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We present a computational study of the transport properties of campylotic (intrinsically curved) media. It
is found that the relation between the flow through a campylotic media, consisting of randomly located
curvature perturbations, and the average Ricci scalar of the system, exhibits two distinct functional
expressions, depending on whether the typical spatial extent of the curvature perturbation lies above or
below the critical value maximizing the overall scalar of curvature. Furthermore, the flow through such
systems as a function of the number of curvature perturbations is found to present a sublinear behavior for
large concentrations, due to the interference between curvature perturbations leading to an overall less
curved space. We have also characterized the flux through such media as a function of the local Reynolds
number and the scale of interaction between impurities. For the purpose of this study, we have also
developed and validated a new lattice Boltzmann model.

M
any systems in Nature present either spatial curvature (e.g. curved space due to presence of stars1 or flow
on soap films2) or geometric confinement constraining the degrees of freedom of particles moving on
such media, e.g. solar photosphere3, flow between two rotating cylinders and spheres4–6, hemodynamics

through deformable vessels7, fusion plasmas8, and flow through porous media9, to name but a few. In general,
these systems force a fluid to move along non-straight trajectories (curved geodesics), leading to the upsurge of
non-inertial forces. We will denote such systems as Campylotic, from the greek word kamp�uloz for curved, media.
Due to the arbitrary trajectories that particles through a campylotic medium can take, depending on the com-
plexity of the curved space, the flow through these media can present very unusual new transport properties.
Campylotic media play a prominent role in all applications where metric curvature has a major impact on the flow
structure and topology; biology, astrophysics and cosmology offering perhaps the most natural examples. Indeed,
the flow through some specific campylotic media has already been studied, e.g. Taylor-Couette flow and flow
through porous media. The Taylor-Couette flow was originally formulated for the case of two concentric, rotating
cylinders4,5, and later extended to the case of spheres6,10. On the other hand, continuum descriptions of flow
through homogeneous porous media have been already treated as changes in the fluid trajectories, by resorting to
the concept of tortuosity, which is the ratio between the straight line distance to the curved path length (due to the
presence of obstacles) between two points in the medium. The tortuosity is directly related to the permeability and
porosity of the medium9. However, the flow through other complicated structures, like randomly located stars
(which is an intrinsically curved space) or many biological systems, to the best of our knowledge, has never
systematically been addressed before on quantitative grounds.

Since, in general, this class of flows lacks analytical solutions, their study is inherently dependent on the
availability of appropriate numerical methods. Flows in complex geometries, such as cars or airplanes, make a
time-honored mainstream of computational fluid dynamics (CFD), a discipline which has made tremendous
progress for the last decades11,12. However, campylotic media set a major challenge even to the most sophisticated
CFD methods, because the geometrical complexity is often such to command very high spatial accuracy to resolve
the most acute metric and topological features of the flow. Therefore, in this work, we also present a new lattice
kinetic scheme that can handle flows in virtually arbitrary complex manifolds in a very natural and elegant way, by
resorting to a covariant formulation of the lattice Boltzmann (LB) kinetic equation in general coordinates and for
curved spaces.

As an additional feature, complex boundary conditions related with a specific geometry, e.g. surface of a sphere,
or more sophisticated ones, like Möbius bands and the Klein bottle, can be treated exactly by cubic cells in the
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contravariant coordinate frame, thereby avoiding the staircase
approximations which would result from the use of cubic cells assoc-
iated with euclidean geometry. For instance, in spherical coordinates,
we can construct a lattice with cubic cells of volume dr 3 dh 3 dw,
being (r, h, w) the coordinates of each grid point. This feature can also
be used to model the microscopic geometry of a porous medium by
computing, analytically or numerically, the coordinate system that
parametrizes the pore structure, and thus, to avoid the staircase
approximation of the obstacles. The method is validated quantita-
tively for very simple campylotic media with geometrical confine-
ments by calculating the critical Reynolds number for the onset of the
Taylor-Couette instability in concentric cylinders and spheres5,6,10,13,
and applied to the case of two concentric tori.

