 23

Figure 9. Internal structure of local memory.

4.3. Clock Generation Module
The schematic of the clock generation module is shown in Figure 10. The clock source

of clk_wiz_0 and clk_wiz_1 both use the on-board crystal of VCU118. The reset input re-
setn is active low and is driven by the initialization module. The output of the IP core locked
is active high and locked is set to 1 when the phase-locked loop output is stable. The out-
puts of the Not And (Nand) operation of locked_0 and locked_1 are used as the high active
reset signal rst for the video capture module. clk_usb is the 60 MHz Direct Memory Access
(DMA) clock used to drive the video capture module and GPIF II interface. clk_tof, clk_mipi
and clk_color are the 27 MHz reference clocks for OPN8008, TC358748 and AR0135CS.

Figure 10. Clock generator schematic.

The output double data rate register (ODDR) is located in the IOB of FPGA, and
sending the above 4 clocks through ODDR is good for synchronization of clocks and data
on the bus. However, for the three external chip reference clocks such as clk_tof, the use of
ODDR or not has almost no effect on the performance. The OSERDESE3 (Output SerDes,
Output Serializer) in Figure 10 is a specific implementation of ODDR in the UltraScale+
family of chips [41]. The simulation result of the clock generation module shows that the
outputs of both PLLs are stable after about 6.692μs.

4.4. Video Capture Module
The structure diagram of the video capture module is shown in Figure 11, including

three sub-modules, that is, Trigger, Pixel2RAM and usb_controller. Among them, the
Pixel2RAM module is the storage controller, and there are two instances of Depth_a and
Depth_b in Depth Branch, which is responsible for storing the depth data from the parallel
port input of TC358748 into UltraRAM. PixelClkD, HsyncD and PixelD are pixel clock,
field synchronization and pixel data respectively.

Clocking Wizard IP Core
clk_wiz_0

clk_wiz_1
Clocking Wizard IP Core

OSERDESE3
OSERDESE3

OSERDESE3

locked_0

locked_1

sysclk_125_p
sysclk_125_n

sysclk_300_p
sysclk_300_n

clk_usb_out
clk_mipi

clk_tof
clk_color

clk_tof_out
clk_color_out

clk_mipi_out

rstresetn

OSERDESE3
clk_usb

Figure 10. Clock generator schematic.

The output double data rate register (ODDR) is located in the IOB of FPGA, and
sending the above 4 clocks through ODDR is good for synchronization of clocks and data
on the bus. However, for the three external chip reference clocks such as clk_tof, the use of
ODDR or not has almost no effect on the performance. The OSERDESE3 (Output SerDes,
Output Serializer) in Figure 10 is a specific implementation of ODDR in the UltraScale+
family of chips [41]. The simulation result of the clock generation module shows that the
outputs of both PLLs are stable after about 6.692 µs.

4.4. Video Capture Module

The structure diagram of the video capture module is shown in Figure 11, including
three sub-modules, that is, Trigger, Pixel2RAM and usb_controller. Among them, the
Pixel2RAM module is the storage controller, and there are two instances of Depth_a and
Depth_b in Depth Branch, which is responsible for storing the depth data from the parallel
port input of TC358748 into UltraRAM. PixelClkD, HsyncD and PixelD are pixel clock,
field synchronization and pixel data respectively.

Entropy 2021, 23, 546 13 of 23Entropy 2021, 23, x FOR PEER REVIEW 13 of 23

Figure 11. Video capture module.

In this paper, ping-pong method is proposed to improve the operation speed, and
the chip select signal Select is generated by the Trigger module. Since the Trigger module
is driven by clk_usb clock, the SelectD output from the DFF (D Flip-Flop) is in the PixelClkD
clock domain after a beat of Select with PixelClkD. SelectD and its inverse signal control a
data selector, and when SelectD is high, HsyncD_a is driven by HsyncD and HsyncD_b is
pulled low, so the pixels of the current frame will be written to Depth_a, while the
usb_controller module reads the pixels of the previous frame from Depth_b and sends
them to the CYUSB3014 chip through the GPIF II interface; conversely, when SelectD is
low, Depth_a reads and Depth_b writes.

The intensity branch is responsible for receiving data from the parallel port of
AR0135CS, and its design is similar to the depth branch. The design of the three seed
modules Pixel2RAM, Trigger and usb_controller will be introduced in the following sec-
tions.

4.4.1. Pixel2RAM Sub-Module
Figure 12 shows the architecture of Pixel2RAM submodule. An asynchronous first in

first out (FIFO) is first used to transfer PixelD/PixelI from PixelClkD/PixelClkI clock do-
main to clk_usb clock domain. The FIFO is implemented using Xilinx FIFO Generator IP
core and the configuration information is listed in Table 1.

Figure 12. Pixel2RAM sub-module.

Figure 11. Video capture module.

In this paper, ping-pong method is proposed to improve the operation speed, and the
chip select signal Select is generated by the Trigger module. Since the Trigger module is
driven by clk_usb clock, the SelectD output from the DFF (D Flip-Flop) is in the PixelClkD
clock domain after a beat of Select with PixelClkD. SelectD and its inverse signal control
a data selector, and when SelectD is high, HsyncD_a is driven by HsyncD and HsyncD_b
is pulled low, so the pixels of the current frame will be written to Depth_a, while the
usb_controller module reads the pixels of the previous frame from Depth_b and sends
them to the CYUSB3014 chip through the GPIF II interface; conversely, when SelectD is low,
Depth_a reads and Depth_b writes.

The intensity branch is responsible for receiving data from the parallel port of AR0135CS,
and its design is similar to the depth branch. The design of the three seed modules
Pixel2RAM, Trigger and usb_controller will be introduced in the following sections.

4.4.1. Pixel2RAM Sub-Module

Figure 12 shows the architecture of Pixel2RAM submodule. An asynchronous first
in first out (FIFO) is first used to transfer PixelD/PixelI from PixelClkD/PixelClkI clock
domain to clk_usb clock domain. The FIFO is implemented using Xilinx FIFO Generator IP
core and the configuration information is listed in Table 1.

Entropy 2021, 23, x FOR PEER REVIEW 13 of 23

Figure 11. Video capture module.

In this paper, ping-pong method is proposed to improve the operation speed, and
the chip select signal Select is generated by the Trigger module. Since the Trigger module
is driven by clk_usb clock, the SelectD output from the DFF (D Flip-Flop) is in the PixelClkD
clock domain after a beat of Select with PixelClkD. SelectD and its inverse signal control a
data selector, and when SelectD is high, HsyncD_a is driven by HsyncD and HsyncD_b is
pulled low, so the pixels of the current frame will be written to Depth_a, while the
usb_controller module reads the pixels of the previous frame from Depth_b and sends
them to the CYUSB3014 chip through the GPIF II interface; conversely, when SelectD is
low, Depth_a reads and Depth_b writes.

The intensity branch is responsible for receiving data from the parallel port of
AR0135CS, and its design is similar to the depth branch. The design of the three seed
modules Pixel2RAM, Trigger and usb_controller will be introduced in the following sec-
tions.

