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Abstract: Soluble solids content (SSC) is one of the important components for evaluating fruit quality.
The rapid development of hyperspectral imagery provides an efficient method for non-destructive
detection of SSC. Previous studies have shown that the internal quality evaluation of fruits based on
spectral information features achieves better results. However, the lack of comprehensive features
limits the accurate estimation of fruit quality. Therefore, the deep learning theory is applied to
the estimation of the soluble solid content of peaches, a method for estimating the SSC of fresh
peaches based on the deep features of the hyperspectral image fusion information is proposed,
and the estimation models of different neural network structures are designed based on the stack
autoencoder–random forest (SAE-RF). The results show that the accuracy of the model based on the
deep features of the fusion information of hyperspectral imagery is higher than that of the model
based on spectral features or image features alone. In addition, the SAE-RF model based on the
1237-650-310-130 network structure has the best prediction effect (R2 = 0.9184, RMSE = 0.6693).
Our research shows that the proposed method can improve the estimation accuracy of the soluble
solid content of fresh peaches, which provides a theoretical basis for the non-destructive detection of
other components of fresh peaches.
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1. Introduction

Peach is a kind of fruit loved by different consumers because of its high nutrition and unique
taste and flavor. As an important component of peaches, soluble solids content (SSC) is an important
index to measure the flavor of peaches [1]. SSC is also the basic raw material for synthetic vitamins
and carotenoids and other nutrients, which plays an important role in guiding peach harvest time and
post-harvest storage and processing [2]. However, the traditional destructive detection methods can
no longer meet the high precision requirements [3]. Therefore, the effective detection of SSC content
has important research significance and application value.

In recent years, with the rapid development of sensors, non-destructive detection technology has
been used in fruit quality evaluation. For example, multispectral [4,5], fluorophore [6–8], near-infrared
spectroscopy [9–12], electronic nose [13–15], and dielectric technology [16,17] have been applied for
the evaluation of the soluble solid content in fresh fruits. Among these technologies, near-infrared
spectroscopy is currently the most widely used method for evaluating fresh fruit SSC due to its
fast, simple, and non-destructive characteristics. However, lacking the spatial characteristics of fruit
hyperspectral images limits the further exploration of fruit SSC prediction models.
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At present, hyperspectral imaging (HSI) is widely applied for the detection of soluble solids
in fruits due to more comprehensive information [18–25]. However, most of the studies mentioned
above are only based on the analysis of spectral information, which ignores the image information
of the detected object in the hyperspectral image. Although Fan et al. proposed an SSC detection
method that combines spectral and texture features [26], the robustness of the constructed prediction
model still needs to be further improved. Li et al. estimated the SSC content of fresh peaches based
on hyperspectral images [27]. However, the analysis of sensitive spectral information alone cannot
provide the deep features of HIS, which are robust features extracted from deep neural networks,
resulting in low accuracy of the model. Therefore, non-destructive detection based on SSC is facing
great challenges.

In fact, the amount of hyperspectral image data is huge and the correlation between the bands
is strong, which lead to the redundancy in HSI. If the hyperspectral image is directly analyzed,
the robustness of the constructed model will be poor. Therefore, how to effectively fuse various features
of hyperspectral images faces many problems: on the one hand how to extract more comprehensive
features and on the other hand how to determine more typical features. Previous studies have shown
that methods based on successive projections algorithm (SPA) [28], principal component analysis
(PCA) [29], and random forest (RF) [30] have achieved good results for the feature selection and
dimensionality reduction from hyperspectral images. However, there are still some obstacles to the
hyperspectral image feature acquisition of fresh peaches.

The wide application of deep learning in different fields provides new ideas for the prediction
of soluble solid content of fresh peaches. As an unsupervised deep learning technology, stacked
autoencoder (SAE) has the capabilities of deep feature extraction and dimensionality reduction
processing, thereby providing comprehensive and typical features for prediction models [31,32].
Many studies have shown that the spectral features extracted based on the SAE method can improve
the accuracy of the estimation model for fruit SSC [33,34]. Although the above-mentioned studies
have successfully detected the soluble solid content of different fruits, it is still unclear whether the
performance of the estimation model of peach soluble solid content can be improved by fusing features.