In this work, by using the new numerical scheme, we simulate the
flow through campylotic media consisting of randomly distributed
spatial curvature perturbations (see Fig. 1), in the laminar regime.
The flow is characterized by the number of curvature perturbations
and the average Ricci scalar of the space. The campylotic media
explored in this work are static, in the sense that the metric tensor
and curvature are prescribed at the outset once and for all, and do not
evolve self-consistently with the flow. The latter case, which is a
major mainstream of current numerical relativity14–17, especially in
the turbulent regime, makes a very interesting subject for future
extensions of this work.

Results
Kinetic theory in general manifolds. In order to study the campy-
lotic media, we develop a lattice Boltzmann approach for curved
spaces in general coordinates, taking into account the metric
tensor gij and the Christoffel symbols Ci

kj. The former characterizes
the way to measure distances in space, while the latter is responsible
for the non-inertial forces. The corresponding hydrodynamic
equations can be obtained by replacing the partial derivatives by
covariant ones, in both, the mass continuity and the momentum
conservation equations. After some algebraic manipulations, the
hydrodynamic equations read as follows: htr 1 (rui);i 5 0, and
Lt rui
� �

zTij
;j ~0, where the notation ;i denotes the covariant deriva-

tive with respect to spatial component i (see SI). The energy tensor Tij

is given by, Tij~Pgijzruiuj{m gljui
;lzgiluj

;lzgijul
;l

� �
, where P is

the hydrostatic pressure, ui the i-th contravariant component of
the velocity, gij the inverse of the metric tensor, r is the density of
the fluid, and m is the dynamic shear viscosity.

Since lattice Boltzmann methods are based on kinetic theory, we
construct our model by writing the Maxwell-Boltzmann distribution
and the Boltzmann equation for general manifolds. The former takes
the form18:

f eq~

ffiffiffi
g
p

r

2phð Þ3=2
exp {

1
2h

gij ji{ui
� �

jj{uj
� �� �

, ð1Þ

where g is the determinant of the metric gij, and h is the normalized
temperature. The macroscopic and microscopic velocities, ui and ji

are both normalized with the speed of sound cs~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT0=m

p
, kB being

the Boltzmann constant, T0 the typical temperature, and m the mass
of the particles. Note that the metric tensor appears explicitly in the
distribution function, due to the fact that the kinetic energy is a
quadratic function of the velocity, uiui 5 gijuiuj. To recover the mac-
roscopic fluid dynamic equations, we have to extract the moments
from the equilibrium distribution function. The four first moments
of the Maxwellian distribution function on a manifold are given by,

r~

ð
fdj , rui~

ð
f jidj , ð2Þ

rhgijzruiuj~

ð
f jijjdj , ð3Þ

rh uigjkzujgikzukgij
� �

zruiujuk~

ð
f jijjjkdj: ð4Þ

These moments are sufficient to reproduce the mass and the
momentum conservation equations. Here, for simplicity we have
used dj to denote dj1dj2dj3 and the Jacobian of the integration is
already included in the Maxwell Boltzmann distribution, through the
determinant term

ffiffiffi
g
p

.
In the absence of external forces, in the standard theory of

the Boltzmann equation, the single particle distribution function
f(xi, ji, t) evolves, according to the equation, Lt f zjiLif ~C fð Þ,
where C is the collision term, which, using the BGK approximation,
can be written as, C~{ 1=tð Þ f {f eqð Þ, with the single relaxation
time t. This equation can be obtained from a more general expres-
sion, df =dt~C fð Þ, where the total time derivative now includes
a streaming term in velocity space due to external forces,
df
dt