4.4.1. Pixel2RAM Sub-Module
Figure 12 shows the architecture of Pixel2RAM submodule. An asynchronous first in

first out (FIFO) is first used to transfer PixelD/PixelI from PixelClkD/PixelClkI clock do-
main to clk_usb clock domain. The FIFO is implemented using Xilinx FIFO Generator IP
core and the configuration information is listed in Table 1.

Figure 12. Pixel2RAM sub-module.

Figure 12. Pixel2RAM sub-module.

Entropy 2021, 23, 546 14 of 23

Table 1. Configurations of asynchronous FIFOs.

8 Byte FIFO 16 Byte FIFO

Read bit wide 32 32
Read depth 512 512

Write bit wide 8 16
Write depth 2048 1024
Read mode First-word Fall-through First-word Fall-through

storage medium 18 Kb BRAM × 1 18 Kb BRAM × 1

The 8-bit FIFOs are used in Intensity_a and Intensity_b in Figure 11, and the 16-bit
FIFOs are used in Depth_a and Depth_b. And the bit width of all FIFOs’ read port is 32 bits,
which is designed to accommodate the GPIF II interface bit width. We invert the read null
signal empty from the IP core output and use it as input to the read enable signal rd_en, so
that the data will be read automatically when the FIFO is non-empty. The word order is
given in [42] when the write-read bit-width ratio is 1:4 for 2-bit data input, while for 32-bit
data read, the input is replaced with 8 bits, then the 32-bit data read is in big endian order.

The UltraRAM implementation of simple dual port RAM (SDPRAM) can only be
called by a Xilinx Parameterized Macro (XPM). The data of SDPRAM can only be written
from port A and be read from port B, so there are only write enable signal wea and
no read enable signal. There are two limitations when SDPRAM is implemented with
UltraRAM: (1) Ports A and B have to use common clock, so switching the clock domain
with asynchronous FIFO is necessary in this design; (2) the read delay is at least 3 clock
cycles, so we have to shift the input read signal from usb_controller readD/readI by 3 clk_usb
cycles and use it as the valid signal vldD/vldI for doutb, in fact Z−3 in Figure 12 is the shift
register with a depth of 3.

4.4.2. Trigger Sub-Module

The Trigger sub-module is responsible for the control of the ping-pong operation and
the generation of the image sensor trigger signal, and the core is a Finite State Machine
(FSM). The structure of the module and the FSM state transfer diagram are shown in
Figure 13a,b.

Entropy 2021, 23, x FOR PEER REVIEW 14 of 23

Table 1. Configurations of asynchronous FIFOs.

 8 Byte FIFO 16 Byte FIFO
Read bit wide 32 32

Read depth 512 512
Write bit wide 8 16

Write depth 2048 1024
Read mode First-word Fall-through First-word Fall-through

storage medium 18 Kb BRAM × 1 18 Kb BRAM × 1

The 8-bit FIFOs are used in Intensity_a and Intensity_b in Figure 11, and the 16-bit
FIFOs are used in Depth_a and Depth_b. And the bit width of all FIFOs’ read port is
32 bits, which is designed to accommodate the GPIF II interface bit width. We invert the
read null signal empty from the IP core output and use it as input to the read enable signal
rd_en, so that the data will be read automatically when the FIFO is non-empty. The word
order is given in [42] when the write-read bit-width ratio is 1:4 for 2-bit data input, while
for 32-bit data read, the input is replaced with 8 bits, then the 32-bit data read is in big
endian order.

The UltraRAM implementation of simple dual port RAM (SDPRAM) can only be
called by a Xilinx Parameterized Macro (XPM). The data of SDPRAM can only be written
from port A and be read from port B, so there are only write enable signal wea and no read
enable signal. There are two limitations when SDPRAM is implemented with UltraRAM:
(1) Ports A and B have to use common clock, so switching the clock domain with asyn-
chronous FIFO is necessary in this design; (2) the read delay is at least 3 clock cycles, so
we have to shift the input read signal from usb_controller readD/readI by 3 clk_usb cycles
and use it as the valid signal vldD/vldI for doutb, in fact Z−3 in Figure 12 is the shift register
with a depth of 3.

4.4.2. Trigger Sub-Module
The Trigger sub-module is responsible for the control of the ping-pong operation and

the generation of the image sensor trigger signal, and the core is a Finite State Ma-
chine
(FSM). The structure of the module and the FSM state transfer diagram are shown in
Figure 13 a,b.

Figure 13. Trigger sub-module. (a) Structure, (b) FSM state transfer diagram

S0 is the standby state, and when the external trigger signal tri_externl is detected
high, the FSM is transferred from S0 to S1, and the capture module is activated and starts
to run. Besides, note that the state values are encoded by the one-hot code, S0–S3 are
0001/0010/0100/1000 respectively. In this design, tri_externl is connected to the button for

clk_usb

tri_external

idle
FSM

Timer: 0~T-1

rdy

DFF Select

tri_tof
tri_color

S0 S2

S3

S1reset
Timer reaches T-1tri_external asserts

idle asserts

(a)

(b)

Figure 13. Trigger sub-module. (a) Structure, (b) FSM state transfer diagram

S0 is the standby state, and when the external trigger signal tri_externl is detected
high, the FSM is transferred from S0 to S1, and the capture module is activated and starts
to run. Besides, note that the state values are encoded by the one-hot code, S0–S3 are
0001/0010/0100/1000 respectively. In this design, tri_externl is connected to the button for
the first time triggering the camera after power on. S1 is used to achieve the preset frame
rate and complete the trigger. The operating frame rate of an image sensor in trigger mode
must be greater than the trigger signal frequency to ensure that the sensor can process and

Entropy 2021, 23, 546 15 of 23

send a frame within the trigger signal period. In this paper, the operating frame rate of
AR0135CS is 54 fps and the frequency of the trigger signal is 30 Hz. S2 is used to wait the
usb_controller idle. Signal rdy and signal idle are a pair of handshake signals. Idle is used to
indicate whether the usb_controller module has finished the current DMA transfer; rdy is
held for only one clock cycle and is used to inform the usb_controller module that the new
pixel data is ready. S3 is used to enable the signal rdy and to invert the signal Select, and
this state is held for only one period.

4.4.3. USB_Controller Sub-Module

The structure of the USB controller module and the finite-state machine (FSM) state
transfer diagram are shown in Figure 14a,b. S0 is the idle state, used to complete the
handshake with the Trigger module, and signal idle is active in this state. When the signal
rdy is detected high, the FSM shifts from S0 state to S1 state. State S1 is used to wait for the
DMA buffer to be empty, and the FSM transitions from S1 to S2 when flaga is pulled high.
S2 is the DMA write state. Dma_wr is valid only in S1 and is used to drive the SDPRAM
read signals readI and readD. The state transfer in S2 is determined by both the word
counter cnt_word and the package counter cnt_package. When the cnt_word count is full,
usb_controller will send 4096 read signals continuously. At this point if the cnt_package
count value is not full then the data in RAM is not read, S2 turns to S3 and waits for
flaga to be pulled high, then S3 turns back to S1 to continue the cycle. According to the
literature [43], flaga does not pull down immediately after the current Buffer write is full,
but there is a delay of 4 bus clock cycles, so if we enter state S1 directly without waiting, it
will definitely lead to a misjudgment of the Buffer empty-full state. If cnt_package count is
full, all data is read and S2 goes back to S0 to wait for the next round of transfers. Besides,
write enable signal slwr of DMA is driven by the Nand operation of data valid signals vldI
and vldD given by the Pixel2RAM module, without the involvement of the FSM.