Therefore, the deep features are extracted separately based on SAE from the spectral information
(reflectance) and image information (pixels) and fusion information of hyperspectral images, aiming to
improve the estimation accuracy of peach soluble solids. The purpose of this study was: (1) to obtain
key information from HSI on the internal and external quality of fresh peaches at different levels of
ripeness; (2) to extract the deep features of spectral information and image information based on SAE
to achieve a better representation of HSI features; and (3) to construct a random forest prediction model
with deep features to quickly detect the SSC content of fresh peaches.

2. Materials and Methods

2.1. Sample Collection

From April to June 2019, 120 peach samples named “Golden Peach” were collected at the
Orchard Base in Hefei, Anhui Province, China, including three different maturities (30 immature,
50 semi-mature, and 40 mature peaches). After the surface of all peaches were cleaned, they were
stored in an environment of 25 ◦C for 12 h, so that the sample temperature was basically the same as
room temperature.

2.2. Data Collection

2.2.1. Hyperspectral Image Acquisition

The hyperspectral image acquisition system used in this research includes a spectral imager
(Imspector V17E, Spectral Imaging Ltd., Oulu, Finland), a camera as a CCD camera (IPX-2M30,
Imperx Inc., Boca Raton, FL, USA), two 150-W halogen lamps (3900, Illumination Technologies Inc.,
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New York, NY, USA), a data acquisition dark box, image acquisition and analysis software
(Spectral Image Software, Isuzu Optics Corp., Taiwan, China), reflective linear optical path Tube,
and electronically controlled displacement platform (MTS120, Beijing Optical Instrument Factory,
Beijing, China). The illumination direction of the light source was 45◦ from the vertical direction,
and the entire collection system was placed in a dark box, as shown in Figure 1.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 13 

 

Image Software, Isuzu Optics Corp., Taiwan, China), reflective linear optical path Tube, and 
electronically controlled displacement platform (MTS120, Beijing Optical Instrument Factory, Beijing, 
China). The illumination direction of the light source was 45° from the vertical direction, and the 
entire collection system was placed in a dark box, as shown in Figure 1. 

 
Figure 1. Hyperspectral imaging system. 

To obtain high-quality images, the distance from the highest point of the peach sample to the 
objective lens was 220 mm, and the motor control speed and exposure time were set to 0.8 mm/s and 
2 ms, respectively. The spectral resolution of the system was 5 nm, and the image resolution was set 
to 636 pixels × 838 pixels. To reduce the influence of image noise and dark current as much as possible, 
after scanning the peach sample, the standard white and dark reference images were used to calibrate 
the obtained hyperspectral data [35]. 

2.2.2. Peach Soluble Solids Content Collection 

The SSC of the peach sample was measured by a handheld refractometer (Model: LYT-330, 
Shanghai Linyu Trading Co., Ltd., Shanghai, China) with temperature automatic compensation 
function, which has a measurement range of 0–32 °Brix and a resolution of 0.2 °Brix. When the SSC 
of the peach sample was measured, the pulp about 6-mm deep in the sample spectrum collection part 
was selected for squeezing, which was dropped on the detection window on the brix meter, and then 
the data were recorded. The average value of each sample repeated 3 times was the final SSC value 
of the sample. The statistical results of the corrected set and the predicted set of the measured peach 
sample SSC are shown in Table 1. 

Table 1. Soluble solids content (SSC) distributions of peaches. 

Dataset Number Content Range (%) Mean (%) SD (%) 
Full 120 6–14.1 9.29 2.17 

Calibration set 90 6–14 8.91 1.94 
Validation 30 6–14.1 10.41 2.41 

SD: standard deviation. 

