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Abstract

Gammaretroviruses related to murine leukemia virus (MLV) have variously been reported to be present or absent in blood
from chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients and healthy controls. Using subjects from New
York State, we have investigated by PCR methods whether MLV-related sequences can be identified in nucleic acids isolated
from whole blood or from peripheral blood mononuclear cells (PBMCs) or following PBMC culture. We have also passaged
the prostate cancer cell line LNCaP following incubation with plasma from patients and controls and assayed nucleic acids
for viral sequences. We have used 15 sets of primers that can effectively amplify conserved regions of murine endogenous
and exogenous retrovirus sequences. We demonstrate that our PCR assays for MLV-related gag sequences and for mouse
DNA contamination are extremely sensitive. While we have identified MLV-like gag sequences following PCR on human DNA
preparations, we are unable to conclude that these sequences originated in the blood samples.
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Introduction

The 2009 report [1] that XMRV (xenotropic murine leukemia

virus-related virus) was associated with CFS sparked our interest in

examining additional populations to determine whether we could

replicate the results and observe variability from the originally

reported sequences. CFS/ME is a debilitating illness without a

known cause and no generally effective treatment [2–6]. Aspects of

the illness, including a number of outbreaks [7,8], are consistent

with involvement of a virus. Our initial attempts to utilize

published primers in PCR assays to detect XMRV failed;

however, some experiments resulted in identification of gag

sequences similar to MLV. With the report in 2010 [9] of

detection of MLV-like gag sequences in CFS patient blood

samples, we decided to explore our findings further. As reports

of laboratory [10,11] and reagent contamination [12] began to

appear, we investigated the possibility of spurious results and the

possible sources of the sequences we observed.

Here we describe our analysis of samples from patient and

control populations from rural and urban New York. We have

measured the sensitivity of nested and single-round PCR assays for

MLV-like gag sequences in human whole blood and PBMCs, and

in mouse DNA. We have also identified additional sets of primers

that can be used to search for the presence of other conserved

regions of murine gammaretroviruses. We have performed spiking

experiments to determine the sensitivity of mitochondrial DNA

(mtDNA) and IAP assays for mouse cellular DNA contamination.

We are unable to identify the provenance of the MLV-like gag

sequences we have detected. Therefore, we cannot conclude that

MLV-related gag sequences are present in the blood samples in this

study. We demonstrate that our PCR assays are highly sensitive

and specific for MLV-related viruses. Whether a retrovirus is

involved in inciting or maintaining CFS/ME will require further

investigation using other types of assays.

Materials and Methods

Ethics statement and study subjects
Patients with CFS fulfilled Fukuda criteria [13] and were

identified by two physicians experienced with CFS/ME. All

patients gave written informed consent for the use of their blood

samples for research concerning CFS/ME and the study was

approved by Institutional Review Board at Cornell University,

Ithaca, NY (approval # 1005001407). One group of participants

was recruited by David Bell, M.D., Lyndonville, New York, where

an outbreak occurred in 1984–1986. The cohort contained 10

individuals who are severely ill with CFS, 10 individuals who

fulfilled Fukuda criteria at one time but now consider themselves

recovered, and 20 individuals who have never been diagnosed

with CFS (controls). Not all study subjects recruited by David Bell

reside in Lyndonville and only some were part of the outbreak

population. Susan Levine, M.D., provided samples from 20 CFS

patients and 4 healthy controls visiting her practice in Manhattan,

New York. 12 controls who have never been diagnosed with CFS

were recruited from Ithaca, New York. Health status of subjects

was unknown to the individuals who performed experiments with

blood samples.
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Collection and processing of blood samples
Blood samples were collected in vacutainers by phlebotomists

and sent to us via overnight courier or hand-carried to the

laboratory. Ithaca samples were maintained at room temperature

for 20 h to mimic the shipment by courier. Blood samples were

processed in a sterile containment hood within 24 h of draw. All

samples were handled under aseptic conditions. EDTA blood

collection tubes were used in all three locations.

1 ml of unprocessed whole blood from some samples was stored

at 280uC. Following centrifugation of whole blood at 500 g for

5 min, plasma samples were stored in 1 ml aliquots at 280uC.

The blood cells were fractionated by Ficoll-Paque (GE Healthcare,

Piscataway, NJ) gradient and the PBMC buffy coat was washed

with PBS. The resultant PBMC pellet was washed with PBS again

and divided into 3 fractions of which one was cultured, one

resuspended in 1 ml TRIzol (Invitrogen, Carlsbad, CA) for RNA

preparation, and one resuspended in 700 ml CTAB for DNA

preparation.

The containment hood used for this study was in a separate

room from the main laboratory, with a designated set of pipettes

and centrifuges. All disposable laboratory consumables were sterile

and purchased from Corning (Corning, NY).