Entropy 2021, 23, x FOR PEER REVIEW 15 of 23

the first time triggering the camera after power on. S1 is used to achieve the preset frame
rate and complete the trigger. The operating frame rate of an image sensor in trigger mode
must be greater than the trigger signal frequency to ensure that the sensor can process and
send a frame within the trigger signal period. In this paper, the operating frame rate of
AR0135CS is 54 fps and the frequency of the trigger signal is 30 Hz. S2 is used to wait the
usb_controller idle. Signal rdy and signal idle are a pair of handshake signals. Idle is used
to indicate whether the usb_controller module has finished the current DMA transfer; rdy
is held for only one clock cycle and is used to inform the usb_controller module that the
new pixel data is ready. S3 is used to enable the signal rdy and to invert the signal Select,
and this state is held for only one period.

4.4.3. USB_Controller Sub-Module
The structure of the USB controller module and the finite-state machine (FSM) state

transfer diagram are shown in Figure 14a,b. S0 is the idle state, used to complete the hand-
shake with the Trigger module, and signal idle is active in this state. When the signal rdy
is detected high, the FSM shifts from S0 state to S1 state. State S1 is used to wait for the
DMA buffer to be empty, and the FSM transitions from S1 to S2 when flaga is pulled high.
S2 is the DMA write state. Dma_wr is valid only in S1 and is used to drive the SDPRAM
read signals readI and readD. The state transfer in S2 is determined by both the word coun-
ter cnt_word and the package counter cnt_package. When the cnt_word count is full,
usb_controller will send 4096 read signals continuously. At this point if the cnt_package
count value is not full then the data in RAM is not read, S2 turns to S3 and waits for flaga
to be pulled high, then S3 turns back to S1 to continue the cycle. According to the literature
[43], flaga does not pull down immediately after the current Buffer write is full, but there
is a delay of 4 bus clock cycles, so if we enter state S1 directly without waiting, it will
definitely lead to a misjudgment of the Buffer empty-full state. If cnt_package count is full,
all data is read and S2 goes back to S0 to wait for the next round of transfers. Besides, write
enable signal slwr of DMA is driven by the Nand operation of data valid signals vldI and
vldD given by the Pixel2RAM module, without the involvement of the FSM.

Figure 14. USB_controller sub-module. (a) Structure, (b) FSM state transfer diagram

4.5. FPGA Resources Analysis
FPGA resources utilization are shown in Table 2. From the results, we could find that

with an efficient design of the system, the resource utilization of FPGA is acceptable. For

clk_usb

idle FSM

cnt_word:
0~4095rdy

S0 S2

S3

S1reset
flaga deassertsrdy asserts

flaga

dma_wr

>75 readD

readI

ENB fdata

slwr

doutI

vldD

vldI

cnt_word == 4095
 &&

cnt_package < 104

(a)

(b)
flaga asserts

cnt_word == 4095 && cnt_package == 104

cnt_package:
0~104=4095

doutD

Figure 14. USB_controller sub-module. (a) Structure, (b) FSM state transfer diagram

4.5. FPGA Resources Analysis

FPGA resources utilization are shown in Table 2. From the results, we could find
that with an efficient design of the system, the resource utilization of FPGA is acceptable.
For example, the utilization of lookup table (LUT) by the whole system is only 0.36%.
Moreover, LUT and block RAMs (BRAM) are also two critical criterions to evaluate the
resource utilization. From the results, we could find that BRAM is constrained for the
proposed implementation.

Entropy 2021, 23, 546 16 of 23

Table 2. Resources utilization.

Resources Utilization Total Percentage (%)

LUT 4214 1,182,240 0.36
LUTRAM 215 591,840 0.04

FF 4006 2,364,480 0.17
BRAM 18 2160 0.83
URAM 210 960 21.88

IO 101 832 12.14
BUFG 8 1800 0.44

MMCM 3 30 10.00

5. Experimental Results
5.1. Experimental Setup

With the FPGA architecture designed above, a real-time system for depth map restora-
tion and super-resolution is implemented. The FPGA used is Xilinx XCVU9P-L2FLGA2104
embedded in VCU118 development. Figure 15 shows the connection of the image ac-
quisition system and the snapshot of cameras and FMC+adaptor. ON Semiconductor’s
AR0135CS is selected as the sensor for the visible camera, and OPN8008 from OPNOUS is
selected as the sensor for the ToF camera. The main parameters of these two sensors are
listed in Table 3.

Entropy 2021, 23, x FOR PEER REVIEW 16 of 23

example, the utilization of lookup table (LUT) by the whole system is only 0.36%. Moreo-
ver, LUT and block RAMs (BRAM) are also two critical criterions to evaluate the resource
utilization. From the results, we could find that BRAM is constrained for the proposed
implementation.

Table 2. Resources utilization.

Resources Utilization Total Percentage (%)
LUT 4214 1,182,240 0.36

LUTRAM 215 591,840 0.04
FF 4006 2,364,480 0.17

BRAM 18 2160 0.83
URAM 210 960 21.88

IO 101 832 12.14
BUFG 8 1800 0.44

MMCM 3 30 10.00

5. Experimental Results
5.1. Experimental Setup

With the FPGA architecture designed above, a real-time system for depth map resto-
ration and super-resolution is implemented. The FPGA used is Xilinx XCVU9P-
L2FLGA2104 embedded in VCU118 development. Figure 15 shows the connection of the
image acquisition system and the snapshot of cameras and FMC+adaptor. ON Semicon-
ductor’s AR0135CS is selected as the sensor for the visible camera, and OPN8008 from
OPNOUS is selected as the sensor for the ToF camera. The main parameters of these two
sensors are listed in Table 3.

(a) Connection of the image acquisition system

(b) Snapshot of cameras and FMC+adaptor

Figure 15. Physical connection diagram of the realized system.

Table 3. Parameters of the image sensors in this paper.

 AR0135CS OPN8008
Working mode Trigger mode Trigger mode

IO level standard 1.8 V 3.3 V
Pixel Data Dimensions 1280 × 960 328 × 248 × 3

Pixel data format 12 bit Monochrome RAW12
Sensor Configuration Bus I2C Bus I2C Bus
Pixel Data Transfer Bus Parallel Interface MIPI CSI-2

5.2. Result Analysis and Comparison
5.2.1. Depth Map Repair Performance

Figure 15. Physical connection diagram of the realized system.

Table 3. Parameters of the image sensors in this paper.

