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ABSTRACT: Failure to blow ash on the heated surface of the boiler
will cause a drop in heat transfer rate and even industrial safety
accidents. Nowadays, the shortcomings of the fixed soot blowing
operation every hour and every shift are significant, which can be
improved by high-precision ash accumulation prediction. Therefore,
this paper proposes a deep learning model fused with deep feature
extraction. First, a dynamic fouling model and a health index-clearness
factor (CF) of the heated surface are established. The data
preprocessing method reduces unnecessary forecasting difficulty and
makes the degradation trend of the CF time series more obvious. In
addition, deep feature extraction is composed of complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) and
kernel principal component analysis (KPCA), which completes the
multiscale analysis of time series and reduces the training time of deep
learning models, and has significant contributions to improving prediction accuracy and reducing time consumption. The adaptive
sliding window and the encoder−decoder based on the attention mechanism (EDA) can better mine the internal information of the
time series. Compared with long short-term memory (LSTM), taking the 300 MW boiler’s various heated surface data sets as an
example, multistep forward prediction and different starting point prediction experiments have verified the superiority and
effectiveness of the model. Finally, under the variable working condition economizer datasets, the proposed method better completes
the predictive maintenance task of the heated surface. The research results provide operational guidance for improving heat transfer
rate, energy saving, and reducing consumption.

1. INTRODUCTION
With the continuous improvement of living standards around
the world, the issues of environmental protection, energy
conservation, and emission reduction have become the focus of
attention all over the world.1−3 Although active energy
transformation is being carried out, fossil fuels are still the
main world energy sources, and their proportion and status are
still irreplaceable by new energy sources. The main existing
problems of fossil energy are utilization and pollution emissions.
Coal is an important part of fossil energy. Energy consumption
mainly comes from the consumption of it, and more than half of
the coal is supplied to coal-fired power stations every year.4

As the basis for the operation of coal-fired power stations,
boilers have basically reached a satisfactory level of power
generation efficiency with the development of instrumentation
and intelligence. However, if the parameters and power of the
boiler are large, this situation will occur: after the pulverized coal
is burned at a high temperature of thousands of degrees, high-
temperature flue gas will be generated to the working fluid side
inside the heated surface by means of heat transfer.5 Ash present
in the high-temperature flue gas is in a molten state at this time
because it exceeds the melting point. The melted ash will cause

ash accumulation as the high-temperature flue gas flows through
each heating surface since the thermal resistance of ash fouling
and slagging is much greater than the thermal resistance of the
metal heating surface, the working fluid on the working fluid side
will need to provide more raw coal in order to meet the required
critical requirements. In addition, ash deposits on the heating
surface will cause a series of problems, such as the reduction of
the operating efficiency of the heat exchanger, the corrosion of
the heating surface and metal pipes, the overall shutdown of the
unit, and a significant reduction in the service life of the
equipment.6 Due to the poor heat absorption of the heating
surface, the flue gas temperature at the outlet of the boiler is
relatively high, which reduces the flue gas desulfurization
efficiency. The core of tapping the energy-saving potential of the
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boiler is to improve the heat transfer efficiency of the various
heat exchange equipment and the overall heat transfer of the
boiler and to convert the calorific value of the coal into the heat
of the working fluid to the greatest extent.
With the popularization and application of distributed control

system systems (DCS), power plants began to establish
management information systems and plant-level supervisory
information systems, which conveniently and quickly recorded
the production process of the power plant real-time information
of each location, and save complete historical data.7 It has laid a
good foundation for improving the online monitoring of ash
pollution and predictive maintenance of the heating surface.
As an effective method to keep the heated surface healthy,

soot blowing is used to clean the surface of the heat exchanger
through a medium such as high temperature steam. Nowadays,
many thermal power stations all over the world adopt the soot
blowing method at a fixed time and a fixed operation process.8,9

This soot blowing method has such a hidden problem: If soot
blowing is not timely (under soot blowing), it will lead to
aggravation of the ash situation in the heated area, reduction of
heat transfer efficiency, and major safety accidents. If the soot
blowing frequency is too high (over soot blowing), it will not
only cause waste of high-temperature and pressure steam used
for soot blowing but also cause corrosion of the heated surface
and pipeline. Long-term over soot blowing will greatly shorten
the power station equipment life span, and it also brings
potential problems with energy utilization and safe operation.
Accidental contamination on the surface of heat transfer

boilers has always been one of the main operational problems of
coal-fired utility boilers. A large number of studies have shown
that in order to develop intelligent soot blowing technology on
the heating surface of coal-fired power stations to avoid the heat
transfer loss of the heat exchanger and the occurrence of safety
accidents caused by the traditional way of empirical soot
blowing, research work mainly focuses on the monitoring and
prediction of ash deposits.10 In recent years, the research work
has mainly been carried out from two aspects: ash accumulation
monitoring, prediction, and soot blowing optimization. In detail,
there are usually monitoring devices, actual physical models5,
and data-driven methods for fouling monitoring. Perez et al.,11

considering the global response time of the system in the
polluted state and comparing it with the cleaning state, designed
a new transient thermal fouling probe for crossflow tubular heat
exchangers, which accurately estimated the convection exchange
coefficient and the degree of fouling of the heat exchanger. Shi et
al.12 based on dynamic mass and energy balance to detect
contamination on the surface of the heat exchanger’s heating
surface, in addition to steam flow soft measurement, completed
the online evaluation of boiler performance. Zhang et al.13

proposed an acoustic system that is used to monitor the
temperature change near the boiler water wall and a new
cleanness factor. Based on this method, the ash fouling and
slagging are monitored, which makes a certain contribution to
the development of smarter smoke blowers. Ma et al.14

integrated boiler computational fluid dynamics (CFD) simu-
lation and ash behavior model-developed ash behavior
prediction tool AshProSM, which can provide a qualitative
and quantitative description of the formation and deposition
process of the fireside slag. AshProSM has been applied to the
industrial boilers of the Columbia Energy Center of Wisconsin
Electric and Lighting Company. These methods monitor from
the perspective of mechanism and the results can play a certain
role in qualitative analysis.

As there are many factors affecting fouling, such as strong
coupling between various factors, complicated and cumbersome
calculations in the internal operation of the boiler, etc., the
model-driven method has the problems of large prediction
errors and time lag. In addition, due to the complexity and
uncertainty of coal-fired power plant boiler production, the
abovementioned method may not be able to comprehensively
reflect the impact of various uncertainties and is limited in
accuracy and difficult to apply to actual soot blowing
optimization control. Therefore, data-driven methods are
becoming more and more mainstream. With the continuous
development of big data and artificial intelligence, data-driven
methods have gradually become the mainstream method of
monitoring the health of the heating surface. Unlike
mathematical models, machine learning treats the actual system
as a black box and fits the mathematical and physical principles
inside the black box through input and output. Although such a
pure data-driven algorithm lacks the exploration of the actual
internal mechanism, with the continuous intake of intelligent
optimization algorithms, further optimization of required
parameters can also obtain satisfactory results. Sun et al.15

selected fouling resistance as an indicator to monitor the
pollution status of the heating surface. In addition, they analyzed
fouling-related variables (such as working fluid input temper-
ature, working fluid flow rate, etc.) and passed the Support
Vector Machine (SVM) algorithm that has completed the
monitoring of fouling on the heating surface. Similarly, Tong et
al.16 used Support vector regression (SVR) to complete the non-
linear mapping relationship between 20 related variables of ash
formation and actual fouling conditions (characterized by the
thermal resistance of the ash layer calculated by the thermal
balance mechanism model), which reached the test set 98.5%
accuracy rate. Shi and Wang17 on the basis of characterizing the
health status of the heating surface also proposed an artificial
neural network-based key variable analysis to study the internal
behavior of ash pollution and thermal efficiency. Sivathanu and
Subramanian18 designed a dual extended Kalman filter (DEKF)
to estimate the model parameters that affect the pollution of the
heating surface of the reheater. According to the estimated
parameters, health indicators reflecting the pollution of the
heated surface are obtained. DEKF is better than traditional
joint EKF (JEKF) in terms of estimating model parameters. At
present, many methods are based on artificial neural network
technology,19 which regards the fouling deposition system as a
‘black box model’, and completes the prediction of fouling and
integrated optimization and automatic soot blowing control.
Predicting the future status of ash pollution is another