PBMC culture
PBMCs were cultured in 25 cm2 flasks in 10 ml complete

medium [RPMI medium 1640 with L-glutamine, 10% fetal bovine

serum (FBS), liquid penicillin-streptomycin (all from Invitrogen),

5 mg/ml ciprofloxacin (Sigma-Aldrich, St. Louis, MO)], supple-

mented with 1 mg/ml phytohemagglutinin (Sigma-Aldrich) and

2.2 mg/ml interleukin-2 (ZeptoMetrix, Buffalo, NY), and main-

tained at 37uC and 5% carbon dioxide (CO2). PBMCs were

collected at 3–5 d with media replenishment, and 8–10 d from

initial culturing.

LNCaP culture
The LNCaP FGC cell line was from American Type Culture

Collection (ATCC, Manassas, VA) and maintained at 37uC and

5% CO2, on complete medium and subcultivated using TrypLE

Select (Invitrogen). Co-incubation of LNCaP cells with plasma

samples was conducted to determine viral transmission. In sterile

15 ml conical tubes, LNCaP cells (1 of 16 parts from 80%

confluent 75 cm2 flask) in serum-free RPMI medium 1640 with

150 ml plasma were incubated in a 37uC water-bath for 1 h,

followed by centrifugation at 500 g for 5 min. The supernatant

was removed and cells were resuspended in complete medium and

cultured in 25 cm2 flasks with 10 ml of media. Subcultivation of

LNCaP cells that were exposed to plasma (‘LNCaP-plasma cells’)

were performed when attached cells were grown to 70–80%

confluence, usually at 1 4 ratio every 4 to 5 d. The remainder of

the LNCaP-plasma cells were divided into 3 tubes and stored as

pellets at 280uC. LNCaP-plasma cells were maintained through 6

passages and then stored frozen. Tissue culture of LNCaP stock

cell line was always performed separately and/or prior to tissue

culture of LNCaP-plasma cells.

Nucleic acid preparations
Nucleic acids were prepared in a designated ‘nucleic acids’ UV

workstation with a designated set of pipettes, in a room separate

from blood processing, tissue culture, and analysis of PCR

products. The space was exposed to UV light for at least 10 min

before use and all tubes were irradiated in an UV cross-linker

(Stratagene, Santa Clara, CA). Manufacturer-sterilized filter tips

were used in all experiments.

RNA samples were prepared using TRIzol and cDNA samples

were synthesized from 750 ng RNA per SuperScript VILO cDNA

synthesis kit reaction. These reagents were from Invitrogen and

experiments were carried out according to manufacturer’s

guidelines.

DNA was prepared from whole blood samples with the

QIAamp DNA blood mini kit (Qiagen, Valencia, CA). In order

to isolate DNA from PBMCs or cultured cells, 1–3 million cells

were resuspended in 700 ml of 26CTAB and incubated at 65uC
for 30 min. At room temperature, 700 ml of chloroform was added

and the sample mixed by vortex. Following centrifugation at 4uC
for 10 min at 12000 rpm, the upper aqueous layer was collected in

a fresh 1.5 ml tube and chloroform-extracted again. An equal

volume of isopranol was added to the aqueous layer to precipitate

the DNA, which was washed twice with 70% ethanol and air-

dried. The DNA pellet was resuspended in 100 ml water and

stored frozen.

PCR amplification
PCR mixes were set up in a designated ‘PCR’ UV workstation

with a designated set of pipettes, in a room separate from blood

work, tissue culture, and analysis of PCR products. The space was

exposed to UV light for at least 10 min before use and all tubes

were irradiated in an UV cross-linker. Manufacturer-sterilized

filter tips were used in all experiments.

Routine PCR was with a Bio-Rad C1000 thermal cycler and

consisted of denaturation at 92uC for 2 min; cycles of 92uC for

30 sec, annealing for 30 sec, extension at 72uC for 1 min per kb

product; and final extension for 10 min. PCR reactions were 50 ml

total with Hotstart-IT FideliTaq master mix (USB), 2.5 mM

MgCl2, 400 nM of each primer, and either 500 ng genomic DNA

(gDNA) or 5 ml of cDNA. 5 ml of the first PCR product were

added as template for the nested PCR.

New PCR primers were designed (manufactured by IDT,

Coralville, Iowa) and PCR conditions were optimized as

necessary. Optimization of PCR conditions were carried out with

additional 20 nM of each VAMP2 primer in each reaction as

positive control for successful PCR. All experiments with mouse

DNA were performed in a different laboratory. All PCR primers

and amplification conditions used are in Tables S1 and S2. Mouse

tail DNA from genotype C57BL/6J (gift from Ling Qi’s

laboratory, Cornell) was used to determine the limits of detection.

An amplicon from a human blood sample was produced with

primers 419F/1154R [1] and cloned into vector pCR2.1

(Invitrogen) for use in spiking experiments.