~Lt f z
dxi

dt
Lif z

dpi

dt
Lpi f , with pi the i-th contravariant compon-

ent of the momentum of the particles. Using the definition of velo-
city, ji 5 dxi/dt, and due to the fact that the particles in our fluid move
along geodesics, which implies the equation of motion
dpi
	

dt~{Ci
klp

kpl , we can write the Boltzmann equation, using a
procedure based on Ref. 19, as

Lt f zjiLif {Ci
jkjjjkLji f ~C fð Þ, ð5Þ

where we have used the definition of the momentum, pi 5 mji. Note
that the third term of the left hand side carries all the information on
non-inertial forces. The Christoffel symbols and metric tensor are
arbitrary and therefore we can model the fluid flow in curved spaces
in general coordinates, whose metric tensor is very complicated and/
or only known numerically.

Since the contravariant components of the velocity are free of
space-dependent metric factors, they lend themselves to standard
lattice Boltzmann discretization of velocity space. All the metric
and non-inertial information is conveyed into the generalized local
equilibria and forcing term, respectively. These features are key to the
LB formulation in general manifolds. As an additional feature, even
in flat spaces, complex boundary conditions related to a specific
geometry, e.g. surface of sphere, in many cases, can be treated exactly
by cubic cells in the contravariant coordinate frame, thereby avoiding
stair-case approximations typical of cartesian grids.

Studying the campylotic media. To study a genuinely campylotic
medium, consisting of randomly located perturbations of spatial

Figure 1 | Streamlines of a three-dimensional fluid moving through a
campylotic medium. The colors denote the scalar of curvature R9 (blue and

red for low and high values, respectively). The gray bubbles isosurfaces

stand at 1/5 of the maximum curvature of the system.
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intrinsic curvature, we define a coordinate system (x, y, z), such that
its metric tensor deviates from the one of a flat space (dij) in the form:

gij~dij 1{a0

XN

n~1
exp {rn=r0ð Þ

� �
, where n labels each local

curvature perturbation located at ~rn~ xn,yn,znð Þ, N is the total
number of perturbations, rn~~rnj j, and r0 characterizes the size of
the deformation. The choice of this metric tensor is to induce an
intrinsic curvature in the space at each point ~rn. Note that the
coefficient a0 can be either signed, depending on whether a
positive or negative curvature is imposed, respectively. In our
study, we have chosen to work with positive values of a0, but its
sign can be different according to the respective application. In
order to understand the effects of the curvature, we will work in
the laminar regime to avoid pressure losses due to turbulence. The
effects of pressure drops in campylotic media due to fluid turbulence
shall be addressed in future work.

The Christoffel symbols are calculated numerically. The flux is

calculated by the geometrical relation, W~

ð
Srux

ffiffiffiffiffiffiffiffiffi
gxxg

p
dS, where

S is the cross section at the location where the measurements are
taken. Since the fluid dynamic equations only contain the metric
tensor and its first derivatives (via the Christoffel symbol), it is
natural to expect that the flow could be characterized by a quantity
that contains the metric tensor and its first derivatives. Although
the Christoffel symbols Ci

jk meet this requirement, they are not com-
ponents of a tensor, and therefore they are not invariant under a
coordinate system transformation (physics should not depend
on the choice of the coordinate system). An invariant, or tensor,
that can be used to characterize the system is the Ricci tensor Rik.
In this work, we use the Ricci scalar (curvature scalar) which can be
calculated from the Ricci tensor, Rij, by contraction of the indices, R9

5 gijRij. The relation between the metric tensor and Christoffel sym-
bols and the Ricci tensor can be found in the SI. For sake of generality
and to study our system using dimensionless units, we define a char-
acteristic length l 5 (V/N)1/3, where V 5 LxLyLz is the total volume of
our system, and the local Reynolds number Re 5 Wr0/(mS).
Therefore, the dimensionless size of deformation is defined by
E~r0=l. We use a lattice size Lx 3 Ly 3 Lz of 128 3 64 3 64, and
t 5 1. All quantities will be expressed in numerical units. To drive the
fluid through the medium, we add an external force along the x-
component, which in all simulations takes the value, fext 5 5 3