important task. A large number of studies have shown that ash
prediction of the heated area is essentially a time-series
predicting task, and it can be predicted to a certain extent by
using certain reasonable methods. Shi et al.20 used the
measurement data of the distributed control system (DCS) of
thermal power plants and basic thermodynamic calculation data
to monitor the pollution rate of the heated surface in real time.
By analyzing the pollution rate of multiple groups, the
incremental distribution of the same measurement point at
different times is obtained, and the future state is predicted by
the known initial ash pollution. Li et al.21 decomposed the
historical pollution rate data into two parts, the fitted curve data
and the difference between the original data and the fitted curve,
and then combined the real-time pollution rate data to establish
the prediction model. This method does not require additional
special instruments or complex computing systems but can use
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existing monitoring data to realize economizer fouling
monitoring. Compared with the traditional Elman neural
network, the traditional Neural network algorithms find it
difficult to achieve long-term predictions in multifactor coupled
fouling prediction projects. At the time of the explosion of deep
learning, due to the inherent deep feature extraction effect of the
model, it has begun to show its strength in the application of
multifactor coupling such as the time series of ash accumulation
degradation.22 In fact, most current research studies are using
sensors, soft sensing,23 and machine learning methods for online
ash accumulation monitoring and short-term prediction. The
improved ash cleaning method is generally divided based on
predictive maintenance21 and soot blowing optimization
models. However, if any of these two methods are only based
on online monitoring and short-term prediction, it is very
limited in actual engineering applications.
The high-pressure steam required by the soot blower and the

staffing of the soot blowing operation take a certain amount of
time. This requires the establishment of health factors that can
reflect the health of the heated surface of the heat exchanger to
complete the prediction of the future situation. Based on the
health factor-clearness factor (CF), this article predicts and
analyzes the fouling conditions of the heated surfaces of different
devices under the same operating conditions and the same
devices under different operating conditions. In this regard,
based on the safe operation of the heat exchanger and the need
to avoid over-blowing and under-blowing, a method for
predicting the health of the heating surface that combines
deep feature extraction and deep learning is proposed. First, the
wavelet threshold denoising method is used to reduce the burrs
and noises in the CF curve, so that the overall trend of the ash
accumulation curve is more obvious. The depth feature
extraction method is mainly divided into complete ensemble
empirical mode decomposition with adaptive noise (CEEM-
DAN) decomposition and kernel principal components analysis
(KPCA) dimensionality reduction. CEEMDAN decomposition
completes the multiscale analysis of the ash accumulation curve
of various devices in order to obtain higher prediction accuracy.
In addition, we generally increase the number of forwarding
prediction steps in order to obtain a longer soot blowing
operation preparation time, although a longer forward
prediction time can reserve enough time for soot blowing
operation preparation work and complete the ’early warning’. In
general, in shallow prediction models, such as SVR, random
forest, etc., the model training time is often neglected, so the
forward prediction time will be completely used for preparation.
Because the deep learning prediction model has the character-
istics of a huge overall structure, numerous parameters, and
many samples, the training time cannot be ignored, which will
indirectly occupy the forward prediction time.
More importantly, in many cases, there may be correlations

between various imfs, which increases the complexity of
problem analysis. The KPCA not only eliminates redundant
information but also reduces the training time of the model by
performing dimensionality reduction operations and input
reconstruction on the high-frequency components obtained by
CEEMDAN decomposition. Therefore, this is a reasonable
dimensionality reduction method to ensure the integrity and
effectiveness of the original information to the greatest extent on
the basis of reducing the number of inputs that need to be
analyzed. The adaptive sliding window and the encoder−
decoder based attention (EDA) complete the sudden change
capture of the fouling time series and the long-term memory

establishes a prediction model for the newly reconstructed input
sequence after feature extraction. In the end, this new hybrid
model achieves a high-precision prediction of the health of the
heating surface of the heat exchanger.
Contributions of this work:
(1) In order to obtain better fouling prediction accuracy, this

paper proposes deep feature extraction, which includes
multiscale analysis of fouling time series and dimension-
ality reduction algorithms

(2) Considering the relevance of the fouling time series and in
order to mine its potential information, a fusion of the
adaptive sliding window and encoder−decoder prediction
framework is proposed.

(3) Taking a variety of boiler heating surface datasets of coal-
fired power plants as an example, from the perspective of
multistep forward prediction, the validity and adaptability
of the proposed model in multistep-ahead prediction
under different types of data sets are verified.

(4) Starting from multiple sets of variable-condition econo-
mizer datasets, the superiority and practicability of the
proposed model in predictive maintenance tasks on the
heating surface are verified.

The remainder of this paper is organized as follows. Health
factor-clearness factor and data preprocessing, deep feature
extraction, and deep learning algorithms are introduced in
Section 2. In Section 3, we took the datasets of various heated
surfaces and economizer variable conditions of coal-fired power
stations as an example and conducted detailed verification and
discussion on the research results of multistep-ahead prediction
and predictive maintenance of the heated surfaces. Finally, the
conclusions and prospects for the future are given in Section 4.

2. METHODOLOGY
This paper aims at the monitoring and prediction of ash
accumulation in the heated area of coal-fired power station
boilers and builds a deep learning model based on actual
production data. In order to monitor and predict the ash
accumulation on the heating surface, it is first necessary to
extract characteristic variables that can reflect the ash
accumulation status from a large number of relevant monitoring
data in the boiler DCS system. Considering the influence of
dynamic factors, a dynamic model is established so that it can
better reflect the health status of the heated surface under the
influence of ash pollution, that is, the clearness factor.
With the rapid development of Prognostics Health Manage-

ment (PHM),24 predictive maintenance of the heated surface of
coal-fired power plants has become one of the focuses of power
plants because it involves boiler safety issues and economic
benefits. However, the traditional shallow model has poor
multistep prediction performance, so it is difficult to perform the
task of predicting the health of the heated surface. This paper
constructs a prediction method based on the fusion of improved
feature extraction and deep learning models and completes the
feature decoupling and deep feature extraction of the fouling
signal. In addition, the deep learning model based on the
attentionmechanism and the recurrent neural network increases
the long-term dependence mining on the time series compared
with the shallow model and obtains high-precision prediction
results. The framework of the hybrid model we proposed is
mainly composed of four parts as follows: First, the theoretical
heat transfer coefficient and the actual heat transfer coefficient
are calculated according to the DCS system, and then the clean
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factor that characterizes the health of the heated surface is
obtained. Then denoise the original cleaning factor degradation
curve. By specifying the wavelet basis function, the number of
decomposition layers, and the threshold function to complete
the denoising and smoothing operation of the original data, the
changing trend of the fouling signal is more obvious. Then, we
use CEEMDAN decomposition to complete the multiscale
analysis of the denoising signal and decompose it into multiple
imfs and a trend component. In addition, KPCA is used for
dimensionality reduction and deep mining of the decomposed
features to complete input reconstruction with high-level
abstract features. This dimensionality reduction algorithm
reduces the computational cost and further improves the overall
performance of the model. Finally, based on the adaptive sliding
window and the encoder−decoder model of the attention
mechanism, the information mining and accurate multistep-
ahead prediction of the ash accumulation time series are
completed. Figure 1 shows a complete prediction flow figure.
2.1. Dynamic Monitoring Model and Health Indicator.

In this paper, in order to calculate the health status of each
heating surface in real time and fully reflect the dynamic status of
ash deposits under variable working conditions of the boiler,12

we combine the basic thermodynamic formula and real-time
measured data from the boiler DCS system to obtain the health
indicator of the heated surface-clearness factor.
The clearness factor is mathematically composed of the ratio

of the actual heat transfer coefficient to the theoretical heat
transfer coefficient of the convective heating surface. The data
required in the entire calculation process can be collected in real
time by the boiler DCS system.

CF
k
k

r

o
=

(1)

The theoretical heat transfer coefficient is the original state
without ash deposits on the heated surface. Under the premise of
ignoring the thermal resistance of the working fluid and the tube
wall and the internal resistance of the metal, it is usually the sum

of the theoretical radiation heat transfer coefficient and the
theoretical convective heat transfer coefficient.

k a ar f d= + (2)

In formula 2, afrepresents the theoretical radiation heat
transfer coefficient, and adis the theoretical convective heat
transfer coefficient. The following formula is the specific
mechanism formula of the two heat transfer coefficients:
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In formulas 3−5, agb and ah are the blackness of the pipe wall
and the flue gas respectively; T and Tgb are the temperature of
the flue gas and the pipe wall respectively, Cs and Cz are the
transverse and longitudinal directions of the heating surface, λ is
the thermal conductivity of the flue gas, and d is the pipe
diameter, w is the flue gas flow rate, v is the dynamic viscosity of
the flue gas, and Pr is the Reynolds number.
The flue gas flow rate w is the ratio of the flue gas flow rate to

the area of the tube section of the heating surface.

w
V
A

b=
(6)

where Vb is the standard flue gas volume passing through the
heating surface, A is the official cross-sectional area of the
heating surface, and the standard flue gas flow rate is obtained by
Avogadro’s law.
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Figure 1. Online prediction of ash accumulation.
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In formula 7, Vr is the measured flue gas flow through the
heating surface, tr is the flue gas temperature through the heating
surface, ρr is the actual pressure of the flue gas, and ρb is the
standard atmospheric pressure.
The actual heat transfer coefficient is obtained by the dynamic

energy balance and iterative method.