Virus culture
40,000 DERSE cells were cultured in 25 cm2 flasks with 10 ml

RPMI medium 1640 containing 10% FBS and 1 mg/ml puromy-

cin, for 72 h at 37uC and 5% CO2 (all reagents were from

Invitrogen). DERSE cells were then incubated with 250 ml plasma

in 2 ml of fresh RPMI medium (no serum) for 2 h at 37uC, 5%

CO2. Cultures were observed to ensure cell attachment and an

additional 3 ml RPMI medium with penicillin-streptomycin was

added to each flask and incubated overnight. The following day,

the media were replaced with 10 ml RPMI medium containing

10% FBS and penicillin-streptomycin and incubated for 3 d.

Cultures were subcultivated 1 4 using TrypLE Select every 3–4 d.

Cultures were monitored for green fluorescent protein (GFP)

fluorescence and to prevent growth to confluence. A total of 32

cultures were treated the same way with the same media and

maintained: 30 of DERSE cells that were co-incubated with

plasma, and two of DERSE cells only.

PCR Assays for Gammaretroviral Sequences
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As a positive control, two separate flasks of DERSE cells were

incubated with supernatant from the 22Rv1 cell line, which

contains XMRV (gift from Vineet Kewalramani, NCI, Frederick)

and monitored for GFP fluorescence. This experiment was

conducted in a colleague’s laboratory, using their equipment, by

a researcher who did not handle any of the other experiments in

this study.

PCR and DNA sequencing
Following PCR, samples were separated by 1 or 2% agarose gel

electrophoresis with ethidium bromide staining. Any amplicons of

the expected size were purified from agarose gels using the

PureLink kit (Invitrogen) and sequenced at the Cornell University

Life Sciences Core Laboratories Center.

Nomenclature and Genbank Accession Numbers
In order to label the gag sequences we obtained, we have devised

the following code to indicate which sample was used in the PCR

reactions from which gag fragments were obtained. 1: severe CFS,

2: recovered CFS, 3: non-CFS control, A: whole blood gDNA, B:

fresh PBMC cDNA, C: Fresh PBMC gDNA, D: 3–5 d cultured

PBMC gDNA, E: 8–10 d cultured PBMC gDNA, F: LNCaP

incubated with plasma gDNA. LN1: initial batch of cultured

LNCaP cells. LN2: second batch of cultured LNCaP cells. P4:

passage 4 LNCaP cells, P6: passage 6 LNCaP cells. For example

5A1 refers to gDNA of whole blood of subject 5, who has severe

CFS. Genbank accession numbers are JQ684649, JQ684650,

JQ684651, JQ684652, JQ684653, JQ684654, JQ684655, and

JQ684656.

Results

MLV-like gag sequences were obtained following PCR of
gDNA and cDNA from PBMCs from subjects in Western
New York

Blood samples were obtained from subjects in New York State

living in the vicinity of Lyndonville, where a CFS outbreak

occurred in the mid-1980’s [14]. PBMCs were isolated and

examined directly or cultured in order to determine whether

MLV-related viruses could be detected. Plasma was incubated

with LNCaP cells to determine whether infectious virus was

present that could infect a human cell line. PCR was performed

with gDNA and cDNA produced from uncultured and 5-day and

9/10-day cultured PBMCs and plasma-inoculated LNCaP cells. In

addition to the nested gagO/gagI primers utilized by Lombardi et

al. [1] and Lo et al. [9], we designed another set of primers for

gagL PCR (from the gag leader region) (Table S1) for use in single-

round, 45-cycle PCR in order to minimize the possibility of

environmental contamination with mouse sequences that might

occur during the manipulations needed for nested PCR. Condi-

tions for this new set of primers were optimized by performing a

gradient of 8 annealing temperatures from 52uC to 59uC. The

optimization was performed by using a sample that had resulted in

amplification with the gagO/gagI nested PCR. A product was

observed with annealing temperature of 54.8uC and this

temperature was used for gagL PCR (Table S2). As a positive

control for successful PCR during optimization, 20 nM of VAMP2

primers were added to each reaction. Amplicons corresponding to

the size expected for VAMP sequences were observed with PCR

annealing temperatures ranging from 50uC to 59uC.

PCR products corresponding to gag sequences were obtained

from whole blood or PBMC DNA from 6 different samples with

single-round gagL PCR. When nested gagO/gagI PCR was

performed, 4 samples resulted in fragments corresponding to gag

sequences. Taken together, 5 samples from severe patients, 2 from

recovered CFS patients, and 3 from control subjects resulted in

detection of gag PCR products. Samples from one severely ill and

one recovered patient exhibited PCR products with both gagL and

gagO/gagI amplifications. All of these samples were negative in

mouse mtDNA assays. All PCR results were confirmed by

sequencing.