  

Figure 1. Hyperspectral imaging system.

To obtain high-quality images, the distance from the highest point of the peach sample to the
objective lens was 220 mm, and the motor control speed and exposure time were set to 0.8 mm/s and
2 ms, respectively. The spectral resolution of the system was 5 nm, and the image resolution was set to
636 pixels × 838 pixels. To reduce the influence of image noise and dark current as much as possible,
after scanning the peach sample, the standard white and dark reference images were used to calibrate
the obtained hyperspectral data [35].

2.2.2. Peach Soluble Solids Content Collection

The SSC of the peach sample was measured by a handheld refractometer (Model: LYT-330,
Shanghai Linyu Trading Co., Ltd., Shanghai, China) with temperature automatic compensation
function, which has a measurement range of 0–32 ◦Brix and a resolution of 0.2 ◦Brix. When the SSC of
the peach sample was measured, the pulp about 6-mm deep in the sample spectrum collection part
was selected for squeezing, which was dropped on the detection window on the brix meter, and then
the data were recorded. The average value of each sample repeated 3 times was the final SSC value of
the sample. The statistical results of the corrected set and the predicted set of the measured peach
sample SSC are shown in Table 1.

Table 1. Soluble solids content (SSC) distributions of peaches.

Dataset Number Content Range (%) Mean (%) SD (%)

Full 120 6–14.1 9.29 2.17
Calibration set 90 6–14 8.91 1.94

Validation 30 6–14.1 10.41 2.41

SD: standard deviation.
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2.3. Methodology

2.3.1. Stacked Autoencoder

Autoencoder (AE) is mainly composed of encoder and decoder. The model can learn the most
important attributes of the input data and reconstruct the input data in the output through encoding
and decoding [36]. Generally, the stage of mapping the input data to the hidden layer through a
nonlinear activation function is called encoding, and the mapping of the hidden layer to the output
layer is called decoding. Therefore, to some extent, AE is a small deep learning model, which mainly
includes input layer, hidden layer, and output layer.

Take a dataset {x1, x2 . . . xm}, where m is the number of training samples. In the coding stage,
the training samples can be encoded to obtain the feature expression of the hidden layer, as shown
in Equation (1). yi is the activation value of the neural unit of the hidden layer. In the decoding
stage, the network reconstructs the data to obtain the output closest to the original data, as shown in
Equation (2). zi is the inverse conversion of the activation value into the reconstruction of the input
sample. Equation (3) represents the loss function of SAE. J(x, z) is the value of the error function [37,38].

yi = g(wxi + b1) (1)

zi = g(wT yi + b2) (2)

J(x, z) =
1

2m

m∑
i=1

‖zi − xi‖

2

(3)

where i = 1, 2, 3 . . .m, w is the weight matrix connecting the input layer and the hidden layer,
wT represents the weight matrix connecting the hidden layer and the output layer, b1 represents
the offset between the input layer and the hidden layer, b2 represents the offset between the hidden
layer and the output layer, g(x) is the activation function, and Sigmoid and ReLU are commonly
activation functions.

Stacked autoencoder (SAE) are superimposed on multiple autoencoders, and each autoencoder is
trained individually in an unsupervised way using a greedy layer-by-layer training method, which can
solve the gradient of traditional multi-layer neural network training problem [39]. The output of the
previous hidden layer is used as the input of the next hidden layer. After the model is pre-trained,
the refinement adjustment is performed to obtain the optimal parameters, and the output of the last
hidden layer is used as the deep feature of the input data.

2.3.2. Information Extraction from Hyperspectral Images

To obtain spectral features and image features, it is necessary to extract the original information
of the spectrum and the image. First, 636 × 838 × 508 hyperspectral images were obtained from
each peach sample through HSI. Second, to obtain the spectral information, 200 × 200 pixels graphic
regions of interest (ROIs) were selected at the vicinity of the equator of the peach, where the average
spectral reflectance of all pixels was extracted as the spectral data of the sample. Then, to obtain the
image information, the images of each band in the ROI were extracted, saved as 457 RGB images
(200 × 200 pixels) of peaches, and converted to grayscale images, with the size unified to 28 × 28 pixels.
Finally, to obtain more comprehensive information, the original information of the spectral reflectance
and image pixels was fused.