K
Q

F tr
y

m
=

(8)

t t t
t
t

( )/lnm max min
max

min
=

(9)

where Qy is the energy released on the flue gas side, F is the heat
transfer area of the heating surface, Δtm is the average heat
exchange temperature difference between the flue gas side and
the working fluid side, andΔtmax andΔtmin are themaximum and
minimum temperature differences of heat exchange on both
sides.
Considering that during the operation of the boiler, as the

load changes, the boiler’s coal feed, air supply, and other
variables are dynamically changing, the corresponding temper-
ature of each heating surface is also changing, and the specific
heat capacity of the working fluid will also change with the
change of temperature. Therefore, the energy released by the
flue gas side in the dynamic process is not completely equal to
the heat absorbed by the working fluid. At this time, the change
in the heat storage of the working fluid needs to be considered.
Therefore, the energy conservation on the flue gas side and the
working fluid side in this dynamic process can be expressed as

Q Q Q Qy q j q= ± ± (10)

where Qq is the heat absorption of the working fluid on the
working fluid side,ΔQj is the change in the heat storage of steam,
and ΔQq is the heat absorption change on the steam side.
Heat release on the flue gas side

Q B h h h( )y j lfin out= + (11)

B B
q
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100j
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k
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φ is the heat retention coefficient, hin and hout are the flue gas
enthalpy values at the inlet and outlet of the economizer, β is the
air leakage coefficient of the flue section, and hlf is the cold air
enthalpy of the air leakage. Bj is the calculated fuel quantity, B is
the actual measured fuel quantity entering the furnace, and q4 is
the heat loss of the mechanical incomplete combustion of the
boiler.
The metal heat storage change of the pipe wall, the steam heat

storage change, and the heat absorption of the steam side are as
shown in the formulas.

Q C mj j j
j=

(13)

Q C mq q q
q=

(14)

Q D H H( )q out in= (15)

In formulas 13−15, Cj and Cq are the average specific heat
capacity of metal and working fluid respectively. mj and mq are
the metal quality of the tube wall on the heated surface and the

quality of the working fluid inside. θq and θj are the metal pipe
wall temperature and steam temperature, D is the mass flow of
the working fluid of the economizer, andHout andHin are the side
enthalpy values of the working fluid in and out of the
economizer. The enthalpy value of the working fluid can be
obtained by the international general industrial water and water
vapor property calculation formula.
2.2. Data Preprocessing. CF is used as the indicator of the

health condition of the heated surfaces to reflect the real-time
ash condition well. In fact, the daily change of theCF has a strong
non-linearity. It is challenging and unnecessary for datasets to be
directly used for ash deposit prediction and soot blowing
optimization. Generally speaking, the noise of the CF curve is
generally divided into two types: one is the on-site environ-
mental change. The other is that when the flue gas carrying ash is
used for heat exchange, the flow of the flue gas causes the ash in
the flue gas to deposit on the heated surface or take away part of
the ash from the heating surface (it has a relationship with the
flow rate of the flue gas). The former situation is what we do not
want to appear, and the latter one, as the physical change inside
the boiler, occurs almost all the time and cannot be ignored,
which is also one of the difficulties in the ash prediction. Among
many denoising algorithms, the combination of wavelet analysis
and threshold denoising is an advanced data smoothing method,
which has the characteristics of a high signal-to-noise ratio and
strong adaptability after denoising.
As a bridge between the time domain and frequency domain,

Fourier transform plays an extremely important role in early
signal analysis and processing.25 Wavelet transform can obtain
not only the frequency component of the signal but also the
occurrence time of each frequency signal. From a mathematical
point of view, the wavelet transform is composed of a set of
wavelet basis functions, which can be obtained by the translation
and scaling of the wavelet basis functions. Its formula is shown as
16:

WT f t t a f t
t

( , ) ( ), ( ) ( )f
R

,
1/2= = i

k
jjj y

{
zzz
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The original signal f(t) ∈ L2(R). ψα, τ(t) is the wavelet basis
function, and a and τ are the translation and scaling coefficients,
respectively. The inner product of x and x completes the
continuous wavelet transform.
Due to practical engineering needs, binary discrete wavelet

transform (DWT) (discretization of translation coefficient and
scaling coefficient) is commonly used when dealing with time
series problems, as shown below:

WT b f t t
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The basic principle of DWT decomposition is as follows: the
original signal is continuously decomposed through high-pass
and low-pass filters. First, the original signal is passed through
high-pass and low-pass filters to obtain high-frequency
components (H1) and low-frequency components (L1).
Then, we let the low-frequency component (L1) pass through
the high-pass and low-pass filters to obtain the new high-
frequency component (L2) and the new low-frequency
component (H2). Then, we repeat the process continuously,
until the specified number of decomposition layers is reached.
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The decomposition figure of DWT is shown in Figure 2.
Choosing the appropriate wavelet basis function and the

number of decomposition layers is one of the keys to denoising.
Generally speaking, after obtaining the wavelet decomposition
coefficients of various levels, the final low-frequency coefficients
of the wavelet decomposition coefficients are retained, and the
high-frequency coefficients of each level are quantized. Because
the noise part of the signal is usually located in the high-
frequency segment, and the wavelet coefficient of the noise is
generally smaller than the effective signal. The hard threshold
function allows the signal points whose absolute value is less
than the threshold value to be directly set to 0, while the soft
threshold value shrinks the points with discontinuous
boundaries to 0 on its basis. The soft threshold function is
used to obtain a smoother denoising signal under the premise of
ensuring the signal-to-noise ratio of the denoised signal, thereby
solving the problem that the reconstructed signal may oscillate at
some points. The wavelet threshold denoising algorithm
strengthens the adaptability of the subsequent prediction
algorithm to the time series of ash accumulation.26 After
quantifying the wavelet decomposition coefficients at all levels,
the pure ash signal can be reconstructed by inverse wavelet
transform.
2.3. Deep Feature Extraction. 2.3.1. Decomposition

Algorithm. In order to extract the high-dimensional details of
the ash segment, this article will introduce EMD and its
derivative algorithms, such as EEMD and CEEMDAN.
Considering that the importance of the training time of the
deep learning model in the entire ash deposit prediction and
soot blowing optimization process and the high-frequency imfs
obtained by the decomposition algorithm have certain
redundant characteristics, this paper uses the KPCA algorithm
to reduce the dimensionality of the high-frequency feature
components obtained by decomposition. Therefore, under the
premise of ensuring the minimum loss of effective information, a
lot of time is reduced for the training of the deep learning model
in the future.
Compared with other commonly used decomposition

algorithms, the EMD algorithm has strong analysis and
processing ability in both linear and nonlinear signal processing
and can adaptively select the decomposition basis function and
decomposition layer number according to the signal.

The EMD algorithm is based on the following assumptions:
(1) The original signal extreme point and the number of zero

points must be equal or at most.
(2) The upper enveloped line defined by the maximum value

point and the average value defined by the minor value
point is zero, that is, the upper and lower envelope of the
signal respects the time axis symmetry.

The EMD decomposition process is as follows:
Step 1: Connect all local extremum points in x(t)with
three spline interpolation curves to form up and down
envelopes and mlow.
Step 2: The mean curve m1(t) = [mup + mlow]/2 of the
envelope.
Step 3: Calculate the difference h1(t) = x(t) − m1(t), if it
does not satisfy the two sufficient conditions of the
intrinsic mode function (IMF) component, use h1(t)
instead of x(t), repeat step 1 and step 2 until the kmay be
given to h1(k) satisfying two conditions.
Step 4: The IMF1 component is c1(t) = h1k(t), and the
remaining component is r1(t) = x(t) − c1(t).
Step 5: Repeat the remaining componentr1(t) as the
original sequence to decompose, and finally obtain an n
IMF component and a residual componentrn(t), where
the residual component is a monotonic sequence or a
regular value sequence.
Step 6: Finally, the EMDdecomposition formula is shown
in the formula (x):

x t c t r t( ) ( ) ( )
i

n

i n
1

= +
= (18)

However, the conventional EMD algorithm has a poor effect
on ash accumulation analysis, and the main problem is modal
aliasing, that is, the single imf has the problem of feature
coupling.
As a noise-assisted decomposition algorithm, EEMD reduces

the problem of mode aliasing. The principle is to use the
characteristic of a uniform distribution of a white noise spectrum
to add white noise to the signal to be analyzed. In this way, the
signals of different time scales can be automatically separated
into the corresponding reference scales. However, the signal
reconstruction error of such a method is large, and if the
decomposition algorithm is added in the prediction, it is
inevitable to reconstruct to obtain the final prediction result, so
the EEMD algorithm still needs to be improved.
The EEMD algorithm steps are as follows:
1) Add the normally distributed white noise to the original
signal.