No XMRV observed by PCR or DERSE cell co-culture
Detectors of Exogenous Retroviral Sequence Elements

(DERSE) indicator cells [15] were used for detection of XMRV-

related viruses in plasma of 10 of each health status types from

Bell’s cohort. The DERSE cell lines are LNCaP cells carrying a

MLV-based vector which will result in expression of GFP if MLV-

related gammaretroviruses capable of infecting human cell lines,

such as XMRV or X-MLVs, are present.

No gag sequences with the XMRV-characteristic deletion

relative to MLV in the gag leader region were ever observed in

any PCR assays on any type of samples. Furthermore, co-

incubation of DERSE cells with plasma of 20 patient and 10

control samples from Western New York produced no GFP-

expressing cells, indicating absence of detectable infectious

XMRV. Incubation of the DERSE cells with XMRV virions

from 22Rv1 was performed as a positive control, and resulted in

the rapid detection of GFP-expressing cells (Fig. S1).

MLV-like gag sequences detected in LNCaP cultures
The gagL and gagO/gagI PCRs were carried out on gDNA

isolated from LNCaP cells at passage 4 or passage 6 following

incubation with plasma from 40 subjects. For every 10 plasma-

incubated cultures, two uninoculated LNCaP cultures were grown

alongside with the same media and conditions to serve as negative

controls. All the samples were negative for mouse cox2 DNA

according to nested PCR with coxO-coxI primers. gag sequences

were detected in gDNA preparations following both the gagO/

gagI and gagL PCR. Two samples gave gagO/gagI PCR

products: 11F2-P4 and 14F2-P4. With gagL PCR, 7 samples

were positive: 2F1-P6, 4F1-P6, 9F1-P6, 10F3-P6, 11F2-P4, 12F2-

P6, and 13F3-P6. In addition, 5 additional samples irreproducibly

gave gagO/gagI PCR products and 11 sometimes were PCR

positive for gagL; due to the inconsistency, we decided to score

these as negative. For each sample, at least 3 PCR reactions were

performed on 3 different days. Sometimes gag fragments were not

detected in the same sample in which they had previously been

found; also, sometimes gag sequences were found at passage 4 but

not at passage 6, as well as vice versa. None of the uninoculated

LNCaP cultures gave gag PCR products with either set of primers

when a small number of PCR reactions were run contempora-

neously with the plasma-incubated cultured cells.

In order to determine whether low-level contamination might

be occurring, we tested the uninoculated LNCaP master cell line

by gagL PCR on a larger scale of replicates. On the same day, one

sample of LNCaP gDNA designated LN1 was tested with gagL

PCR using HotStart-IT FideliTaq master mix (USB) and

OneTaqH 26master mix (NEB) separately, each with 42 LNCaP

gDNA aliquots and 6 no-template negative controls. gagL

sequences were confirmed in 4/42 of each of the PCR. None of

the negative control samples were positive. LN1 showed gag

sequences in 9.5% (8/84) PCR tests. 10 replicates of LN1 IAP

PCR conducted with HotStart-IT FideliTaq Master Mix (USB)

were all negative. Furthermore, 24 replicates of USB and 14 of

NEB master mixes were tested for IAP PCR to rule out

contamination in the reagents and all 38 were negative.

PCR Assays for Gammaretroviral Sequences
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Because LN1 appeared to contain gag sequences, an earlier

sample of the LNCaP master cell line gDNA, named LN2, was

tested the same way as LN1 but with half as many replicates. With

LN2, gagL amplicons were confirmed in 1/21 and in 4/21 PCR

reactions with USB and NEB master mixes, respectively. Water

controls were always negative (total of 3 water controls for each 21

LN2-containing wells.

New LNCaP cells were purchased from ATCC and cultured.

gDNA was prepared and designated LN3. LN3 was used in the

same experiment carried out on LN2. No gagL PCR products

were detected in any of the 48 reactions tested.

gag PCR of DNA from PBMCs of control subjects in
Ithaca, New York

In order to increase the number of control subjects in the study,

we recruited 12 volunteers from Ithaca, New York, where a CFS/

ME outbreak similar to the one that occurred in the Western New

York area surrounding Lyndonville has not been reported. We

observed a gagL PCR fragment only one time in an Ithaca control

sample; as the result was not reproducible in subsequent assays,

the sample was scored as negative.

Absence of MLV-like gag sequences in gDNA samples
from the New York City area

While we were carrying out the experiments on the Western

New York samples, a number of reports began appearing that

indicated problems with environmental contamination with mouse

DNA as well as the presence of mouse DNA in common

laboratory reagents. We therefore obtained a second set of samples

from the office of Susan Levine, M.D. in Manhattan, New York.

Single-round gagL PCR was performed on gDNA, and all assays

were negative. These assays were performed in a different room in

the Cornell laboratory that had improved environmental isolation

over the one used for the experiments performed on the initial set

of samples from the Lyndonville office. Research with mice had

never been performed in any of the rooms used in this study;

however, murine cell cultures and mice have been in use on the

same floor of the laboratory building.