2.3.3. Stacked Autoencoder–Random Forest

To predict the SSC of fresh peaches, a stacked autoencoder–random forest (SAE-RF) model was
proposed in this study. Based on the deep features of the spectrum, the deep features of the image
and the deep features of the fusion information extracted by SAE, a random forest algorithm (RF)
was used to establish a prediction model for the soluble solid content of peaches. Figure 2 shows the
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SAE-RF model based on fusion information. SAE includes two hidden layers, and Features 1 and 2 are
deep features extracted from the fusion information based on the hidden layer 1 and hidden layer 2.
Feature 2 was used as the input of the random forest algorithm to predict the soluble solid content
of peaches. Finally, the coefficient of determination (R2) and root mean squared error (RMSE) [40]
were used as evaluation indicators to explain and quantify the relationship between the soluble solid
content of peaches and deep features.
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3. Results and Analysis

3.1. Deep Feature Extraction Results of Hyperspectral Images

In total, 508 wavelength bands (908.1–1735.6 nm) were obtained from the peach samples,
as shown in Figure 3. To improve the stability of the model, it was necessary to delete some of
the bands at the beginning and the end with obvious noise, including 21 bands of 908–940 nm and
34 bands of 1681–1735 nm. The remaining 453 bands within 942–1680 nm were used as spectral data.
The hyperspectral curve of fresh peach samples can effectively represent the chemical information of the
main components such as SSC in fresh peaches, and there is a certain correlation between the spectral
reflection intensity and the SSC content. Therefore, the spectral reflectance intensities of samples
with different SSCs at different wavelength bands are quite different. In the range of 1000–1300 nm,
the spectral reflectance of different samples varies greatly. In the range of 1400–1520 nm, the difference
in spectral reflectance of different samples is small. In addition, the spectral curve changes due to the
combined frequency of the H group vibration and the absorption of multiple frequency doublings in
the soluble solid content of peach.
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To obtain more accurate image information, the three peaks of the spectral curve, 1070, 1270,
and 1650 nm, were selected as the center wavelengths, and images in the three bands were acquired,
which include 1050–1090, 1250–1290, and 1630–1670 nm. The gray-scale mean value corresponding to
each image pixel was extracted separately and converted into a one-dimensional vector, which contains
784 pixels, and the data dimension corresponding to each image is 784. To improve the computational
efficiency, the image vector was normalized and used as the input of SAE, and the output was the deep
features of image.

To obtain more comprehensive hyperspectral image features, the spectral reflectance with
453 dimensions and the image pixels with 784 dimensions were fused to obtain fusion information with
1273 dimensions. The fusion vectors were normalized as the input of SAE, and the output were the
deep features of the fusion information. Figure 4a,b shows the output results of the deep features based
on the spectral information of the two hidden layers of SAE (the first hidden layer had 350 neurons,
the second hidden layer had 200 neurons, and the output was 60 features). Figure 4c,d shows the
output result of the deep features based on the image information of the two hidden layers of SAE
(the first hidden layer had 550 neurons, the second hidden layer had 450 neurons, and the output was
130 features). Figure 4e,f shows the output result of the deep features based on the fusion information
of the two hidden layers of SAE (the first hidden layer had 650 neurons, the second hidden layer had
310 neurons, and the output was 130 features).
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Figure 4. Output data of different hidden layers of stacked autoencoder: (Left) the output data of the
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3.2. Different Structures of SAE for Peach to Estimate Soluble Solids Content