2) Take the signal with white noise as a whole, and then
perform EMD decomposition to obtain each IMF
(intrinsic mode function) component.

3) Repeat steps 1 and 2, adding a new normal distribution
white noise sequence each time.

4) The IMF obtained each time is integrated and averaged as
the final result.

CEEMDAN adds the adaptive white noises on the basis of the
EEMD algorithm, which not only reduces the reconstruction
error, but also effectively reduces the calculation cost (refer to
the introduction to the requirements and decomposition
process of EMD, the operation process of CEEMDAN will
not be elaborated). In addition, the weight of white noise (δ)

Figure 2. Wavelet decomposition structure.
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and the number of times of adding white noise (T) need to be
determined in advance.27

Compared with the general shallow model, the deep learning
model shows its accuracy and superiority in time series
prediction. However, due to the depth of the deep learning
model and many hyper-parameters, it takes too long to train the
model. In this case, a hybrid prediction model is formed by
combining the decomposition algorithm, sacrificing a long
training time to obtain a greater improvement in prediction
accuracy, the overall effect may be very low, but fortunately, the
decomposition algorithm itself takes less time, which is almost
negligible. Therefore, a large number of imfs representing
various features is the main problem that model training takes a
long time. Taking the research object of this paper as an example,
the forward prediction time provided by the multistep-ahead
prediction can be broadly understood as the preparation time for
the soot blowing operation. In general time series prediction, the
model training time is generally not counted, but in practice, if
the training time exceeds a certain proportion of the multistep-
ahead prediction time, then the preparation time reserved for the
soot blower operation may be much less than the theoretical
result to be insufficient to complete the soot blower preparation
and staffing. In addition, there is a lot of information redundancy
among the various imfs of the CEEMDAN algorithm. The
method of data dimensionality reduction and reasonable
adjustment of dimensionality reduction can not only retain
most of the effective information and save the overall training
time of the model but also ensure the high efficiency of the
model.
2.3.2. Kernel Principal Component Analysis (KPCA). As

mentioned above, without the function of dimensionality
reduction algorithm, the datasets decomposed by CEEMDAN
are successively put into the model for training, which consumes
a lot of time and loses its significance in practical problems. In
the multiscale modeling prediction by the decomposition
algorithm, not all features of the object are required, that is,
many features are redundant. Such characteristics not only do
not reflect the nature of the object but also cause a lot of
unnecessary trouble for subsequent operations.
As a widely used data preprocessing method, dimensionality

reduction preserves some of themost important features of high-
dimensional data and removes noise and unimportant features,
so as to improve the data processing speed. The dimensionality
reduction of data can save a lot of time and calculation costs
within a certain range of information loss.28,29

The main function of the principal component analysis
(PCA) algorithm is to reduce the dimensionality of the data.
The linear correlation between the data is removed through the
diagonalized covariance matrix. The data correlation here is
considered as redundant noise; at the same time, the small
variance dimension in the diagonal matrix is discarded, and the
large variance dimension is retained to achieve data dimension-
ality reduction. KPCA is one step more than PCA, that is, the
dimensionality is increased first (both RBF and polynomial
kernel are increased to infinite dimensionality) and then the
projection is performed because some non-linearly separable
datasets are only linearly separable from the perspective of
ascending dimensions.30

PCA operation process:

(1) Standardize the original input variablematrix. As shown in
formula 19: where X is the standardized matrix, k is the

sample length and in this experiment is the length of the
ash accumulation time series. n is the number of features.

µ

µ

µ

X

x x x
x x x

x x x

n

n

k k kn

11 12 1

21 22 2

1 2

=

(19)

(2) Find the correlation coefficient matrix of X, that is, the
covariance matrix, as formula 20:

n
X X

1 T=
(20)

(3) Calculate the eigenvalue λ of ∑, rearrange the order
according to the rule from large to small, and calculate the
standardized eigenvector.

(4) Finally, the cumulative contribution rate Ci and the actual
contribution rate C of all the feature roots are obtained.

C i k( 1, 2, .., )i
i

k
i1

= =
(21)

C p k( 1, 2, .., )
p

i
k

i

1

1

= =
(22)

The kernel method is a method of transforming the nonlinear
separable problem in low-dimensional space into linear
separable problem in high-dimensional space. In detail:
Let χ be the input space (that is, xi ∈ χ, χ is a subset or discrete

set of Rn), and Η is the feature space (Η is the Hilbert space), if
there is a mapping from χ to Η.

x( ): (23)

Such that for all x, z ∈ χ the function K(x, z) satisfies the
condition:

K x z x z( , ) ( ), ( )= (24)

then we call K the kernel function, where Φ(x) is the mapping
function and ⟨.,. ⟩ is the inner product.
The kernel inputs two vectors, and it returns the same value as

if you took theΦmapping of each of these vectors and then took
the dot product. In addition, commonly used kernel functions
generally include linear kernels, polynomial kernels, and
Gaussian kernels. The Gaussian kernel function is selected in
this article.
KPCA replaces the original n features with a smaller number

of m features. Also, it maximizes the sample variance and makes
the new m features as uncorrelated as possible. The mapping
from old features to new features captures the inherent
variability in the data. KPCA reduces high-dimensional features
to low-dimensional uncorrelated principal components. In
addition, the extracted low-dimensional features also ensure
the integrity of the effective information in the original data.
KPCA reduces the training time of deep learning model, saves
time cost, and improves operational efficiency. High-frequency
imfs obtained by the CEEMDAN algorithm are reconstructed
by KPCA and become the final input of the deep learning
network.
2.4. Adaptive Sliding Window. Time series prediction is

the prediction of future development trend through the
statistical analysis of the past time series. The sliding window
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is generally used to construct the prediction model. Normal
sliding window strategy and multistep time series prediction
tasks are as follows (one-step-ahead).

V CF CF CF CF( , , ... )t t t t t d1 2 1= + (25)

CF f CF CF CF CF( , , ... )t t t t t d1 1 2 1=+ + (26)

Assuming that t represents time, d represents the length of the
sliding window, and CFt represents the ash accumulation on the
heating surface corresponding to the time t.CFt + 1̅ represents the
predicted future dust accumulation situation at t + 1. The vector
Vt was constructed according to the corresponding time relation
to represent the heated surface pollution degree at the past. In
addition, the input−output mapping relationship f represents
the constructed deep learning model.
As the new CF data is updated, the window is constantly

shifted back by a fixed unit to be updated. Figure 3 shows a

specific graphical representation of a sliding window. The sliding
window contains d + 1 data points, among which the first d is
used to build the deep learning model (when it is a single-step
prediction). The multistep-ahead prediction has a similar
principle to one-step-ahead prediction.
Although this method can deeply excavate the degradation

and oscillation state of the time series in the ash accumulation
period, since the predictive maintenance of heating surface
requires the high precision ash accumulation prediction as to the
support, a sliding window with an adaptive width is inserted into
the whole prediction algorithm framework. As the sliding
windowmoves forward, the length of the window is recalculated,
depending on how the data in the adjacent window changes.
Compared with the fixed window method, the advantage of this
algorithm is that when the window width is small, the deep
learning model trained by narrow window data can easily
capture the mutation of CF, and the wide window can more
easily cover the degradation trend of the health condition of the
whole heating surface. The size of the window depends on the
recent changes in the health condition of the heating surface.
When the health condition changes significantly, the window
size will shrink sharply, and vice versa. To illustrate the
effectiveness of sliding s, the following strategies for adaptive
window adjustment are presented.