Figure 1. Amplification of conserved MLV-like regions from mouse tail DNA. 13 different PCRs (Table S2) were conducted with 10 pg or
1 pg mouse tail DNA as indicated. M – GeneRuler 1 kb Plus DNA Ladder, 75–20,000 bp (Fermentas) - selected fragment sizes are as indicated on the
2% agarose gel images. H2O – no template, PCR negative control.
doi:10.1371/journal.pone.0037482.g001

Figure 2. Alignment of primers with plasmid clone of 419F/
1154R amplicon.
doi:10.1371/journal.pone.0037482.g002

PCR Assays for Gammaretroviral Sequences
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Negative results with primers to XMRV envelope (env)
sequences

Our original intention when this project commenced in 2010

was to compare XMRV envelope sequences from a population in

Western New York (Lyndonville area) to those obtained in the

Lombardi et al. [1] study that was carried out in Nevada, in order

to determine whether there might be geographic variation in virus

sequence. However, using the PCR assays described by Danielson

et al. [16] or Hong et al. [17], no envelope sequences

corresponding to any type of gammaretrovirus were ever detected

in any gDNA or cDNA preparations we analyzed, even in samples

where MLV-like gag sequences were identified. While amplicons

were sometimes present in gel lanes, upon sequencing, the

fragments were found to be human DNA non-specific amplicons.

PCRs to assay for pol (Table S1) were also negative.

Negative results with PCRs of conserved regions of MLV-
like pol, env, and long terminal repeat (LTR) regions

Because of the possibility that an unusual gammaretrovirus

might be present that would not be detectable with previously

published primers, we predicted additional sets of primers from an

alignment of exogenous and endogenous MLVs along with MLV-

like sequences reported in prostate cancer and CFS. This

alignment, which was kindly provided by Brian Foley from the

Los Alamos National Laboratory, consisted of 111 DNA

sequences, including the Rauscher, Friend, Moloney, and Graffi

MLVs as well as C75BL/6J genome endogenous MLV subgroups

[18], and XMRV and MLV-like sequences [9] that were available

from NCBI in September 2010.

These primers were designed to amplify regions downstream of

the regions assayed by the gag primers described above. Only the

murine gammaretroviruses would be expected to be amplifiable

with the new set of primers. A total of 13 primer pairs were used in

PCR for regions pol, env and LTR (Tables S1 and S2) on samples

that were previously positive for gag from PBMC and whole blood

gDNA. All of the PCRs were negative for the respective retroviral

targets. Amplicons of similar sizes to those that we expected were

Figure 3. Detection sensitivity of gagO and gagI PCR with various amounts of mouse tail DNA in 500 ng of human whole blood
DNA. (A) gagO amplicons were not visible after 30 cycles but with further cycling to a total of 45 cycles, gagO amplicons were amplified from 10 pg,
1 pg, and 100 fg mouse tail DNA. (B) 40 cycles of gagI PCR following 30 cycles of gagO PCR showed amplicons from 10 pg, 1 pg and 100 fg mouse
tail DNA. As a positive control, VAMP2 PCRs resulted in amplicons from all samples with human DNA. M – GeneRuler 1 kb Plus DNA Ladder, 75–
20,000 bp (Fermentas, Glen Burnie, Maryland). H2O – no template, PCR negative control.
doi:10.1371/journal.pone.0037482.g003

Figure 4. Detection sensitivity of gagL PCR with various
amounts of mouse tail DNA. (A) 500 ng and (B) 50 ng of human
whole blood DNA. gagL amplicons were detected in 1 pg of mouse tail
DNA. M – GeneRuler 1 kb Plus DNA Ladder, 75–20,000 bp (Fermentas).
H2O – no template, PCR negative control.
doi:10.1371/journal.pone.0037482.g004

PCR Assays for Gammaretroviral Sequences
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sequenced and were invariably non-specific amplification of

human DNA.

Due to the multiple non-specific amplicon bands of varying sizes

observed in these PCRs with human samples, we verified that the

PCR primers were suitable for detection of gammaretroviral

sequences with mouse tail DNA alone. The 13 different primers

pairs resulted in the relevant products with mouse tail DNA

(Fig. 1). The amount required for detection of viral sequences

varied between 1 and 10 pg template DNA because the

amplification of mouse endogenous retroviral sequences is

dependent on the region and copy number of the target, which

differs between mouse ERVs, LINEs and SINEs. All the

amplicons were confirmed as of murine origin by sequencing

and BLAST (NCBI), except for the env3 PCR reaction. Only a

faint amplicon band was observed with 10 pg template DNA

(Fig. 1). The primers for env3 PCR map to the more variable env

region. We selected the most conserved regions for primer

construction across the MLV and MLV-like genomes; however,

the DNA we assayed was from one genotype of mouse only,

C57BL/6J. Amplicons of two different sizes (between 300–400 bp

and 400–500 bp) were obtained from mouse LTRs following ltr1

PCR. Endogenous MLVs are known to vary in size of LTRs.