AR0135CS OPN8008

Working mode Trigger mode Trigger mode
IO level standard 1.8 V 3.3 V

Pixel Data Dimensions 1280× 960 328× 248× 3
Pixel data format 12 bit Monochrome RAW12

Sensor Configuration Bus I2C Bus I2C Bus
Pixel Data Transfer Bus Parallel Interface MIPI CSI-2

5.2. Result Analysis and Comparison
5.2.1. Depth Map Repair Performance

PSNR is proposed as a measure of depth map restoration performance. It should be
noted that the locations with voids are not included in the MSE when calculating the PSNR
value. In testing the restoration function, we selected six scenes in the Middlebury dataset
and cropped the image size to 320× 240, added σ = 25 AWGN to the intensity map, and
randomly added 5%, 10%, 15%, and 20% voids to the depth map. The PSNR performance
before and after restoration is statistically shown in Tables 4 and 5. It can be seen that the
algorithm proposed in this paper can improve the PSNR value by about two times.

Entropy 2021, 23, 546 17 of 23

Table 4. Original PSNR performance (dB).

Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4

5% holes 18.598333 18.013552 20.250878 17.642017 20.801490 18.257972
10% holes 15.582313 15.031216 17.259421 14.635192 17.795489 15.259041
15% holes 13.813898 13.294900 15.499276 12.873909 16.028865 13.499192
20% holes 12.555023 12.036268 14.237644 11.618691 14.772910 12.242208

Table 5. PSNR performance (dB) after inpainting.

Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4

5% holes 42.462463 42.173859 47.267376 44.200977 43.456047 44.102913
10% holes 42.732605 42.454369 48.292862 44.581429 44.111671 43.971207
15% holes 42.717278 42.260109 48.252022 44.728699 44.343636 44.061874
20% holes 42.735268 41.923935 47.750134 44.527683 44.169636 43.622093

LRMC and DE-CNN are the representatives of traditional restoration algorithms and
deep learning-based restoration algorithms. A review of literature [10–12] shows that
the test conditions of these three algorithms are adding σ = 25 AWGN to the intensity
map and randomly adding 13% voids to the depth map. The comparison of algorithm
performance under the same conditions is shown in Table 6, which shows that DE-CNN
has no PSNR performance advantage over the traditional algorithm LRMC, while the
proposed algorithm in this paper outperforms LRMC, DE-CNN and DDTF in terms of
PSNR performance on all six scenarios.

Table 6. Depth inpainting comparison (dB).

Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4

LRMC 38.22 39.37 46.24 42.35 42.37 37.43
DE-CNN 37.52 38.71 45.01 41.45 42.75 39.16

DDTF [12] 38.00 38.18 46.86 42.33 42.16 37.57
Method proposed 42.67 42.30 48.35 44.71 44.28 44.06

Figures 16 and 17 show the results of the depth map enhancement tests for the Bowling
1 and Cloth 1 scenes. These images are: (a) the scene; (b) the original depth map; (c) the
depth map with 13% holes added; and (d) the restoration results.

Entropy 2021, 23, x FOR PEER REVIEW 17 of 23

PSNR is proposed as a measure of depth map restoration performance. It should be
noted that the locations with voids are not included in the MSE when calculating the
PSNR value. In testing the restoration function, we selected six scenes in the Middlebury
dataset and cropped the image size to 320 × 240, added 𝜎 = 25 AWGN to the intensity
map, and randomly added 5%, 10%, 15%, and 20% voids to the depth map. The PSNR
performance before and after restoration is statistically shown in Tables 4 and 5. It can be
seen that the algorithm proposed in this paper can improve the PSNR value by about two
times.

Table 4. Original PSNR performance (dB).

 Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4
5% holes 18.598333 18.013552 20.250878 17.642017 20.801490 18.257972
10% holes 15.582313 15.031216 17.259421 14.635192 17.795489 15.259041
15% holes 13.813898 13.294900 15.499276 12.873909 16.028865 13.499192
20% holes 12.555023 12.036268 14.237644 11.618691 14.772910 12.242208

Table 5. PSNR performance (dB) after inpainting.

 Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4
5% holes 42.462463 42.173859 47.267376 44.200977 43.456047 44.102913
10% holes 42.732605 42.454369 48.292862 44.581429 44.111671 43.971207
15% holes 42.717278 42.260109 48.252022 44.728699 44.343636 44.061874
20% holes 42.735268 41.923935 47.750134 44.527683 44.169636 43.622093

LRMC and DE-CNN are the representatives of traditional restoration algorithms and
deep learning-based restoration algorithms. A review of literature [10–12] shows that the
test conditions of these three algorithms are adding 𝜎 = 25 AWGN to the intensity map
and randomly adding 13% voids to the depth map. The comparison of algorithm perfor-
mance under the same conditions is shown in Table 6, which shows that DE-CNN has no
PSNR performance advantage over the traditional algorithm LRMC, while the proposed
algorithm in this paper outperforms LRMC, DE-CNN and DDTF in terms of PSNR per-
formance on all six scenarios.

Table 6. Depth inpainting comparison (dB).

 Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4
LRMC 38.22 39.37 46.24 42.35 42.37 37.43

DE-CNN 37.52 38.71 45.01 41.45 42.75 39.16
DDTF [12] 38.00 38.18 46.86 42.33 42.16 37.57

Method proposed 42.67 42.30 48.35 44.71 44.28 44.06

Figures 16 and 17 show the results of the depth map enhancement tests for the Bowl-
ing 1 and Cloth 1 scenes. These images are: (a) the scene; (b) the original depth map; (c)
the depth map with 13% holes added; and (d) the restoration results.

(a) (b) (c) (d)

Figure 16. Scene of bowling (a) RGB image; (b) Original depth image; (c) Depth image with 13% holes added; (d) Depth
image restoration from our method.

Entropy 2021, 23, 546 18 of 23

Entropy 2021, 23, x FOR PEER REVIEW 18 of 23

Figure 16. Scene of bowling (a) RGB image; (b) Original depth image; (c) Depth image with 13% holes added; (d) Depth
image restoration from our method.

(a) (b) (c) (d)

Figure 17. Scene of clothes (a) RGB image; (b) Original depth image; (c) Depth image with 13% holes added; (d) Depth
image restoration from our method.

5.2.2. Accuracy
RMSE is proposed as a measure of the super-resolution performance of the depth

map, and locations with voids are not counted. In testing the super-resolution function,
we selected six scenes in the Middlebury dataset but without cropping, added 𝜎 = 25
AWGN to the intensity map. The depth map is used without adding noise, and the down-
sampling method in literature [44] is used to obtain images with constant field of view but
lower resolution, and then the low-resolution depth map is up-sampled to obtain the in-
put of the network.

The RMSE values for up sampling factors of 2 and 4 are given in Tables 7 and 8, and
it can be seen that the performance of the proposed algorithm has been greatly improved
compared to the existing algorithms. The main reasons for the improvement are the fol-
lowings: (1) The input intensity map provides complementary information to make the
algorithm more oriented; (2) The representation capability of the convolutional neural
network is stronger than that of the conventional algorithm based on convex optimization.

Table 7. Depth super-resolution comparison, 𝑘 = 2.

 Aloe Baby Cones Plastic Teddy Venus
Paper [45] 4.93 3.26 4.08 3.16 3.18 1.92
Paper [44] 2.89 1.81 2.13 1.81 1.74 0.98

Method proposed 0.13 0.065 0.17 0.071 0.16 0.047

Table 8. Depth super-resolution comparison, 𝑘 = 4.