VS
var Z var Z
max Z min Z

( ) ( )
( ) ( )i

i i 1=
(27)

DS
std Z std Z
max Z min Z

( ) ( )
( ) ( )i

i i 1=
(28)
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jjjjj

y
{
zzzzz (29)

VSi and DSi represent the mean fluctuation and difference
fluctuation of the data distribution of the ith (i > 1, which is an
integer) window. Zi represents the data sequence of the ith
window, and Z represents all the data sequences required to
calculate the size of the new window this time. Var and std,
respectively, represent the variance and standard deviation of the
calculated sequence. Finally, the variable Dif i is defined to
characterize recent data changes.
Themain idea of this method is to slice data segment to obtain

multiple local informational pieces. The adaptive sliding window
updating strategy determines the width of the new slidng
window based on the distribution of previous windows, which is
a strategy for adjusting for local distribution differences between
data slices. According to formula X, the window width can be
shrunk or enlarged by setting a reasonable threshold during
operation. When the calculated Dif i is smaller than the
threshold, it is considered that the distribution difference of
the nearest window data is small, and the window width should
be expanded to improve the training and prediction speed. If it is
bigger than the threshold value, it indicates that the recent data
segment has entered the oscillating region, and the window
width should be reduced so that the deep learning model can
better remember these abrupt situations. Compared with the
fixed-size sliding window, this strategy improves the detection
accuracy of the mutation and operation efficiency and enables
the model to remember the overall deterioration trend and local
mutation status of the CF more quickly.
2.5. Encoder−Decoder Based on Attention Mecha-

nism (EDA).

h w x w h btanh( )t xh t hh t 1= + + (30)

y f w h c( )t hy t= + (31)

As the earliest form of neural network, the recurrent neural
network (RNN) is generally composed of a recursive
architecture, and the hidden state of each time step depends
on the previous input. This characteristic gives it a great
advantage in processing serialized data compared with other
neural networks. Mathematically, given a time series X(t), the
hidden state ht and output yt can be updated as follows:
The problems of gradient vanishing and gradient explosion31

(due to the chain rule of derivatives and the use of nonlinear
functions) make it difficult for the input with a long distance to
establish an effective connection when adjusting parameters in
the reverse error propagation. Therefore, there are challenges in
capturing the long-term dependence of time series. Different
from the simple recursive method, Long Short-Term Memory
(LSTM) cell on the basis of the RNN can selectively memorize
and forget information through the gate mechanism composed
of an input gate, output gate, and forget gate to further avoid the
problems of gradient disappearance and gradient explosion. This
dynamic learning method makes it easy to remember even the
early useful information.

i w h x b( , )t i t t i1= ·[ ] + (32)

Figure 3. Time-based sliding window.
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f w h x b( , )t f t f1 t= ·[ ] + (33)

o w h x b( , )t o t t o1= ·[ ] + (34)

h o ctanh( )t t t= × (35)

c f c i w h x btanh( , )t t t t c t t c1 1= × + × ·[ ] + (36)

f t, it, and ot are the output vectors of the three gates, which are
mainly calculated from the input xt at the current moment and
the hidden state ht − 1. Sigmad and tanh are used as the activation
functions of the gate mechanism and the output activation
functions of the LSTM cell Ct, respectively. Sigmoid and
hyperbolic tangent functions are used to realize the non-
linearization of LSTM. wi, wf, wo, wc and bi, bf, bo, bc are

respectively used as weight matrix and bias vectors, which can be
updated by the error back propagation algorithm during
training. From the internal structure of the LSTM (see Figure
4), it can be seen that the status of the old internal cell stateCt − 1
of the LSTM is mainly updated through the forget gate and the
input gate. The new cell state Ct has two main functions: one is
to complete the self-renewal with new input and hidden state, so
as to further complete the long-distance transmission of
information and long-term memory. Second, the information
flow is outputted to complete the update of the hidden state ht,
and finally the output yt of the current moment LSTM is
established.
Bidirectional Long Short-Term Memory (BILSTM) contains

LSTM networks in both positive and negative directions.32

Figure 4. LSTM structure.

Figure 5. Encoder−decoder based on attention structure.
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When input information is available, BILSTM can receive
sequences from both forward and reverse directions for learning,

so that more characteristic hidden conditions can be obtained
andmore complete time series feature mining can be completed.

Figure 6. Theoretical framework of ash accumulation prediction.
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The single-direction learning is the same as regular LSTM, but
the final hidden layer output is a linear superposition of two
hidden layer outputs in opposite directions. Its mathematical
expression is as follows:

i w( h , x b )t i t t i1= ·[ ] + (37)

f (w h , x b )t f t t f1= ·[ ] + (38)

o (w h , x b )t o t t f1= ·[ ] + (39)

h o tanh(c )t t t= × (40)

c f c i tanh(w h , x

b )
t t t t c t t1 1= × + × ·[ ]

+ (41)

h h ht t t= (42)

In fact, due to the inherent shortcoming of the RNN structure
for long sequence processing and the fact that a large amount of
input information is only represented by a fixed-length vector Bi,
which may lead to the loss of information, the actual use has
great limitations. The researchers then developed the attention
mechanism by providing an intuitive interpretation of the
human visual mechanism. As an intuitive explanation of the
human visual mechanism, it allows the decoder to directly access
all the hidden output of the encoder when generating each time-
step output. Furthermore, this article introduces the attention
module to the encoder−decoder network structure to complete

the hidden state of the automatic learning encoder and decoder
of hidden state correlation to calculate attention weights. Finally,
all the hidden layer outputs of the encoder are weighted by the
calculated attention weights to complete the final representation
vector Bi and make it participate in the output of the decoder. It
can be seen that the attention module will produce an attention
representation vector Bi, which is obtained by the weighted sum
of the hidden states of the decoder and all the encoders at the last
moment before the decoder obtains the output of each step.
This is also the essence of attention operation.33 The Encoder−
Decoder based on Attention (EDA) structure is shown in Figure
5.
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=
= (43)
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where aij is the attention vector, hij is the attention weight, Bi is
the final result of the attention mechanism after the weighting
operation, β is a correlation operator (such as dot multiplication
operation), and sj is the output of the hidden layer of the decoder
at time j.
2.6. CF Prediction Based on theHybridModel. Based on

the above models and algorithms, we proposed a hybrid model
based on deep feature extraction and deep learning model for
multistep prediction and predictive maintenance of heated
surface health conditions. The overall detailed prediction

Figure 7. Boiler schematic: (1) pulverizers, (2) coal powder, (3) downcomer, (4) steam drum, (5) turbine, (6) generator, (7) air preheater, (8) supply
air fan, (9) high-temperature flue gas, (10) water wall, (11) platen superheater, (12) high-temperature superheater, (13) high-temperature reheater,
(14) low-temperature superheater, (15) low-temperature reheater, (16) economizer, (17) low-temperature flue gas, (18) furnace combustion.
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process framework is shown as follows (see Figure 6), which is
mainly divided into four parts. (1) Based on the establishment of
health factors reflecting the ash accumulation condition of the
heated surface, the construction of the datasets on the change of
health condition of the heated surface throughout a day was
completed. After that, the ash accumulation segment for various
heated surface datasets was extracted and denoised to complete
the data preprocessing operation. (2) In the part of feature
extraction and input reconstruction of the deep learning model,
CEEMDAN, an improved model of EMD, was adopted to
complete multiscale analysis of the dust accumulation segment
after denoising, and it was decomposed into the overall
deterioration component and several high-frequency compo-
nents. In addition, the KPCA algorithm was used to complete
the input reconstruction in order to solve the problems of
feature redundancy after decomposition and operation
efficiency in the deep learning model. (3) We improved the
shortcomings of the traditional sliding window, such as low
efficiency and poor ability in learning the mutation of the CF
value, and then proposed the adaptive sliding window method,
which combined with the deep learning prediction model of the
encoder−decoder model based on the attention mechanism to
complete the accurate prediction of each component of the
reconstructed input. (4) We integrated all the prediction results
to complete the final heating surface health condition prediction
task.