Spectral data (453 dimensions), image pixels (784 dimensions), and fusion information
(1237 dimensions) were separately used as input data of SAE to extract deep features, which were
used as the input to the random forest algorithm to construct a prediction model for the soluble solid
content of peaches. The results are shown in Table 2. Table 2 shows that, regardless of the number
of neurons in the hidden layer of SAE, the prediction effect of the model based on the deep features
extracted from the fusion information is the best. The model prediction of the fusion information
reduced from 1237 to 130 dimensions has the best effect among the three structures (1237-750-300-40,
1237-600-460-90, and 1237-650-310-130). For calibration set, the accuracy of the 130-dimensional model
is 2.9% higher than that of the model based on 40-dimensional deep features and 1.9% higher than
that of the 90-dimensional model. Corresponding to the validation set, the 130-dimensional model is
improved by 3.1% and 1.1%, respectively. The result shows that the data dimension and the accuracy
of the model are not positively correlated.

Table 2. Evaluation model of peach SSC based on different SAE structures and different features.

Features SAE Optimal Scale
Calibration Set Validation Set

R2 RMSE R2 RMSE

Deep feature of spectral
453-300-150-40 0.6606 1.3323 0.6109 1.699
453-350-150-50 0.7144 1.2551 0.6649 1.5033
453-350-200-60 0.7309 1.1744 0.6959 0.2486

Deep feature of image
784-600-400-40 0.7386 1.0163 0.6895 1.3886
784-550-450-70 0.7708 0.9613 0.6747 1.3733
784-350-210-90 0.7377 1.018 0.6948 1.3825

Deep feature of
fusion information

1237-750-300-40 0.8917 0.7756 0.8564 0.9922
1237-600-460-90 0.9007 0.7956 0.8736 0.9715

1237-650-310-130 0.9184 0.6693 0.8838 0.8887

Note: The optimal scale represents the SAE data dimension and the optimal number of neurons in each layer.

3.3. Comparison of Estimation Models of Peach SSC Based on Different Features

From the comparison of the models based on different features shown in Figure 5, we can easily
find that the prediction effects of models based on different deep features have certain differences.
For calibration set, the model R2 based on the deep features of the spectrum is 0.6606–0.7309, and the SAE
based on the structure of 453-350-200-60 has the best prediction effect of the three different structures
(453-300-150-40, 453-350-150-50, and 453-350-200-60). The R2 of model based on the deep features of
the image is 0.7377–0.7708, and the prediction effect based on the SAE structure of 784-550-450-70 is
best in the three structures (784-600-400-40, 784-550-450-70, and 784-350-210-90). The model R2 based
on the deep features of the fusion information is 0.8917–0.9184, and the prediction effect based on the
SAE structure of 1237-650-310-130 is the best in the three structures (1237-750-300-40, 1237-600-460-90,
and 1237-650-310-130). For validation set, the R2 of model based on the deep features of spectrum,
deep features of image, and deep features of fusion information are 0.6109–0.6959, 0.6747–0.6948,
and 0.8564–0.8838, respectively.
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fusion information (c1,c2).

4. Discussion

4.1. Parameter Selection and Experimental Results

The experimental environment configuration for deep learning in this research was as follows.
The motherboard was Z370 HD3-CF, the CPU was Intel Core i7-8700, the video memory was 8
GB GDDR5, and the memory was 16 GB. The software experiment environment configuration
was: the operating system was Windows 10 64-bit; the programming software and language were
Anaconda 3, MATLAB 2017 and Python 3.6, respectively; and the deep learning framework was Keras.

The number of neurons in the hidden layer directly affects the feature extraction capability of SAE,
which plays a key role in the accuracy of the model. To ensure that effective features are found from
the training set and achieve the expected prediction accuracy, it is necessary to find a balance between
the SAE feature extraction of unsupervised training and the fine-tuning of supervised training [41].
On the one hand, if there are too few neurons, the model is prone to overfitting. On the other hand,
too many neurons will lead to longer training time. Therefore, the SAE model was trained according
to different input data, and different numbers of hidden layer neurons were selected.