 Aloe Baby Cones Plastic Teddy Venus
Paper [45] 7.29 4.49 5.88 3.31 4.53 1.89
Paper [44] 5.12 2.97 3.73 2.63 2.86 1.67

Method proposed 0.17 0.12 0.23 0.14 0.21 0.11

Figures 18 and 19 show the results of the depth map super-resolution tests for the
Cones scene and the Plastic scene. These images are, in order: (a) the scene; (b) the original
depth map; (c) the results at k = 2; and (d) the results at k = 4.

Figure 17. Scene of clothes (a) RGB image; (b) Original depth image; (c) Depth image with 13% holes added; (d) Depth
image restoration from our method.

5.2.2. Accuracy

RMSE is proposed as a measure of the super-resolution performance of the depth
map, and locations with voids are not counted. In testing the super-resolution function, we
selected six scenes in the Middlebury dataset but without cropping, added σ = 25 AWGN
to the intensity map. The depth map is used without adding noise, and the down-sampling
method in literature [44] is used to obtain images with constant field of view but lower
resolution, and then the low-resolution depth map is up-sampled to obtain the input of
the network.

The RMSE values for up sampling factors of 2 and 4 are given in Tables 7 and 8, and it
can be seen that the performance of the proposed algorithm has been greatly improved
compared to the existing algorithms. The main reasons for the improvement are the
followings: (1) The input intensity map provides complementary information to make
the algorithm more oriented; (2) The representation capability of the convolutional neural
network is stronger than that of the conventional algorithm based on convex optimization.

Table 7. Depth super-resolution comparison, k = 2.

Aloe Baby Cones Plastic Teddy Venus

Paper [45] 4.93 3.26 4.08 3.16 3.18 1.92
Paper [44] 2.89 1.81 2.13 1.81 1.74 0.98

Method proposed 0.13 0.065 0.17 0.071 0.16 0.047

Table 8. Depth super-resolution comparison, k = 4.

Aloe Baby Cones Plastic Teddy Venus

Paper [45] 7.29 4.49 5.88 3.31 4.53 1.89
Paper [44] 5.12 2.97 3.73 2.63 2.86 1.67

Method proposed 0.17 0.12 0.23 0.14 0.21 0.11

Figures 18 and 19 show the results of the depth map super-resolution tests for the
Cones scene and the Plastic scene. These images are, in order: (a) the scene; (b) the original
depth map; (c) the results at k = 2; and (d) the results at k = 4.

Entropy 2021, 23, 546 19 of 23
Entropy 2021, 23, x FOR PEER REVIEW 19 of 23

(a) (b) (c) (d)

Figure 18. Scene of cones (a) RGB image; (b) Original depth image; (c) 𝑘 = 2; (d) 𝑘 = 4.

(a) (b) (c) (d)

Figure 19. Scene of plastic (a) RGB image; (b) Original depth image; (c) 𝑘 = 2; (d) 𝑘 = 4.

5.2.3. Speed
The proposed algorithm does not need pre-processing, and all the processing is done

by convolutional neural network, so it has a much better running speed compared with
LRMC and DE-CNN. 1 min (0.017 fps) is needed for LRMC to process a 320 × 240 image,
and 0.083 s (12.048 fps) is needed for DE-CNN including the pre-processing part. As
shown in Table 9, it takes about 0.0372 s to process a Y-D image with a resolution of 320 ×240 on a single GTX1080, which translates into a frame rate of 25 fps, a 1470-fold and 2-
fold improvement compared with LRMC and DE-CNN; while a Y-D image with a resolu-
tion of 640 × 480 can reach 13 fps. The relationship between speed and resolution is not
linear, mainly because the CuDNN library uses some efficient algorithms such as Wino-
grad to speed up the computation when implementing large-scale convolution opera-
tions.

Table 9. Elapsed time (s) without TensorRT framework.

 Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4
Elapsed time (s) 0.0372044 0.0375206 0.0374086 0.0372178 0.03684 0.0374244

TensorRT further optimizes the computation of convolution on top of CuDNN, and
can fuse some eligible layers together to reduce the number of scheduling, maximizing
the computational power of GPU and improving the efficiency of video memory usage.
Since we do not quantize the weights (we still use 32-bit floating point numbers), the op-
timization strategy used by TensorRT for the network structure of this paper is mainly
vertical layer fusion, which includes the following three optimizations: (1)The four oper-
ations of convolution, bias, batch normalization and ReLU in the first class of convolu-
tional layers are fused into one CBR kernel; (2)The two operations of convolution and bias
in the second class of convolutional layers are fused into one CBR kernel; (3) Canceling
Concat layer by pre-allocating cache.

When the TensorRT framework is not adopted, the data scheduling and computa-
tional resource allocation among the Conv, Bias, BatchNorm, Scale and ReLU layers in the
first class of convolutional layers will take up a lot of time. This non-computational time
overhead is greatly reduced with the TensorRT framework. Note that since TensorRT 4

Figure 18. Scene of cones (a) RGB image; (b) Original depth image; (c) k = 2; (d) k = 4.

Entropy 2021, 23, x FOR PEER REVIEW 19 of 23

(a) (b) (c) (d)

Figure 18. Scene of cones (a) RGB image; (b) Original depth image; (c) 𝑘 = 2; (d) 𝑘 = 4.

(a) (b) (c) (d)

Figure 19. Scene of plastic (a) RGB image; (b) Original depth image; (c) 𝑘 = 2; (d) 𝑘 = 4.

5.2.3. Speed
The proposed algorithm does not need pre-processing, and all the processing is done

by convolutional neural network, so it has a much better running speed compared with
LRMC and DE-CNN. 1 min (0.017 fps) is needed for LRMC to process a 320 × 240 image,
and 0.083 s (12.048 fps) is needed for DE-CNN including the pre-processing part. As
shown in Table 9, it takes about 0.0372 s to process a Y-D image with a resolution of 320 ×240 on a single GTX1080, which translates into a frame rate of 25 fps, a 1470-fold and 2-
fold improvement compared with LRMC and DE-CNN; while a Y-D image with a resolu-
tion of 640 × 480 can reach 13 fps. The relationship between speed and resolution is not
linear, mainly because the CuDNN library uses some efficient algorithms such as Wino-
grad to speed up the computation when implementing large-scale convolution opera-
tions.

Table 9. Elapsed time (s) without TensorRT framework.

 Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4
Elapsed time (s) 0.0372044 0.0375206 0.0374086 0.0372178 0.03684 0.0374244

TensorRT further optimizes the computation of convolution on top of CuDNN, and
can fuse some eligible layers together to reduce the number of scheduling, maximizing
the computational power of GPU and improving the efficiency of video memory usage.
Since we do not quantize the weights (we still use 32-bit floating point numbers), the op-
timization strategy used by TensorRT for the network structure of this paper is mainly
vertical layer fusion, which includes the following three optimizations: (1)The four oper-
ations of convolution, bias, batch normalization and ReLU in the first class of convolu-
tional layers are fused into one CBR kernel; (2)The two operations of convolution and bias
in the second class of convolutional layers are fused into one CBR kernel; (3) Canceling
Concat layer by pre-allocating cache.