3. EXPERIMENT VERIFICATION
3.1. Dataset Description and CF Data Smoothing. The

dataset used in this paper to verify the performance of the
proposed model comes from a 300 MW coal-fired boiler in a
thermal power station in Guizhou, China, where the schematic
diagram of the boiler is shown in Figure 7. The main design
parameters of the boiler are shown in Table 1. The boiler type is

HG-1025/17.3-WM18. The boiler features subcritical, natural
circulation, intermediate reheating, double arch single furnace,
“W” flame combustion method, dual flue at the tail, and flue gas
baffle temperature adjustment, balanced ventilation, etc.
This article selects three types of heat-receiving surface

datasets of boiler components: economizer, low-temperature
superheater, and reheater. Each dataset uses the clearness factor
as a health indicator and records the ash on the heated surface of
the boiler for a day (under the same working conditions). In
addition, they are in the same working conditions. It is necessary
to denoise and smooth the clean factor dataset obtained from
the DCS online monitoring data because a large amount of noise
and burrs increase unnecessary prediction difficulty and damage
the stability and accuracy of the prediction results. The abscissa

is time, the unit is hours, and the ordinate is CF reflecting the
health status of the heated surface.
The CF curve of the economizer before denoising and its

corresponding load are shown in Figure 9a. The CF curve
obtained by combining the DCS online monitoring data and the
thermodynamic model has strong nonlinearity. There are two
general reasons: random noise caused by the normal operation
of the economizer and the worksite. Such noise can be
eliminated by a reasonable denoising algorithm. However, the
‘noise’ caused by normal physical phenomena inside the
economizer is worthy of our attention. These ″noises″ are
inevitable and cannot be ignored in the entire forecasting
process. In order to understand this non-negligible noise, we
conduct a detailed analysis:When the flue gas passes through the
convective heated surface, the ash in the flue gas will be
deposited on the heated surface, resulting in a decrease in heat
transfer efficiency, and the passing of the flue gas will take away
part of the ash on the heated surface, resulting in an increase in
heat transfer efficiency. In addition, the flow rate of the flue gas
will also greatly affect the degree of fouling on the heated surface.
It is worth noting that S1 is not an effective soot blowing

point, while S2 is (the descending section before S2 is an
effective soot accumulation section, and the ascending section
after S2 is an effective soot blowing section). This is due to the
surge in the boiler load during this time period, resulting in an
effect similar to soot blowing. The dust accumulation section
used in this paper to verify the proposedmodel is D1 because D1
is in a stable load state, and CF has a more obvious trend of
change (large load changes will not reflect normal ash
accumulation changes). The analysis of other heated surfaces
is basically similar to the economizer heating surface. In order to
ensure a better denoising effect, this paper adopts the wavelet
threshold denoising method. The Daubechies wavelet is used as
the basis function, wavelet order is designated as 4, and the soft
threshold is used to quantify the wavelet coefficients. Figure 8
shows the denoising results under 5, 6, and 7 wavelet
decomposition layers respectively. The denoised signal under
5 still retains more noise, while signal 7 has filtered more
effective signals, and the denoising signal with a decomposition
level of 6 is finally used as the result of data preprocessing.
Further, similar to the above discussion, Figure 9b,c shows the
all-day CF datasets of the economizer, low-temperature
superheater, and reheater after denoising and extracting only
the ash accumulation section. It is more obvious from the figure
that the CF dataset after denoising still has strong nonlinearity
and non-stationarity and can be regarded as amultifeature fusion
signal, so even if advanced algorithms are used, it is difficult to
obtain key information through direct prediction and adapt to
multiple features at the same time.
The datasets given above is for the heated surface of multiple

pieces of equipment under the same working conditions, but in
fact, the working conditions of the boiler may be different.
Figure 10 shows the ash accumulation dataset of 20 sets of
economizers (all under stable load), which belong to the
complete ash accumulation dataset of the economizer from
health to complete failure under the same working conditions.
Similarly, the same preprocessing operation is also required.
3.2. Evaluation Index. In this paper, in order to visually

represent the model performance, appropriate evaluation
indicators are needed to verify the prediction performance,
and the overall evaluation indicators RMSE and MAPE, MAE
are introduced. These evaluation indicators are widely used to
measure the accuracy of the results of classification and

Table 1. Boiler Internal Parameters

parameter unit value of number

rated condition MW 300
fuel flow kg/s 35.4
rated evaporation t/h 909.6
rated main steam pressure MPa 17.25
rated main steam temperature °C 540
reheat steam flow t/h 732.2
reheat steam pressure MPa 3.18
reheat steam temperature °C 540
feed water temperature °C 278
air volume kg/s 295
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regression algorithms. The specific mathematical expression is
shown in formulas eq 45−47.
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whereNtrue_di
andNpredicted_i, respectively, represent the true value

and predicted value of the CF at the ith moment.

Figure 8. Wavelet threshold denoising results of economizer datasets under different decomposition levels.

Figure 9. (a) CF data and load of the original economizer, (b) economizer, low-temperature superheater, reheater after denoising, and (c) extract only
the ash section.

Figure 10.Variable working condition economizer dataset (20 groups).
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3.3. ImplementationDetails. In this article, the superiority
of the proposed model will be reflected in comparison with
many commonly used models and variant models of the
proposedmodel. The predictionmodel introduced belowwill be
used in the comparative experiment of this paper: proposed
model (M1), EDA deep learning model without adaptive sliding
window (M2), replacement of the EDA deep learning model
with LSTM (M3), and LSTM model without adaptive sliding
window (M4) (see Table 2). After obtaining multiple sets of

samples from the historical heating surface cleaning factor data
after feature extraction through an adaptive sliding window,
various parameter configurations of the deep learning model are
necessary, which is related to the final prediction performance.
For deep learning models built on the basis of recurrent neural
networks, time-based backpropagation methods are generally
used to correct parameters. In addition, MSE is used as a loss
function to measure the difference between the predicted value
and the actual value, and the Adam optimizer is used to make it
approach and minimize such differences. Epoch and batch size
and the internal parameters of the EDA model need to be
properly configured to avoid under-fitting and over-fitting of the
prediction model. The learning rate step size is an important
hyper-parameter for supervised learning, and its reasonable
setting ensures that the network can be quickly and correctly
find the optimal solution. Finally, the initialization parameters
for the adaptive sliding window should also be taken into
consideration. We give the final values of the parameters in
Tables 3 and 4.

3.4. Ash Feature Extraction and Model Input Estab-
lishment. 3.4.1. CEEMDAN Result Analysis of CF Data. In
order to extract the deep abstract features hidden in the ash
accumulation section, Figures 11 and 12 show the result of the
economizer dataset after data smoothing after being decom-
posed by EMD and CEEMDAN. A series of imfs and a residual
are obtained. It can be seen from the figure that the residual gives
a better indication of the overall deterioration trend of the
fouling section of the economizer under steady load. It is worth
noting that the number of components obtained by EMD
decomposition is small, which is caused by the problem ofmodal
aliasing.
Imfs with high-frequency characteristics represent the non-

stationary and non-linear part of the fouling, and each
decomposed mode is called imfi (i = 1, 2, 3, ...). The frequency
decreases from top to bottom in the figure. The reason for the
multiscale analysis of the ash accumulation time series is that the
direct use of the deep learning model for prediction may not be
able to adapt to all frequency features at the same time, and the
accuracy, stability, and robustness of the prediction will be poor.
Through experiments, there are 9 decomposition components
for both the low-temperature superheater and the reheater.
Before the experiment, two parameters need to be determined:
the noise weight (δ) and the number of times of adding noise
(T), and we finally set them to 100 and 0.05 after many
experiments.
3.4.2. Deep Feature Extraction and Input Reconstruction.

KPCA first raises the dimensionality of the original features
through the kernel function and then reduces the dimensionality
according to the maximization of variance. This method extracts
deep abstract features from imfs and converts high-dimensional
related features into low-dimensional irrelevant features. All
principal components can almost cover all the effective
information of all original features, ensuring the completeness
and validity of the input data for the next stage of predicting. In
addition, KPCA, as a dimensionality reduction algorithm,
greatly alleviates the training time consumption problem of
the deep learning model, so that the training time is greatly
reduced in the forward prediction time.
In this paper, we only perform dimensionality reduction

operations on CEEMDAN components except for residual.
Figure 13 shows the relationship between the number of
reconstructed features of the KPCA and the loss of ash
information.When the reconstructed input increases to a certain
amount, the loss of the amount of ash information caused by the
reconstruction of KPCA is almost no longer reduced. In other
words, continuing to increase the number of reconstructed
inputs will only increase the computational load and cause
unnecessary time consumption. Considering the prediction
performance of the model, the economizer, low-temperature
superheater, and reheater time series groups obtained by
CEEMDAN are reconstructed into 4, 4, and 3 sub-sequences,
respectively. In this paper, the optimal number of dimensionality
reduction layers of KPCA is selected to select the minimum
information loss, and the cumulative contribution rate of
economizer, low temperature superheater, and reheater can
reach 95.3%, 97.6%, and 95.1%.
3.5. Deep Learning Model Establishment and Online

Prediction. 3.5.1. Multistep-Ahead Prediction of Ash
Deposition on Heating Surfaces. In this section, the perform-
ance of the short-term prediction (five-step-ahead prediction) of
the proposedmodel will first be verified under the CF datasets of
the three heated surfaces. In the fouling time series after deep

Table 2. Model Details

model model details

M1 the proposed model
M2 without adaptive sliding window
M3 replace EDA with LSTM
M4 without adaptive sliding window and replace EDA with LSTM