Sensitivity of PCR assays for gag and for mouse mtDNA
and Intracisternal A Particle (IAP) DNA

We determined the sensitivity of the gagO/gagI and gagL PCR

assays by spiking 500 ng of human DNA with a plasmid carrying a

cloned gag fragment obtained by amplifying a PBMC gDNA

sample with the 419F/1154R primers. We were able to obtain gag

amplicons with both assays in samples diluted so as to contain only

a single copy of the plasmid. Thus both PCR assays are highly

sensitive and can tolerate minor mismatches between the cloned

target sequences and primers (Fig. 2).

In order to determine at what level we could detect mouse DNA

if it were contaminating 500 ng of human DNA from blood

samples, we performed experiments in which human whole blood

DNA was spiked with 1 fg to 10 pg of mouse tail DNA (Fig. 3).

While no amplicons were seen after 30 cycles of gagO PCR, we

observed PCR products after an additional 15 cycles in samples

spiked with 100 fg or more of mouse DNA. However, in our

examination of human samples, we performed nested PCR of

30 cycles of gagO followed by 40 cycles of gagI, which resulted in

greater amounts of amplicons than obtained by 45 cycles of single-

round PCR with gagO (Fig. 3).

Figure 5. Sensitivity of PCR in detection of gag and mouse-
specific targets in 500 ng of human PBMC DNA with a range of
mouse tail DNA concentrations. The same master DNA dilution
series was used as template in each of the PCR amplifications. gagL
fragments were amplified from 1 pg mouse tail DNA, as were gagI
fragments following gagO PCR. coxI following coxO PCR showed
detection limit of 100 fg. IAP PCR was successful from 10 pg through
10 fg and variably sized fragments were observed between 200 and
300 bp; the lower amplicons of approximately 200 bp were sequenced
and matched human DNA sequences. VAMP2 PCR was the positive
quality control for human DNA. M – GeneRuler 1 kb Plus DNA Ladder,
75–20,000 bp (Fermentas). H2O – no template, PCR negative control.
doi:10.1371/journal.pone.0037482.g005

Figure 6. PCR detection of gag but not mouse sequences in 500 ng of whole blood gDNA. Fragments were separated on 2% agarose. (A)
gagL fragments at 367 bp observed in 2 samples. (B) Neither mCOX2 nor IAP were amplified from the same 2 DNA samples, by nested coxO followed
by coxI PCR, or IAP PCR, respectively. The amplicons of IAP PCR as indicated by the arrows were sequenced and were non-specific human DNA
amplification, not of mouse origin. M – GeneRuler 1 kb Plus DNA Ladder, 75–20,000 bp (Fermentas). H2O – no template, PCR negative control. There
is an empty lane between coxI and IAP lanes.
doi:10.1371/journal.pone.0037482.g006

PCR Assays for Gammaretroviral Sequences
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Figure 7. DNA sequence alignment of gag sequences with selected MLV-like sequences and mouse tail DNA sequences. Nucleotides
that are identical to the reference 22Rv1Genome (Genbank FN692043) sequence are shown as dots and gaps are shown as dashes. Pmv9, Mpmv10,

PCR Assays for Gammaretroviral Sequences
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We compared the sensitivity of the nested gagO/gagI PCR to

the single-round gagL PCR and found that both PCR assays could

detect 1 pg mouse tail DNA in 500 ng human gDNA (Fig. 4). The

detection limit of 1 pg for the gagL PCR was identical whether

500 ng or 50 ng of human whole blood DNA was spiked with

mouse DNA (Fig. 4). In order to determine whether mouse DNA

contamination assays were more or less sensitive than our assays

for gag, we spiked mouse DNA in 500 ng of human PBMC DNA

and determined how much mouse DNA was needed before

mtDNA and IAP assays could detect it. We were able to observe

mtDNA sequences when only 100 fg was added to the human

DNA (Fig. 5). The IAP assay was even more sensitive, as IAP

amplicons were detected with 10 fg to 10 pg of mouse DNA added

to human DNA (Fig. 5). With the IAP assay, variably sized

fragments were observed between 200 and 300 bp. While a band

present in the 10 pg lane was confirmed to be IAP by sequencing,

the smaller amplicons of approximately 200 bp matched human

DNA sequences.

An example of amplification of gag sequences from two whole

blood DNA samples, which were negative for mouse mtDNA and

IAP, is shown in Fig. 6. Absence of mouse DNA cannot, however,

rule out the possibility of environmental amplicon contamination.

Analysis of gag sequences
All PCR products of the approximate size expected for gag

sequences were sequenced. Occasionally, we had non-specific

amplification in which the fragments matched human DNA

according to analysis by BLAST (NCBI). We never used a positive

control when assaying subject samples by PCR to prevent cross-

contamination. Nevertheless, we are confident that negative results

are not due to PCR inhibition because we regularly observed non-

specific amplified fragments of variable sizes. All such fragments

that were sequenced were amplified human regions.