When the TensorRT framework is not adopted, the data scheduling and computa-
tional resource allocation among the Conv, Bias, BatchNorm, Scale and ReLU layers in the
first class of convolutional layers will take up a lot of time. This non-computational time
overhead is greatly reduced with the TensorRT framework. Note that since TensorRT 4

Figure 19. Scene of plastic (a) RGB image; (b) Original depth image; (c) k = 2; (d) k = 4.

5.2.3. Speed

The proposed algorithm does not need pre-processing, and all the processing is done
by convolutional neural network, so it has a much better running speed compared with
LRMC and DE-CNN. 1 min (0.017 fps) is needed for LRMC to process a 320× 240 image,
and 0.083 s (12.048 fps) is needed for DE-CNN including the pre-processing part. As shown
in Table 9, it takes about 0.0372 s to process a Y-D image with a resolution of 320× 240
on a single GTX1080, which translates into a frame rate of 25 fps, a 1470-fold and 2-fold
improvement compared with LRMC and DE-CNN; while a Y-D image with a resolution
of 640× 480 can reach 13 fps. The relationship between speed and resolution is not linear,
mainly because the CuDNN library uses some efficient algorithms such as Winograd to
speed up the computation when implementing large-scale convolution operations.

Table 9. Elapsed time (s) without TensorRT framework.

Bowling 1 Bowling 2 Cloth 1 Cloth 2 Cloth 3 Cloth 4

Elapsed time (s) 0.0372044 0.0375206 0.0374086 0.0372178 0.03684 0.0374244

TensorRT further optimizes the computation of convolution on top of CuDNN, and
can fuse some eligible layers together to reduce the number of scheduling, maximizing the
computational power of GPU and improving the efficiency of video memory usage. Since
we do not quantize the weights (we still use 32-bit floating point numbers), the optimization
strategy used by TensorRT for the network structure of this paper is mainly vertical
layer fusion, which includes the following three optimizations: (1)The four operations of
convolution, bias, batch normalization and ReLU in the first class of convolutional layers
are fused into one CBR kernel; (2)The two operations of convolution and bias in the second
class of convolutional layers are fused into one CBR kernel; (3) Canceling Concat layer by
pre-allocating cache.

When the TensorRT framework is not adopted, the data scheduling and computational
resource allocation among the Conv, Bias, BatchNorm, Scale and ReLU layers in the first
class of convolutional layers will take up a lot of time. This non-computational time
overhead is greatly reduced with the TensorRT framework. Note that since TensorRT 4

Entropy 2021, 23, 546 20 of 23

does not support slice layers, we have to replace the slice layers with two input layers to
input the depth map and the intensity map.

With the TensorRT framework deployment, a single GTX1080 processing speed can
achieve 320× 240@47fps and 640× 480@38fps, which are 1.88 times and 2.92 times faster
than the speed without the TensorRT framework. The whole processing process can be
divided into two parts: the IO phase between host memory and GPU memory, and the
GPU computation phase, and our time consumption statistics for these two parts are shown
in Tables 10 and 11.

Table 10. Time consumption of each phase using TensorRT under 320× 240 resolution.

IO Phase Computing Phase Total

Elapsed time (s) 0.000442 0.020668 0.021110
Percentage (%) 2.094 97.906 100

Table 11. Time consumption of each phase using TensorRT under 640× 480 resolution.

IO Phase Computing Phase Total

Elapsed time (s) 0.002566 0.023228 0.025794
Percentage (%) 9.948 90.052 100

Finally, we tested the acquisition speed using C++ Streamer, a speed measurement
software provided by Cypress. The result is stable at 50,400 KBps = 1,720,320 Bytes× 30 fps,
which shows that the frame rate control of this design is very accurate. Assuming full
speed operation at 60 MHz bus clock without frame rate control, the upload speed can be
stabilized at 231,500 KBps = 226 MBps. The maximum frame rate of AR0135CS is 54 fps at
1280× 960, which means the acquisition system can fully support the camera running at
full speed.

5.3. Result of Practical Test

The practical test is shown in Figure 20 and we also calculated the PSNR, RMSE
and SSIM, which are listed in Table 12, and these data basically match with the previous
simulation results.

Entropy 2021, 23, x FOR PEER REVIEW 20 of 23

does not support slice layers, we have to replace the slice layers with two input layers to
input the depth map and the intensity map.

With the TensorRT framework deployment, a single GTX1080 processing speed can
achieve 320 × 240@47fps and 640 × 480@38fps, which are 1.88 times and 2.92 times
faster than the speed without the TensorRT framework. The whole processing process can
be divided into two parts: the IO phase between host memory and GPU memory, and the
GPU computation phase, and our time consumption statistics for these two parts are
shown in Tables 10 and 11.

Table 10. Time consumption of each phase using TensorRT under 320 × 240 resolution.

 IO Phase Computing Phase Total
Elapsed time (s) 0.000442 0.020668 0.021110
Percentage (%) 2.094 97.906 100

Table 11. Time consumption of each phase using TensorRT under 640 × 480 resolution.

 IO Phase Computing Phase Total
Elapsed time (s) 0.002566 0.023228 0.025794
Percentage (%) 9.948 90.052 100

Finally, we tested the acquisition speed using C++ Streamer, a speed measurement
software provided by Cypress. The result is stable at 50,400KBps = 1,720,320Bytes ×30fps, which shows that the frame rate control of this design is very accurate. Assuming
full speed operation at 60 MHz bus clock without frame rate control, the upload speed
can be stabilized at 231,500KBps = 226MBps. The maximum frame rate of AR0135CS is
54 fps at 1280 × 960, which means the acquisition system can fully support the camera
running at full speed.

5.3. Result of Practical Test
The practical test is shown in Figure 20 and we also calculated the PSNR, RMSE and

SSIM, which are listed in Table 12, and these data basically match with the previous sim-
ulation results.

Figure 20. Results of practical test (a) Intensity image; (b) Depth image; (c) 𝑘 = 2; (d) 𝑘 = 4.

Table 12. Resources utilization.

 PSNR (dB) RMSE SSIM
Scenario 1 42.449310 0.182983 0.949597
Scenario 2 41.113400 0.157987 0.954358
Scenario 3 41.554905 0.201898 0.933705

Figure 20. Results of practical test (a) Intensity image; (b) Depth image; (c) k = 2; (d) k = 4.

Table 12. Resources utilization.

PSNR (dB) RMSE SSIM

Scenario 1 42.449310 0.182983 0.949597
Scenario 2 41.113400 0.157987 0.954358
Scenario 3 41.554905 0.201898 0.933705

Entropy 2021, 23, 546 21 of 23

6. Conclusions

In this paper, we presented the design and implementation of a real-time depth map
enhancement system based on residual network. A depth map enhancement algorithm is
proposed, extracting features from the acquired intensity map and depth map in two ways,
and then fusion and residual calculation are performed. Besides, the algorithm proposed
adopts a full convolutional network and eliminates the pre-processing process. On a single
GTX1080 graphics card, the processing speed can reach 320× 240@25fps or 640× 480@13fps
without the TensorRT framework, which is 1470 times and 2 times faster than LRMC
and DE-CNN respectively; and the speed is further increased to 320 × 240@47fps or
640× 480@38fps with the TensorRT framework. Moreover, a FPGA-based dual-camera
synchronous real-time acquisition system is implemented, which can precisely control ToF
camera and visible camera to acquire images synchronously and can transfer the data to
the back-end acceleration platform in real time via USB 3.0 interface. The experimental
results show that the data throughput of the acquisition system is stable at 226 Mbps, and
support dual-camera to work at full speed.