Table 3. Hyperparameter Settings of the Experimental Model

parameter value

encoder hidden layer number 1
decoder hidden layer number 1
bidirectional LSTM merge mode Sum
activation function of the attention layer Softmax
encoder neurons 150
decoder neurons 100
loss function MSE
optimizer Adam
epoch 100
batch Size 20

Table 4. Adaptive Sliding Window Parameters

parameter value

maximum window length 30
minimum window length 2
update window length each time 1
w traverse length 1
initial window size of the training set 15
initial window size of the testing set 15
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feature extraction, the magnitude of each component is quite
different. We will perform maximum and minimum stand-
ardization processing on each subcomponent that has under-
gone input reconstruction operations to improve model
efficiency and convergence speed. After initializing the
maximum and minimum widths, thresholds, and adjustments
of the sliding window, CF data is sent to the adaptive sliding
window to obtain multiple time series sample sets to complete
the deep learning model training on historical data. Finally, the
adaptive sliding window is initialized again with the same sliding
window parameter configuration to complete the short-term

prediction of ash of the heated area. Figures 14− are the short-
term prediction results of the proposed model and the
comparison model on the three heating surfaces. In the
comparison, the prediction of M1 model has the best prediction
accuracy and can almost reproduce the original volatility and
overall deterioration trend. In contrast, M3 has a slightly inferior
effect but still shows a better volatility prediction ability under
the action of an adaptive sliding window. The corresponding
prediction errors are presented in Figures 17−. M1 has the
smallest RMSE of 0.0085, 0.00400, and 0.001960 under three
heated surface datasets, and it is significantly lower than the

Figure 11. EMD decomposition of economizer fouling dataset.

Figure 12. CEEMAD decomposition of economizer fouling dataset.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03052
ACS Omega 2022, 7, 31013−31035

31027

https://pubs.acs.org/doi/10.1021/acsomega.2c03052?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03052?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03052?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03052?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03052?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03052?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03052?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03052?fig=fig12&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


other three models. MAPE and MAE also have a similar
situation for M1.
In addition, the prediction result of M1 is still close to the true

value near the end of the life of the heated surface. In fact,
predicting the performance in the late stage is more important
than the early stage because the failure threshold (soot blowing
threshold) is often distributed in the last 10 to 20% of the overall
degradation curve, which is the key time period for making
predictive soot blowing decisions, and M1 can meet this
requirement in the short-term prediction.
In order to further explore the superiority of the proposed

method for the adaptive sliding window and the EDA deep
learning model, we give the short-term prediction results of the
low-temperature superheater in Figure 15. In the top line of the
figure, we only change the use of the adaptive sliding window,
while the bottom line controls the selection of the deep learning
model.
When comparing Figure 15a,b, without the adaptive sliding

window, the prediction curve has more spikes and burrs.
Comparing Figure 15c,d, EDA has better stability and ability to
track the mutation of the heated surface degradation curve than
the LSTM. Therefore, the EDA framework and adaptive sliding
window are of great significance in ash prediction of the heated
area of the heat exchanger. Similarly, the short-term prediction
result of the proposed model in the reheater also highlights its
superiority as shown in Figure 16.
In fact, the forward prediction time provided by the short-

term forecast (five-step-ahead prediction) often cannot meet the

complex equipment configuration and personnel arrangement
of the soot blowing operation. A larger number of prediction
steps can be improved to effectively solve such problems. In
general, the prediction effect should be similar to the short-term
prediction, but the accumulation of errors in the long-term
prediction causes the prediction accuracy to decrease as the
number of forwarding steps increases.
Figures 20− show the ten-step-ahead prediction. The fouling

prediction in the future is more deviated from the true value than
the short-term prediction, but the proposed model still achieves
the best prediction effect on different heat exchanger heated
surfaces. Tables 5− also reflect this point in three evaluation
indicators. Without adding an adaptive sliding window, the
prediction result of the low-temperature superheater still has a
lot of glitch noise, which is similar to the prediction performance
reflected in the five-step-ahead prediction. In addition, from the
economizer error table (see Table 5), the prediction error of M4
seems to be smaller than that of M3, but M4 is already relatively
poor in predicting the non-linear part of the ash accumulation
degradation curve. However, the function of the deep feature
extraction module based on multiscale analysis can still maintain
a good overall prediction effect. There is a similar situation
under the reheater dataset.
When the number of forwarding prediction steps is increased

to twenty-five steps (Figures 23−), each model has a large
deviation from the true value in the dataset except for the low-
temperature superheater, especially M3 and M4 under the
economizer data set and M2 and M4 under the reheater have
greatly deviated from reality. In detail, for the twenty-five-step-
ahead predictions, the RMSE of the adaptive sliding window and
the EDA deep learning model in M1 are improved by 44.2% and
60.8% in the economizer, 26.54% and 14.54% in the low-
temperature superheater, 7.4% and 18.0% in the reheater,
respectively. Similarly, compared to M2, the MAPE of M1
increased by 94%, 26.3%, and 8.1%, respectively, and compared
withM3, increased by 64.5%, 14.2%, and 25.6%. M1 also has the
smallest value under MAE. For the twenty-five-step-ahead
prediction, the RMSE of M1 under the economizer is increased
by 12.9%, 60.4%, and 88.6%, respectively, compared with the
others. For the other two heated surface CF datasets, the
situation is similar in the three evaluation indicators. Time
consumption under the model under twenty-five-step predic-
tion: (1) proposed model: 4 min 25 s; (2) model without deep
feature extraction: 5 min 58 s; (3) model without sliding
adaptive window: 4 min 8 s; (3) to replace EDA with LSTM: 3
min 49 s. It can be seen that the deep feature extraction model
can significantly reduce the training time of deep learning and
can obtain good prediction results.
In summary, it is shown that the combination of deep feature

extraction and adaptive sliding window is evaluated by RMSE,
MAPE, and MAE for the effectiveness of the proposed hybrid
method in multistep ahead prediction.
In addition, the deep feature extraction method of combining

CEEMDAN and KPCA is further discussed. Figures 26 and 27
shows the prediction results of the non-depth feature extraction
algorithm under different forward prediction steps from the
economizer and the low-temperature superheater. It can be seen
that without the effect of multiscale analysis and dimensionality
reduction, due to the characteristics of short-term prediction
(five-step-ahead prediction), it can still give satisfactory results
under the two datasets. (But for the economizer dataset, the
non-linear and non-stationary part of its degradation curve can
hardly be responded to, but fortunately, it can still get the basic

Figure 13.Amount of information loss in different reconstruction input
variables.

Figure 14. Five-step-ahead prediction of M1−M4 on the economizer.
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degradation trend under the combined action of the adaptive
sliding window and the deep learning model.) As the number of
forwarding prediction steps increases, prediction performance
drops rapidly, and it can hardly reflect the real ash accumulation
on the heated surface. The accumulation of errors in long-term
predictions and the coupling of complex features in the fouling
curve have resulted in large prediction errors and randomness in
multiple experiments. Therefore, this deep feature extraction
algorithm plays an important role in the estimation of ash
deposition and the predictive maintenance of the heated surface
of the heat exchanger.
In order to verify the robust performance of the proposed

model, we tested the clean factor prediction results of the
economizer dataset from 250, 350, and 450 min for different
prediction starting points (see Figures 28 and 29) (respectively
given from the forward prediction steps of five and ten). In this
regard, we observe that when the starting point is in the later
stage, the effect is always better than that in the early stage. This
is because more historical information can be obtained to
provide deep learning network training, and in the early stage, it
will be limited by the amount of available data. In addition, we
usually hope that the prediction result can complete the task of
high-precision prediction regardless of whether the starting
point is forward or backward. However, early prediction is faced
with the problems of the lack of historical data, serious error
accumulation, and the coupling of various characteristics of ash
accumulation, which all bring about the problems of high
prediction error and low accuracy. In the proposed model, the

prediction error brought by the earlier starting point is
completely within the acceptable range, so this method has
broad application prospects in the ash prediction task of the
heated area. Such prediction characteristics have important
value for the predictive maintenance of the heating surface in the
later stage, that is, the soot blowing and cleaning work can be
carried out in a timely and accurate manner by reasonably
judging the results of the later prediction, avoiding the problems
of over-blowing and under-blowing.
3.5.2. Predictive Soot Blowing Strategy. In the heated

surface maintenance task, the most important decision faced is
when performing preventive soot blowing operations. The
strategy of soot blowing operation depends on the real-time
health status (ash accumulation status) X(t) of the heated
surface of the system and the predicted health status. This part is
based on the above detailed explanation, which ensures the
reliability of the proposed model under the multistep-ahead
prediction task of the ash condition of the heated area.
We define the failure soot threshold L and the actual soot

blowing threshold ε (ε > L), with S as the starting point of
fouling. When to perform the soot blowing operation depends
on the value of the current CF predicted. The multistep-ahead
prediction time will be used as the preparation time reserved for
the soot blowing operation. There are generally three situations
in the relationship between the predicted CF value X(KT) and
the threshold ε, L:

Figure 15. Five-step-ahead prediction ofM1−M4on the low-temperature superheater (from left to right, top to bottom, the graphs are numbered A, B,
C, and D).
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(1) When S > X(KT) > ε, the ash degradation state of the
heated area of the system is within the normal range, and
no soot blowing operation is required. The area of [ε, S]
in Figure 30 is the normal range of the ash degradation
state of the heated area of the system. This corresponds to
0-T1.