Of all the sequences we obtained (Fig. 7), only gagL sequence

from 5A2 exhibited 100% identity with mouse [GenBank:

AC153954.3; Mus musculus 10 BAC RP24-236E2 (Roswell Park

Cancer Institute (C57BL/6J Male) Mouse BAC Library) complete

sequence]. Mice of this genotype are used by a different laboratory

located in our building. If the gagL product amplified was from

mouse DNA contamination, we would expect to amplify mCOX2

and/or IAP from the same sample but this was not the case (Fig. 6).

Further confounding is that the overlapping sequences between

gagL and gagI sequences from 5A2 were not identical (Fig. 6). One

explanation is that the gagI PCR of 5A2 resulted from amplicon or

cross-contamination with gagI from 3C1, since the 2 amplifica-

tions yielded identical gagI sequences that were from nested

gagO/gagI PCR. We cannot explain the gagL sequence from 5A2

as amplicon contamination since we did not find another sequence

with 100% sequence identity. However, it is possible that the gagL

sequence obtained was a hybrid sequence due to amplification

from more than one template sequence, whether real or amplicon.

An alignment of the sequences we obtained with selected

published MLV-related sequences is shown in Fig. 7 and Fig. S2.

The differences between sequences amplified from mouse tail

DNA and the samples from this study are apparent. The regions of

sequence overlap of gagL and gagI were identical in 1B1 and

11F2-P4 but not in 5A2. gagL sequences were identical in the

following samples: 2E1, 7E3, 8A3, 2F1-P6, 4F1-P6, 9F1-P6, 10F3-

P6, 11F2-P4, and 12F2-P6. gagI sequences were identical in 3C1,

5A2, 11F2-P4, and 14F2-P4.

We have constructed phylogenetic trees with the gagI (Fig. 8)

and the gagL sequences (Fig. 9). The trees include selected XMRV

and MLV sequences [1,18,19] and MLV-like sequences obtained

by Lo et al. [9]. The trees illustrate that the sequences amplified

from the samples of this study were related to polytropic MLV-like

sequences, and that all gagL sequences were distinct from 22Rv1

XMRV, which contains deletions in the gag leader region. There

Xmv12, Xmv43, Xmv8 are endogenous polytropic, modified polytropic, and xenotropic viral sequences from the C57BL/6J genome that group into
different clades according to Jern et al [18]. All other sequences shown were identified in this study. Sequences of nested gagO/gagI and gagL
amplicons were distinct from representative MLV-like sequences, especially from the xenotropic sequences. Sequences amplified from blood and
from mouse tail DNA were not 100% identical.
doi:10.1371/journal.pone.0037482.g007

Figure 8. Phylogenetic tree created from alignments of sequences obtained from gagO/gagI PCR. Phylogenetic tree was created with
DNASTAR MegAlign Version 8.1.2. by ClustalW (weighted) method. The LoMuLV sequences [9], XMRV-VP62 [19], and XMRV-WPI1106 [1] sequences
were taken from Genbank. All other sequences shown were identified in this study.
doi:10.1371/journal.pone.0037482.g008
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are differences among the sequences we obtained and between our

sequences and those of Lo et al. [9]; however, it should be noted

that relatively small sequences, approximately 400 nt, are being

compared.

Discussion

Like a number of other investigators, we have identified MLV-

like gag sequences following PCR of nucleic acid samples from

whole blood or PBMCs from human subjects. Nested PCR

analysis of our initial batch of 30 samples resulted in a significant

difference in frequency of gag PCR products between patients and

controls; however, continued analysis failed to maintain this

association. If sporadic contamination of reagents and/or envi-

ronmental contamination was the source of the gag sequences, then

a possible explanation for the initial association could be due to

non-random receipt of patient and control samples. Although we

were blinded to subject health status, we did not receive equal

numbers of patient and control samples on the same day. If, for

example, mouse DNA or MLVs were present on a day that 5

patient and 1 control samples were received, but absent on a day

when 5 controls and 1 patient sample were received, then a higher

frequency of patient versus control samples would appear positive

for MLV-like DNA fragments. However, we did not observe any

clear correlation between day of receipt of samples and whether

they were positive by PCR for MLV-like sequences. While it is

impossible to know whether or not contamination has occurred in

another laboratory, one possible explanation for the much higher

frequencies of positive patients versus controls in both the

Lombardi et al. [1] and Lo et al. [9] studies could be the existence

of reagent or environmental contamination at the time of assay of

patient samples, but not when controls were assayed. In both of

those studies, large batches of patient and control samples were

assayed at separate times.