Author Contributions: Conceptualization, Z.L. and Y.G.; methodology, Y.G.; software, Y.G. and
J.W.; validation, Z.L., Y.G. and H.S.; formal analysis, Y.G.; writing—original draft preparation, Y.G.;
writing—review and editing, H.S. and Z.L.; visualization, H.S.; supervision, Z.L.; funding acquisition,
Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundamental Research Funds for the Central Universities,
grant number 2020GFYD011 and 2020 GFZD008.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: Caffe: [https://caffe.berkeleyvision.org/tutorial/layers/hdf5data.html, accessed on
16 December 2020], Middlebury: [http://graphics.cs.pdx.edu/project/depth-enhance/, accessed on
16 December 2020], MPI Sintel [http://sintel.is.tue.mpg.de/, accessed on 16 December 2020].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, S.Y.; Li, Y.F.; Zhang, J. Vision processing for realtime 3-D data acquisition based on coded structured light. IEEE Trans.

Image Process. 2008, 17, 167–176. [CrossRef] [PubMed]
2. Li, L.; Xiang, S.; Yang, Y.; Yu, L. Multi-camera interference cancellation of time-of-flight (TOF) cameras. In Proceedings of the

2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 556–560.
[CrossRef]

3. Hou, Y.; Chiou, S.; Lin, M. Real-time detection and tracking for moving objects based on computer vision method. In Proceedings
of the 2017 2nd International Conference on Control. and Robotics Engineering (ICCRE), Bangkok, Thailand, 1–3 April 2017;
pp. 213–217. [CrossRef]

4. Cao, Y.; Shen, C.; Shen, H.T. Exploiting depth from single monocular images for object detection and semantic segmentation.
IEEE Trans. Image Process. 2017, 26, 836–846. [CrossRef]

5. Raghunandan, A.; Mohana; Raghav, P.; Aradhya, H.V.R. Object detection algorithms for video surveillance applications. In Pro-
ceedings of the 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 April 2018;
pp. 0563–0568. [CrossRef]

6. Yang, S.; Liu, J.; Fang, Y.; Guo, Z. Joint-feature guided depth map super-resolution with face priors. IEEE Trans. Cybern. 2018, 48,
399–411. [CrossRef] [PubMed]

7. Xu, D.; Fan, X.; Zhao, D.; Gao, W. Multiresolution contourlet transform fusion based depth map super resolution. In Proceedings
of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2187–2191.
[CrossRef]

8. Li, W.; Hu, W.; Dong, T.; Qu, J. Depth image enhancement algorithm based on RGB image fusion. In Proceedings of the 2018 11th
International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; pp. 111–114.
[CrossRef]

9. Zuo, Y.F.; Fang, Y.M.; An, P.; Shang, X.; Yang, J. Frequency-dependent depth map enhancement via iterative depth-guided affine
transformation and intensity-guided refinement. IEEE Trans. Multimed. 2021, 23, 772–783. [CrossRef]

10. Si, L.; Xiaofeng, R.; Feng, L. Depth enhancement via low-rank Matrix completion. In Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 3390–3397.

https://caffe.berkeleyvision.org/tutorial/layers/hdf5data.html
http://graphics.cs.pdx.edu/project/depth-enhance/
http://sintel.is.tue.mpg.de/
http://doi.org/10.1109/TIP.2007.914755
http://www.ncbi.nlm.nih.gov/pubmed/18270109
http://doi.org/10.1109/ICIP.2015.7350860
http://doi.org/10.1109/ICCRE.2017.7935072
http://doi.org/10.1109/TIP.2016.2621673
http://doi.org/10.1109/ICCSP.2018.8524461
http://doi.org/10.1109/TCYB.2016.2638856
http://www.ncbi.nlm.nih.gov/pubmed/28026798
http://doi.org/10.1109/ICIP.2018.8451042
http://doi.org/10.1109/ISCID.2018.10126
http://doi.org/10.1109/TMM.2020.2987706

Entropy 2021, 23, 546 22 of 23

11. Xin, Z.; Ruiyuan, W. Fast depth image denoising and enhancement using a deep convolutional network. In Proceedings
of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 20–25 March 2016;
pp. 2499–2503.

12. Wang, J.; Cai, J.F. Data-driven tight frame for multi-channel images and its application to joint color-depth image reconstruction.
J. Oper. Res. Soc. China 2015, 3, 99–115. [CrossRef]

13. Ni, M.; Lei, J.; Cong, R.; Zheng, K.; Peng, B.; Fan, X. Color-guided depth map super resolution using convolutional neural
network. IEEE Access 2017, 5, 26666–26672. [CrossRef]

14. Zhou, W.; Li, X.; Reynolds, D. Guided deep network for depth map super-resolution: How much can color help? In Proceedings
of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA,
5–9 March 2017; pp. 1457–1461. [CrossRef]

15. Chen, B.; Jung, C. Single depth image super-resolution using convolutional neural networks. In Proceedings of the 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018;
pp. 1473–1477. [CrossRef]

16. Korinevskaya, A.; Makarov, I. Fast depth map super-resolution using deep neural network. In Proceedings of the 2018 IEEE
International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018;
pp. 117–122. [CrossRef]

17. Li, B.; Dai, Y.; Chen, H.; He, M. Single image depth estimation by dilated deep residual convolutional neural network and
soft-weight-sum inference. arXiv 2017, arXiv:1705.00534.

18. He, L.; Wang, G.; Hu, Z. Learning depth from single images with deep neural network embedding focal length. IEEE Trans. Image
Process. 2018, 27, 4676–4689. [CrossRef] [PubMed]

19. Kumari, S.; Jha, R.R.; Bhavsar, A.; Nigam, A. AUTODEPTH: Single image depth map estimation via residual CNN encoder-
decoder and stacked hourglass. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei,
Taiwan, 22–25 September 2019.

20. Siddiqui, S.A.; Vierling, A.; Berns, K. Multi-modal depth estimation using convolutional neural networks. arXiv 2020,
arXiv:2012.09667.

21. Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.N.; Rueckert, D. A deep cascade of convolutional neural networks for dynamic
MR image reconstruction. IEEE Trans. Med. Imaging 2018, 37, 491–503. [CrossRef] [PubMed]

22. Li, Z.; Liu, X.; Creighton, F.X.; Taylor, R.H.; Unberath, M. Revisiting stereo depth estimation from a sequence-to-sequence
perspective with transformers. arXiv 2020, arXiv:2011.02910.