1025. The flux in flat space, i.e. in the absence of curvature perturba-
tions is denoted by W0.

Shown in Fig. 1, are the velocity streamlines, the Ricci scalar R9 and
the high-curvature locations, represented by gray isosurfaces. Note
that the streamlines are very complex, as the flow can orbit around
the spheres before continuing its trajectory20,21. This effect is due to
the complex curvature of the space and has no relation to turbulent
vortices, given the low Reynolds number (Re , 1). Also we can see
how the curvature perturbations interact, creating non-spherical
shaped isosurfaces.

Fig. 2 shows the flux deficit W0 – W, as function of the number of
curvature perturbations, N. We observe that the flux W decreases
with N. This effect is due to the interplay between the longer traject-
ories that particles must take and the acceleration due to the non-
inertial forces. Note that, in general, for systems with different
configurations (e.g. negative a0), we could expect that the combina-
tion of the two effects might lead to higher flux by increasing N. We
also see that the flux depends linearly on N for low concentration of
curvature perturbations, and only sublinearly at higher concentra-
tions. This is due to the fact that at low concentration, the average
distance between curvature perturbations is large, and consequently
each perturbation adds up as a single modification to the total spatial
curvature. However, as the concentration is increased, the curvature
perturbations start to interfere with each other and consequently the
space becomes less curved (decrease of the overall Ricci curvature).

The flux is found to obey the following law,

W0{W~A1
N=N0

1z N=N0ð Þ2
, ð6Þ

where A1 5 163 6 2 and N0 5 (1.54 6 0.03) 3 104 are fitting
parameters. The parameter N0 denotes a characteristic number of
curvature perturbations, above which the sublinear behavior sets in
(N *> N0). In dimensionless quantities, this is,

W0{W~A1
E=E0ð Þ3

1z E=E0ð Þ6
, ð7Þ

where E0~0:616+0:005 is the characteristic value above which the
sublinear behavior starts to be dominant, and provides an ‘‘effective
radius’’, r0=E*3:25, for each curvature perturbation.

In the inset of Fig. 2, we observe that by fixing the number of
curvature perturbations N 5 1024 and the strength a0 5 2 3 1025,
and changing the range of the perturbation, E with l 5 8, the differ-
ence W0 – W presents a maximum for a given E~Ec*4. Note that this
value is similar to E0. Due to the fact that by increasing r0 the flux W
decreases, one could think that the Reynolds number would achieve a
plateau. However, by analysing our numerical data we have not
found such behavior. Furthermore, another interesting result is that
the average dimensionless curvature, here defined as R 5 2106l2 ,

R9 . (where , … . means average over space), shows the same
qualitative behavior. Since by increasing E the metric tensor compo-
nents decrease monotonically, this maximum is due to the
Christoffel symbols (or non-inertial forces), which can be character-
ized via R. However, the maxima are slightly shifted, due to the fact
that the Ricci scalar does not uniquely determine the metric tensor
and Christoffel symbols, the quantities that play a key role in the fluid
dynamic equations. Taking into account this effect, we can plot the
flux deficit W0 – W as a function of R, and find that, indeed, for EvEc,
the flux decreases by increasing the average curvature R with a dif-
ferent law than for the case of large values of EwEc (see inset of Fig. 3).
This gives rise to a loop-shaped curve, the reason for this behavior
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Figure 2 | Flux through a campylotic medium consisting of randomly
located curvature perturbations. Flux deficit W0 2 W with respect to the

flat case, as a function of the number of curvature perturbations for a0 5

0.01, r0 5 2.0, and the Re varying between 0.1 and 0.4. The solid line is the

analytical curve according to Eq. (6). Shown in the inset is the normalized

average curvature scalar of the space, R/Rmax, and the normalized reduced

flux 1 2W0/W as a function of E (Re , 1 … 1000). Both Ricci scalar and flux

deficit exhibit a maximum at intermediate values of E. Since the two

maxima are slightly shifted with respect to each other, the reduced flow as a

function of R exhibits two distinct functional expressions (see next Fig. 3).
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being that the metric tensor is different for EvEc and EwEc, even if R
takes the same value. However, in both cases, the system shows that
higher values of the average curvature R always result in a lower flux.
The behavior of the flux for EvEc is well represented by the following
law:

W0{W~A2
R
R0

1z
R
R0


 �
, ð8Þ

and for the case of EwEc,

W0{W~A3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R

R0zR

r
zW0, ð9Þ

where R0 5 5.2 6 0.1, A2 5 50 6 2, A3 5 154 6 4, and W9 5 5 6 1.
The quantity R0 is related to the maximum curvature achieved by the
system and the intersection of the two laws (see Fig. 3). The other
interesting quantity is W9, which represents the difference of flux
between E?Ec and E=Ec, when the curvature scalar becomes zero,
and it is due to the fact that in both cases, although the space has no
curvature, it has nonetheless different metric tensors.

Finally, in order to give a more general description to our campy-
lotic medium, we perform a detailed study of the the flux W, as a
function of two dimensionless number, Re and E. Since Re is not the
only dimensionless number that characterizes the flow, we can
expect different behaviors depending on how the Re is varied.
Therefore, we will change Re by modifying both, the perturbation
range r0 and the viscosity m, separately. In Fig. 4, we can appreciate
the dependence of the flux deficit, W0 2 W, as a function of E for a fix
Reynolds number, Re 5 3. Note that fixing the Reynolds number and
changing the ratio E, implies to vary the number of impurities per-
turbations. As a consequence, in order to achieve a broad range of
values, we decrease the amplitude a0, taking the value of 2 3 1026. In
the domain E[ 1, 10½ �, we found that the flux decreases following a
power law with exponent 3.

In the inset of Fig. 4, we report the behavior of the flux deficit as a
function of the Reynolds number by changing r0, for E~5 and dif-
ferent values of the fluid viscosity m. Here, in order to vary Re, via r0,
for fixed E and m, we need to modify both, N and r0. In the regime of
Reynolds numbers studied in this work, and for a fixed viscosity, the
flux increases with the Reynolds number almost linearly upto some
critical number, Rec, above which a sublinear behavior is found

nearing a plateau. The flux deficit obeys the law,

W0{W

W0
~

B2

1z Re=Recð Þ3
, ð10Þ

with B2 5 0.259 6 0.006 and Rec 5 5.8 6 0.1 for m 5 0.18, B2 5 0.289
6 0.008 and Rec 5 0.75 6 0.02 for m 5 0.55, and B2 5 0.16 6 0.005
and Rec 5 35.8 6 0.9 for m 5 0.07. Note that Eq. (10) is satisfied
regardless the viscosity of the fluid, and we can conclude that by
decreasing the viscosity, we increase the critical Reynolds number
at which the sublinear regime begins. On the other hand, the insens-
itivity of the flux deficit at large Reynolds numbers (by changing the
interaction range, r0, and therefore, large values of r0) is due to the
fact that the average curvature of the system decreases, leading to a
flat space, and W R (1 1 B2)W0.

Discussion
Summarizing, we have explored the laws that rule the flow through
campylotic media consisting of randomly distributed curvature per-
turbations, and shown that, for the configurations studied in this
work, curved spaces invariably support less flux than flat spaces.
Furthermore, the flux can be characterized by the Ricci scalar, a
geometrical invariant that contains the metric tensor and
Christoffel symbols. The trajectories of the flow can become very
complicated, due to the total curvature of the medium, presenting,
in some cases, orbits winding several times around regions with high
curvature. To add generality to our study, we have also analyzed the
flux transport across the campylotic medium as a function of dimen-
sionless numbers, E and Re. Furthermore, we have found that the
different laws that characterize the campylotic medium are valid
regardless of the viscosity of the fluid, as far as the laminar regime
holds. Indeed, further extensions to consider turbulent flows will be a
subject of future research.