We attempted to replicate Lombardi et al.’s [1] finding of

expansion of the virus signals following incubation of plasma with

LNCaP cells; however, we found a curious lack of reproducibility

of the positive PCR assays. It seems likely that our LNCaP cell

line, which was maintained for many months, became contam-

inated at very low levels, or there was environmental contamina-

tion at the time of DNA preparation. We have no evidence for

contamination of our enzymes or water. The enzymes we have

used for our PCR experiments are not among those reported by

Figure 9. Phylogenetic tree created from alignments of sequences obtained from gagL PCR. Phylogenetic tree was created with
DNASTAR MegAlign Version 8.1.2. by ClustalW (weighted) method. Sequences described in legends to Figure 7 and 8.
doi:10.1371/journal.pone.0037482.g009
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others to be contaminated with mouse DNA and a large number

of water controls were performed and found to be negative.

We have taken precautions against environmental contamina-

tion, including use of UV-irradiated work spaces and tubes and

isolation of the laboratory room from individuals who work with

mice or mouse cells. All of our mouse tail DNA spiking

experiments were performed in a separate laboratory. One

possible source of contamination is PCR product carryover from

prior experiments. While one group used the dUTP-UDG method

to prevent carryover of PCR products [20], our preliminary

experiments suggested that this technique reduces the sensitivity of

our PCR assays, which is consistent with a subsequent report [21].

We chose instead to reduce the possible environmental contam-

ination of PCR assays by developing a single-round assay that can

detect spiked plasmid DNA with the same sensitivity as the

previously described gagO/gagI nested PCR. When this assay,

which requires less manipulation than nested PCR, was used on a

new set of DNA samples, we did not detect MLV-like gag

sequences.

Our data indicate that the IAP assay [10] with the specified

primers and conditions is extremely sensitive and can detect the

presence of mouse DNA at lower levels than the mitochondrial

DNA assay when the source of deliberately introduced mouse

cellular DNA is from mouse tail. One issue with mtDNA assays for

the presence of mouse DNA is that the tissue source of the

contamination will affect how readily the presence of a mouse cell

can be detected. Liver, brain, and heart cells contain far more

mitochondrial DNA than spleen or bone marrow cells, for

example [22]. In contrast, the amount of IAP DNA per cell of a

particular mouse species will be constant, though different species

could vary somewhat in IAP content. As long as the IAP assay is

negative, a positive gag signal with the nested gagO/gagI PCR

must not be due to the presence of mouse DNA. However, the IAP

assay does not allow determination of contamination due to the

presence of gag RNA, nor can it reveal the presence of PCR

fragment carryover between experiments.

While it now appears likely that the virus named XMRV

originated as a result of passage of cell lines through mice [23], the

inquiry into the possible connection of this virus to prostate cancer

and CFS/ME has generated some important information. Before

the attempts to replicate the Lombardi et al. [1], it was not known

that a number of cell lines were infected with XMRV or related

MLVs, possibly causing misinterpretation of data when such lines

were used in various experimental protocols. How readily this type

of virus can spread from one cell line to other cell lines was also not

appreciated [24]. Furthermore, the frequent contamination of

reagents [12,25–27] and lab environments with mouse DNA

[10,11,28], despite standard precautions, has been unexpectedly

high. The necessity for screening for the presence of mouse DNA

has led to the development of a useful assay [10]. Should there be

a future zoonotic transmission of MLV or other mouse viruses into

the human population, the scientific community will be better

prepared to verify its presence.

Whether there are unknown retroviruses that are inciting factors

in CFS/ME remains unknown. The PCR primers that we and

others have employed for screening for XMRV and MLV-like

sequences will allow detection of only a subset of viruses related to

MLV. These PCR assays would not have amplified sequences

from common feline leukemia viruses or gibbon ape leukemia

viruses, even though they also are in the gammaretrovirus family.

In fact, Elfaitouri et al [29] have pointed out that most of the

primer sets that have been used to study CFS/ME samples would

not even detect all groups of MLVs. Had it not been for the 2009

report [1] associating XMRV with CFS/ME, we would not have

chosen PCR amplification for identification of viruses in this

population. Less specific methods such as virus microarrays or

high-throughput DNA sequencing are more suitable for detection

of unknown agents that may be associated with disease states.

Their application should be fruitful in identification of pathogens

that may more frequently infect CFS/ME patients, either as a

cause or consequence of the illness, and will be instrumental in

verifying whether or not gammaretrovirus infections exist in

humans and/or whether or not an unknown viral infection is

associated with CFS/ME.

Supporting Information

Table S1 PCR primers used in this study.

(XLS)

Table S2 PCR conditions used in this study.

(XLS)

Figure S1 DERSE cells expressing green fluorescent
protein following incubation with virus from 22Rv1.
Image was acquired with a Zeiss 710 confocal microscope.

(TIF)

Figure S2 Alignments to XMRV and MLVs of all
sequences obtained by PCR in this study. Mpmv and

pmv are from reference 22Rv1 sequence: Genbank FN692043.

Polytrop 15: FJ544577. Polytrop 51: FJ544578.

(TIF)
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