For spectral information, 350 neurons were selected in the first layer, and 200 and 150 neurons
were selected in the second layer. It was found that the model effect of 200 neurons is better than that
of 150 neurons. For image information, the first layer was 600, 550, and 350 neurons, and the second
layer was 400, 450, and 210 neurons. It was found that the models with 550 and 450 neurons perform
best. For fusion information, the first layer was 750, 650, and 600 neurons, and the second layer was
300, 460, and 310 neurons. It was found that the models with 650 and 310 neurons perform best.
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4.2. Different Structures and Different Features

The accuracy of the model based on deep features of fusion information with a structure of
1237-650-310-130 is the highest regardless of the calibration set or the validation set, which are 20.4%
and 21.2% higher than those of the model based on deep features of spectrum (SAE structure is
453-350-200-60), and 16.1% and 23.6% higher than those of the model based on deep features of
image (SAE structure is 784-550-450-70). Research shows that the deep features of fusion of spectral
information and image pixel information can more comprehensively reflect the external and internal
quality of fresh peach samples, and effectively improve the performance of the model for predicting
SSC in peach.

Traditional hyperspectral image processing methods mainly extract features such as spectrum,
color, and texture [42]. However, models based on these features often have certain limitations. In this
study, the hyperspectral image was first separated by band, and the average gray value of the image
was obtained as the characteristic image of the sample. In addition, the typical spectrum data were
extracted as the feature wavelength. SAE was used to extract deep features, combined with random
forest algorithm to establish a model to predict the SSC in peaches, which not only improves its feature
expression ability, but also effectively improves the robustness of the model. Although SAE models
with different structures were designed, the proposed model achieves good prediction performance.
In the future, it is necessary to study comparative experiments based on deep learning models with
different frameworks to provide new technical support for SSC prediction of different fruits.

4.3. Visualized Results of Soluble Solid Content

The visualization results of the soluble solid content in peaches are shown in Figure 6. Peach samples
of different maturity levels were used as test samples. In Figure 6, the first row represents the original
hyperspectral images of fresh peaches and the second row represents the corresponding pseudo-color
image. The soluble solid content indicator bar below the graph shows the range of soluble solid content
in fresh peaches of different maturity. The soluble solid content of immature peaches, medium ripeness,
and mature peaches range 0–8.5, 0–11, and 0–13.2 ◦Brix, respectively. The figure shows the soluble
solids and distribution of fresh peaches of different maturity. It is easy to find that the soluble solids
are mainly distributed in the center of the peaches, and the soluble solids of the immature peaches are
lower than those of the medium mature ones, that is, the soluble solids of the fresh peaches gradually
increase as they mature.
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5. Conclusions

Soluble solids content (SSC) is a key component to evaluate the quality of fresh peaches.
Hyperspectral images provide an efficient method for non-destructive detection of peach SSC. In this
paper, a model for estimating the soluble solid content of peaches based on the deep features of the
fusion information which include spectrum and image is proposed. Deep learning theory is applied to
the estimation of the soluble solid content of peaches, and the SAE feature extraction of unsupervised
training is combined with the fine-tuning of supervised training. On the one hand, compared with
spectral and image deep feature modeling, the deep feature model based on the fusion information is
more effective, which shows that the fusion information contains more comprehensive sample features.
On the other hand, SAE-RF models based on different network structures were constructed to estimate
the soluble solid content in peaches. Among them, the model based on fusion features (network
structure is 1237-650-310-130) has the highest accuracy (R2 = 0.9184 for calibration, R2 = 0.8838 for
validation), which provides a new method for quantitatively estimating the soluble solid content of
peaches and realizes the SSC monitoring of peaches based on internal and external quality. In addition,
the detection of peach quality parameters based on different deep learning methods, such as the
detection of acidity, hardness, and moisture in peach, which will be further carried out in the future.
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