To calculate the flux in campylotic media, we have developed a
new lattice Boltzmann model to simulate fluid dynamics in curved
manifolds using an arbitrary coordinate system. The model has been
successfully validated (see SI) on the Taylor-Couette instability for
the case of two concentric cylinders and spheres, the inner rotating
with a given speed and the outer being fixed. We also studied the
Taylor-Couette instability in two concentric rotating tori, finding

Figure 3 | Flux deficit, W0 2 W, as a function of the average curvature, R,
for large and small values of E. We have fixed a0 5 0.00002, N 5 1024 (Re

, 1 … 1000). The solid lines denote the analytical curves according to Eqs.

(8) and (9). The inset shows the loop which arises by parametrizing the

flux-curvature relation in terms of E. Here, Ec is the radius at which the Ricci

curvature attains its maximum upon increasing E. The lower and upper

branches correspond to EvEc and EwEc, respectively.

Figure 4 | Flux as a function of the dimensionless numbers Re and E. Flux

deficit, W0 2 W, as a function of the dimensionless number E for Re 5 3,

which decreases following a power law with exponent 3, in the studied

regime. In the inset, we can observe the dependence on Re by fixing E~5
and varying r0, for different viscosities, n 5 0.55 (green squares), 0.18 (blue

circles), and 0.07 (red diamonds).
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that the critical Reynolds number for the onset of the instability is
about ten percent larger than the one for the cylinder. By solving the
Navier-Stokes equations for curved spaces in contravariant coordi-
nates, which can be represented on a cubic lattice precisely in the
format requested by the lattice Boltzmann formulation, the present
model opens up the possibility to study fluid dynamics in complex
manifolds by retaining the outstanding simplicity and computational
efficiency of the standard lattice Boltzmann method in cartesian
coordinates.

Methods
In order to formulate a corresponding lattice Boltzmann model, we implement an
expansion of the Maxwell-Boltzmann distribution, Eq. (1), in Hermite polynomials,
so as to recover the moments of the distribution function up to third order in
velocities, as it is needed to correctly reproduce the dissipation term in the hydro-
dynamic equations. The expansion of the Maxwell-Boltzmann distribution was
introduced by Grad in his 13 moment system22. Since this expansion is performed in
velocity space, and the metric only depends on the spatial coordinates, we expect such
an expansion to preserve its validity also in the case of a general manifold. We have
followed a similar procedure as the one described in Refs. 23, 24.

For the discretization of the Maxwell Boltzmann distribution (1) and the
Boltzmann equation (5), we need a discrete velocity configuration supporting the
expansion up to third order in Hermite polynomials. Our scheme is based on the
D3Q41 (three dimensions and 41 velocity vectors) lattice proposed in Ref. 25, which
corresponds to the minimum configuration supporting third-order isotropy in three
spatial dimensions, along with a H-theorem for future entropic extensions26 of the
present work.

In the following, we shall use the notation ci
l to denote the i-th contravariant

component of the vector numbered l. Thus, the discrete Boltzmann equation for our

model takes the form, fl xizci
ldt,tzdt

� �
{fl xi,t

� �
~{

dt
t

fl{f eq
l

� �
zdtF l , where

F l is the forcing term, which contains the Christoffel symbols, and f eq
l is the discrete

form of the Maxwell-Boltzmann distribution, Eq. (1). The relevant physical
information about the fluid and the geometry of the system is contained in these two
terms. The macroscopic variables are obtained according to the relations,

r~
X41

l~0
fl , rui~

X41

l~0
flci

l .