(2) When ε ≥ X(KT) > L, the ash degradation state of the
heated area of the system is within the threshold of near
failure ash accumulation. The system can continue to run
without soot blowing, but there is a high risk of system
failure or shutdown. As shown in Figure 30, if the ash
degradation state of heated surface is detected in the area
of [ε,L], preventive soot blowing operations are required.
Corresponding to T2-T3, T3-T4.

Figure 16. Five-step-ahead prediction of M1−M4 on the reheater. (from left to right, top to bottom, the graphs are numbered A, B, C, and D).

Figure 17. RMSE comparison of five-step-ahead prediction.

Figure 18. MAPE comparison of five-step-ahead prediction.

Figure 19. MAE comparison of five-step-ahead prediction.
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(3) When X(KT) < L, the ash degradation state of the heated
area of the system reaches the failure ash accumulation
threshold. This means that the system efficiency decreases

Figure 20. Ten-step-ahead prediction of M1−M4 on the economizer.

Figure 21. Ten-step-ahead prediction of M1−M4 on the low-
temperature superheater.

Figure 22. Ten-step-ahead prediction of M1−M4 on the reheater.

Table 5. RMSE Comparison of Multistep-Ahead Prediction

prediction
step model economizer

low-temperature
superheater reheater

10 M1 0.01243 0.00664 0.002522
M2 0.02230 0.00904 0.002725
M3 0.03167 0.00777 0.003078
M4 0.02832 0.01015 0.003233

25 M1 0.02018 0.00771 0.002704
M2 0.03252 0.00923 0.003946
M3 0.05107 0.01111 0.003276
M4 0.17688 0.009583 0.004947

Table 6. MAPE Comparison of Multistep-Ahead Prediction

prediction
step model economizer

low-temperature
superheater reheater

10 M1 0.015735 0.009739 0.0032989
M2 0.03058 0.013232 0.003593
M3 0.04437 0.011352 0.0044350
M4 0.039125 0.015139 0.0040909

25 M1 0.027282 0.011078 0.002704
M2 0.045979 0.013750 0.003846
M3 0.079429 0.015488 0.0032764
M4 0.250527 0.013597 0.0049473

Table 7. MAE Comparison of Multistep-Ahead Prediction

prediction
step model economizer

low-temperature
superheater reheater

10 M1 0.010247 0.005351 0.001911
M2 0.019779 0.007266 0.002081
M3 0.028644 0.0061884 0.002575
M4 0.02526 0.0083328 0.002364

25 M1 0.0176892 0.006081 0.002164
M2 0.029722 0.0075966 0.003022
M3 0.051079 0.006188 0.002567
M4 0.0161152 0.0083328 0.003934

Figure 23. Twenty-five-step-ahead prediction of M1−M4 on the
economizer.

Figure 24. Twenty-five-step-ahead prediction of M1−M4 on the low-
temperature superheater.
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or fails seriously due to the serious accumulation of ash. It
is necessary to immediately carry out strong soot blowing
operation. Corresponds to T5-T6 in Figure 30.

It is easy to cause safety accidents after long-term failure (in
situation 3). Also, in the soot blowing optimization task based on
heat transfer efficiency and cost rate,12 by optimizing the start
and end time of soot blowing, a larger net profit can be obtained
(which is generally the difference between the heat transfer
amount obtained by the soot blowing operation and the
corresponding amount of high-pressure steam lost). According
to experience, the starting point is within the predictive

maintenance period of the heating surface to obtain the
maximum net profit. Therefore, accurate soot deposit prediction
can lay the foundation for soot blowing optimization.
The main task of predictive maintenance in the soot blowing

strategy is actually the prediction of the end of life (Eol). In this
article, we set Eol as the soot blowing threshold. In other words,
it is necessary to predict the time point when the CF value
reaches the preset soot blowing threshold.
In order to further illustrate the effectiveness of the proposed

model in predictive maintenance tasks, we used 20 economizer
fouling datasets under various working conditions. In order to
ensure consistency, the model hyper-parameters of all data are
given the same, and the starting points are predicted from 250,
350, and 450 min, respectively. Figure 31 shows the predictive
maintenance schematic diagram and the PDF diagram of the
first set of data after 20 repeated experiments (five-step-ahead
prediction), where the results follow a normal distribution. The
actual Eol of this set of data is 487min, and the predicted average
value of the normal distribution is 486 min under starting point
450 min, 475 min under 350 min, and 436 min under 250 min.
The average values of the normal distribution of the results at the
predicted starting points of 450 min and 350 min are similar to
the actual Eol, but the error is larger at 250 min, which is also in
line with the multistep-ahead prediction results of the different
prediction starting points in the previous chapter. In addition,
the prediction results of the remaining 19 sets of data are shown
in Figure 32, where the label ’predicted Eol’ is the mean of the
normal distribution. The five-step-ahead and ten-step-ahead
prediction have small prediction errors, and the final results
verify that all improve the effectiveness and credibility of the
model in predictive maintenance.

4. CONCLUSIONS
Aiming at the new direction of energy saving, emission
reduction, and environmental protection, a fusion model
(CEEMDAN-KPCA-EDA) was proposed to predict the health
condition of the heated surface and complete the predictive
maintenance task in order to maintain the health condition of
the heating surface and the efficient heat transfer. This method
integrates multiscale analysis of nonlinear and non-stationary
fouling time series to obtain IMFs of various frequencies. Then,
the global degradation component is retained, and the
characteristic dimension reduction is carried out for the IMFS
components of different scales to eliminate redundant
information, improve the training speed, complete the input
reconstruction, and solve the decline of other indicators caused
by the training speed of the deep learning model. The adaptive
sliding window can adjust the window width adaptively
according to the mutation of time series, complete more
detailed feature extraction, and improve the prediction perform-
ance. In the selection of the prediction models, traditional
recurrent neural networks such as LSTM and GRU are
abandoned. It uses the framework of EDA to complete the
deep extraction of deterioration information. This decom-
position−reconstruction−aggregation approach makes it possi-
ble to model and predict the time series of nonlinear, non-
stationary heating surface degradation with high accuracy.
Finally, in the experimental part, the effectiveness and
superiority of feature extraction and dimension reduction,
adaptive sliding window, and deep learning model in this
experiment are analyzed and verified from the perspectives of
various models and heating surfaces. In addition, the robustness
of the model is proven by experiments from different starting

Figure 25. Twenty-five-step-ahead prediction of M1−M4 on the
reheater.

Figure 26.Multistep-ahead prediction without deep feature extraction
in the economizer.

Figure 27.Multistep-ahead prediction without deep feature extraction
in the low-temperature superheater.
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points of prediction. The predictive maintenance of the heating
surface was completed with the data of the economizer under
variable working conditions, and the feasibility of the proposed
model under this task was verified.
For the numerous hyperparameters inherent in deep learning,

this paper only selects moderate and identical hyperparameter

groups for experiments. Therefore, adding a reasonable
hyperparameter configuration method is an effective method
to optimize this experiment and is also the focus of future work.
In addition, the health factor-clearness factor is a time series
composed of many salient characteristics (such as flue gas side
and working medium side heat transfer temperature difference
on average, entrance exit flue gas enthalpy), if these features are
further integrated into the deep learning model, the prediction
error will be greatly reduced. Finally, in future work, we will
further study and discuss how to integrate the high-precision
heating surface ash pollution prediction model into the soot

Figure 28. (a) Five-step prediction with different prediction starting points in economizer. (b) Five-step prediction with different prediction starting
points in economizer.

Figure 29. Ten-step prediction with different prediction starting points
in economizer.

Figure 30. Three types of ash accumulation.
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blowing optimization, so that a reasonable and economical soot
blowing optimization model becomes possible.
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