23. Qian, T.; Chen, L.; Li, X.; Sun, H.; Ni, J. A 1.25 Gbps programmable FPGA I/O buffer with multi-standard support. In Pro-
ceedings of the 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), Shanghai, China,
24–26 November 2018; pp. 362–365. [CrossRef]

24. Venieris, S.I.; Bouganis, C.-S. FpgaConvNet: Mapping regular and irregular convolutional neural networks on FPGAs. IEEE
Trans. Neural Netw. Learn. Syst. 2019, 30, 326–342. [CrossRef] [PubMed]

25. Ahmad, A.; Pasha, M.A. Towards design space exploration and optimization of fast algorithms for convolutional neural networks
(CNNs) on FPGAs. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence,
Italy, 25–29 March 2019; pp. 1106–1111.

26. Jiang, Y.; Luo, J. Target height measurement method based on stereo vision. In Proceedings of the 2020 International Conference
on Information Science, Parallel and Distributed Systems (ISPDS), Xi’an, China, 14–16 August 2020; pp. 14–17. [CrossRef]

27. Deng, H.; Dong, P.; Li, Z.; Lyu, H.; Zhang, Y.; Luo, Y.; An, F. Robot navigation based on pseudo-binocular stereo vision and linear
fitting. In Proceedings of the 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA),
Nanjing, China, 23–25 November 2020; pp. 174–175. [CrossRef]

28. Dong, H.; Zhang, Y.; Chen, M.; Jin, W. Design of the image acquisition and processing system for color sorter based on
FPGA. In Proceedings of the 2017 2nd International Conference on Cybernetics, Robotics and Control (CRC), Chengdu, China,
21–23 July 2017; pp. 184–188. [CrossRef]

29. Manabe, T.; Shibata, Y.; Oguri, K. FPGA implementation of a real-time super-resolution system with a CNN based on a residue
number system. In Proceedings of the 2017 International Conference on Field Programmable Technology (ICFPT), Melbourne,
VIC, Australia, 11–13 December 2017; pp. 299–300. [CrossRef]

30. Shandilya, R.; Sharma, R.K. FPGA implementation of image enhancement technique for Automatic Vehicles Number Plate
detection. In Proceedings of the 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India,
11–12 May 2017; pp. 1010–1017. [CrossRef]

31. Prashant, G.P.; Jagdale, S.M. Information fusion for images on FPGA: Pixel level with pseudo color. In Proceedings of the 2017 1st
International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, India, 5–6 October 2017;
pp. 185–188. [CrossRef]

32. Pfeifer, M.; Scholl, P.M.; Voigt, R.; Becker, B. Active stereo vision with high resolution on an FPGA. In Proceedings of the 2019
IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA,
USA, 28 April–1 May 2019; pp. 118–126. [CrossRef]

http://doi.org/10.1007/s40305-015-0074-2
http://doi.org/10.1109/ACCESS.2017.2773141
http://doi.org/10.1109/ICASSP.2017.7952398
http://doi.org/10.1109/ICASSP.2018.8462043
http://doi.org/10.1109/ISMAR-Adjunct.2018.00047
http://doi.org/10.1109/TIP.2018.2832296
http://www.ncbi.nlm.nih.gov/pubmed/29994526
http://doi.org/10.1109/TMI.2017.2760978
http://www.ncbi.nlm.nih.gov/pubmed/29035212
http://doi.org/10.1109/ICAM.2018.8596436
http://doi.org/10.1109/TNNLS.2018.2844093
http://www.ncbi.nlm.nih.gov/pubmed/29994725
http://doi.org/10.1109/ISPDS51347.2020.00011
http://doi.org/10.1109/ICTA50426.2020.9332014
http://doi.org/10.1109/CRC.2017.43
http://doi.org/10.1109/FPT.2017.8280165
http://doi.org/10.1109/ICOEI.2017.8300860
http://doi.org/10.1109/ICISIM.2017.8122171
http://doi.org/10.1109/FCCM.2019.00026

Entropy 2021, 23, 546 23 of 23

33. Lee, Y.; Choi, S.; Lee, E.; Lee, S.; Jang, S. A real-time AD-census stereo matching based on FPGA. In Proceedings of the 2019
19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 15–18 October 2019; pp. 1622–1624.
[CrossRef]

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

35. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2016.

36. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–14.

37. Butler, D.J.; Wulff, J.; Stanley, G.B.; Black, M.J. A naturalistic open source movie for optical flow evaluation. In Proceedings of
the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 611–625.

38. Kingma, D.P.; Ba, J.L.A. A method for Stochastic optimization. arXiv 2017, arXiv:1412.6980.
39. Cypress. EZ-USB FX3 SuperSpeed USB Controller 2012. Available online: www.cypress.com (accessed on 16 December 2020).
40. Xilinx. AXI IIC Bus Interface LogiCORE IP Product Guide (PG090). 2016. Available online: https://www.xilinx.com/support/

documentation/ip_documentation/axi_iic/v1_02_a/pg090-axi-iic.pdf (accessed on 16 December 2020).
41. Xilinx. UltraScale Architecture Libraries Guide (UG974). 2019. Available online: www.xilinx.com (accessed on 16 December 2020).
42. Xilinx. FIFO Generator LogiCORE IP Product Guide (PG057). 2017. Available online: https://www.xilinx.com/support/

documentation/ip_documentation/fifo_generator/v9_3/pg057-fifo-generator.pdf (accessed on 16 December 2020).
43. Cypress. Designing with the EZ-USB FX3 Slave FIFO Interface (AN75705). 2018. Available online: www.cypress.com (accessed

on 16 December 2020).
44. Mandal, S.; Bhavsar, A.; Sao, A.K. Depth map restoration from under-sampled data. IEEE Trans. Image Process. 2017, 26, 119–134.

[CrossRef] [PubMed]
45. Aodha, O.M.; Campbell, N.D.F.; Nair, A.; Brostow, G.J. Patch based synthesis for single depth image super-resolution. In

Proceedings of the 2012 Springer European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 71–84.

http://doi.org/10.23919/ICCAS47443.2019.8971538
www.cypress.com
https://www.xilinx.com/support/documentation/ip_documentation/axi_iic/v1_02_a/pg090-axi-iic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_iic/v1_02_a/pg090-axi-iic.pdf
www.xilinx.com
https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v9_3/pg057-fifo-generator.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v9_3/pg057-fifo-generator.pdf
www.cypress.com
http://doi.org/10.1109/TIP.2016.2621410
http://www.ncbi.nlm.nih.gov/pubmed/27831871

	Introduction
	Related Work
	Residual Network Design
	FPGA Design of Image Acquisition System

	Materials and Methods
	CNN Architecture and ResNet
	Proposed Neural Network Design
	Dataset and Network Training

	Full-Pipeline FPGA Implementation
	Hardware Architecture Overview
	Initialization Module
	Clock Generation Module
	Video Capture Module
	Pixel2RAM Sub-Module
	Trigger Sub-Module
	USB_Controller Sub-Module

	FPGA Resources Analysis

	Experimental Results
	Experimental Setup
	Result Analysis and Comparison
	Depth Map Repair Performance
	Accuracy
	Speed

	Result of Practical Test

	Conclusions
	References