The cell configuration D3Q41 has the discrete velocity vectors: (0, 0, 0), (61, 0, 0),
(61, 61, 0), (61, 61, 61), (63, 0, 0), (0, 63, 0), (0, 0, 63), and (63, 63, 63). The
speed of sound for this configuration is c2

s ~1{
ffiffiffiffiffiffiffi
2=5

p
. With this setup, and taking

into account that the vectors ji and ui are normalized by the speed of sound, we obtain
the following discrete equilibrium distribution,

f eq
l ~wlr

5
2
z2

ci
lui

c2
s

z
1
2

ci
lgijcj

l

c2
s

{
1
2

ci
lci

l

c2
s

z
1
2

ci
lui

� �2

c4
s

 

{
gii

2
{

uiui

2c2
s

z
ci

lui
� �3

6c6
s

z
1
2

ci
lui

� �
c4

s
cj

lgjkck
l{cj

lcj
l

� �

{
ci

lui
� �

ujujð Þ
2c4

s
{

ci
lui

� �
2c2

s
gjj{3
� �

{
uigijcj

l

c2
s

!
,

ð11Þ

where the weights wl are defined as, w 0,0,0ð Þ~
2

2025
5045{1507

ffiffiffiffiffi
10
p� �

,

w 1,0,0ð Þ~
37

5
ffiffiffiffiffi
10
p {

91
40

, w 1,1,0ð Þ~
1

50
55{17

ffiffiffiffiffi
10
p� �

, w 1,1,1ð Þ~
1

1600
233

ffiffiffiffiffi
10
p

{730
� �

,

w 3,0,0ð Þ~
1

16200
295{92

ffiffiffiffiffi
10
p� �

, and w 3,3,3ð Þ~
1

129600
130{41

ffiffiffiffiffi
10
p� �

. The forcing

term takes the form

dtF l~wlr gkl{dklz
ukul

c2
s


 �
ck

lcl
lci

lFi
l

2c4
s

{
cm

l Fm
l dkl

2c2
s

 "

{
cl

lFk
l

2c2
s

{
ck

lFl
l

2c2
s

�
z

ci
lFi

l

c2
s

z
cl

lul
� �

ci
lFi

l

c4
s

{
uiFi

l

c2
s

�
,

ð12Þ

with Fi
l~{Ci

jkj
j
ljk

l and dkl the Kronecker delta. In the presence of an external force

Fext, this simply extends to Fi
l?Fi

lzFi
ext .

In order to recover the correct macroscopic fluid equations, via a Chapman-
Enskog expansion, the other moments, Eqs. (2), (3), and (4), also need to be repro-
duced. A straightforward calculation shows that the equilibrium distribution function
f eq
l meets the requirement. The shear viscosity of the fluid can also be calculated as

m~r t{1=2ð Þc2
s dt. In this way one can calculate the fluid motion in spaces with

arbitrary local curvatures.
We have measured the efficiency vs. standard LB and the resulting overhead (about

3) is almost entirely to be ascribed to the fact that, by relativistic necessity (third order
moments to be matched), we work with 41 velocities. Although a detailed head-on
comparison remains to be done in future work, such overhead appears perfectly

acceptable, especially in view of future applications to relativistic dissipative hydro-
dynamics in highly complex manifolds. More details about the discretization of this
model on a lattice and the numerical validation can be found in the SI.

All simulations in this paper are performed using the smallest system size that
keeps the physical results unchanged at increasing the grid resolution. The reason for
this choice is that we need to calculate the metric tensor and the Christoffel symbols
locally, which calls for a computational compromise. On the one hand, storing the
metric tensor and Christoffel symbols as arrays, minimizes the CPU time, at the price
of increasing memory requirements. On the other hand, by computing these
quantities ‘‘on the fly’’, memory request is significantly reduced, to the detriment of
computational time. For the simulations presented in this work, we have used the
former approach (metric and Christoffel symbols as stored as arrays), so that we
cannot compute very large system sizes in a reasonable computational time. However,
finding the optimal tradeoff between the two approaches above will be a subject of
future work.
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