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Abstract: Methamphetamine (METH) is a stimulant drug. METH abuse induces hepatotoxicity,
although the mechanisms are not well understood. METH-induced hepatotoxicity was regulated
by TLR4-mediated inflammation in BALB/c mice in our previous study. To further investigate
the underlying mechanisms, the wild-type (C57BL/6) and Tlr4−/− mice were treated with METH.
Transcriptomics of the mouse liver was performed via RNA-sequencing. Histopathological changes,
serum levels of metabolic enzymes and lipopolysaccharide (LPS), and expression of TLR4-mediated
proinflammatory cytokines were assessed. Compared to the control, METH treatment induced
obvious histopathological changes and significantly increased the levels of metabolic enzymes in wild-
type mice. Furthermore, inflammatory pathways were enriched in the liver of METH-treated mice, as
demonstrated by expression analysis of RNA-sequencing data. Consistently, the expression of TLR4
pathway members was significantly increased by METH treatment. In addition, increased serum LPS
levels in METH-treated mice indicated overproduction of LPS and gut microbiota dysbiosis. However,
antibiotic pretreatment or silencing Tlr4 significantly decreased METH-induced hepatic injury, serum
LPS levels, and inflammation. In addition, the dampening effects of silencing Tlr4 on inflammatory
pathways were verified by the enrichment analysis of RNA-sequencing data in METH-treated Tlr4−/−

mice compared to METH-treated wild-type mice. Taken together, these findings implied that Tlr4
silencing, comparable to antibiotic pretreatment, effectively alleviated METH-induced hepatotoxicity
by inhibiting LPS-TLR4-mediated inflammation in the liver.

Keywords: methamphetamine; hepatotoxicity; inflammation; TLR4 pathway

1. Introduction

Methamphetamine (METH) is a stimulant that acts on the central nervous system,
similar to amphetamine [1–3]. In addition to neurotoxicity, METH abuse results in hepa-
totoxicity and cardiovascular system abnormalities, among other organ injuries [4,5]. In
clinical cases, METH intoxication causes hyperthermia and hyperammonemia, leading to
acute hepatic failure [6]. Moreover, METH treatment impairs liver metabolism by disrupt-
ing the CYP1A2 metabolic pathway [7]. It also induces hepatotoxicity by arresting the cell
cycle, inhibiting cell division, and activating apoptosis and autophagy [5,8]. The promotion
of apoptosis restricts inflammation [9]. Long-term METH administration induces liver
injury by activating oxidative stress and fibrosis [10]. In addition, METH-induced mito-
chondrial respiratory damage results in the accumulation of reactive oxygen species (ROS),
which leads to oxidative stress and hepatotoxicity [11]. Additionally, METH treatment
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increases the expression of proinflammatory cytokines responsible for liver inflamma-
tion and neuroinflammation [12,13]. Nevertheless, the precise mechanisms underlying
METH-induced liver damage are largely unknown.

Meanwhile, intestinal dysfunction is thought to participate in liver injury via the
gut–liver axis [14]. The gut–liver axis is the bidirectional association between the gut
(containing gut microbiota) and the liver, which is influenced by diet, drugs and envi-
ronmental factors [15]. The gut microbial profile has been associated with inflammation
in the liver, both in both clinical and animal studies [16,17]. Furthermore, metabolites of
gut microbiota such as lipopolysaccharide (LPS) are related to liver inflammation [18,19].
LPS can be captured by pattern recognition receptors of the immune system, specifically
by Toll-like-receptor 4 (TLR4), and then induce proinflammatory cascades mediated by
cytokines [14]. In our previous study, TLR4-mediated inflammation was found to play an
important role in METH-induced hepatotoxicity [20]. In addition, intestinal probiotics were
reduced and opportunistic pathogens were increased by METH treatment in mice [21–24].
Antibiotics have been reported to alleviate liver injury induced by intestinal bacterial
overgrowth [25]. In the present study, to further explore the role of antibiotics and the
TLR4 pathway in METH-induced hepatotoxicity, antibiotic treatment was performed to
evaluate the effect of METH administration in wild-type (C57BL/6J) and Tlr4−/− mice to
provide basic experimental data for the treatment of METH-induced hepatotoxicity. In
addition, RNA-sequencing was conducted to screen differentially expressed genes between
the METH-treated wild-type and Tlr4−/− mice as well as their controls to further explore
the underlying mechanisms.

2. Results
2.1. METH Induced Hepatotoxicity in Wild-Type Mice, Which Was Attenuated by
Antibiotic Pretreatment

Histopathological changes, including shrunken nuclei, loose cytoplasm and extensive
vacuolar degeneration, were observed in the livers of METH-treated mice (Figure 1A,B), and
were improved by antibiotic pretreatment (Figure 1A,B). There were no histopathological
changes in the antibiotic alone group (Figure 1A). Moreover, there were no significant
differences in relative liver weights among the four groups (Figure 1C). Consistent with
histopathological changes, AST and ALT serum levels were significantly elevated in METH-
treated mice (Figure 1D), implying abnormal liver functions. However, AST and ALT levels
were significantly suppressed by antibiotic pretreatment (Figure 1D). In addition, serum
LPS levels significantly increased in METH-treated mice, while the level was significantly
decreased by antibiotic pretreatment (Figure 1D). These results suggested that METH
induced obvious hepatotoxicity, which was attenuated by antibiotic pretreatment.
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Figure 1. Histopathological changes, relative liver weight, and serum levels of AST, ALT and
LPS. (A) H&E staining revealed shrinkage of the nuclei, loose cytoplasm and extensive vacuolar
degeneration of hepatocytes (arrows) following METH treatment. However, pretreatment with
antibiotics alleviated these histopathological changes. Bar = 50 µM. (B) The scores of histological
changes. (C) The relative liver weight following METH treatment. There was no significant change
among groups. (D) The effect of METH treatment on serum AST, ALT, and LPS levels. METH
treatment increased the serum AST, ALT, and LPS levels. However, treatment with antibiotics
reversed this phenomenon. Abx, antibiotics. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.2. Inflammatory Pathways Were Enriched in the Livers of METH-Treated Wild-Type Mice

Liver mRNA samples from the control and METH-treated groups were clustered using
PCA analysis (Figure 2A). Using DESeq2, a total of 1772 differentially expressed genes
(DEGs, 835 upregulated and 937 downregulated genes) were screened in METH-treated
mice compared to the control (Figure 2B) to display the effects of METH treatment in
wild-type mice. The top 10 up- and downregulated DEGs in the METH-treated group were
listed in the Supplementary Table S1. The DEGs were annotated into different pathways by
KEGG functional annotation analysis in METH-treated mice (Figure 2C). Through KEGG
enrichment analysis, 27 significantly different pathways were enriched in METH-treated
mice (Figure 2D). In these pathways, inflammatory mediator regulation of TRP channels, the
Toll-like receptor signaling pathway, and the TNF signaling pathway were correlated with
the inflammatory process, suggesting the involvement of inflammatory pathways in METH-
induced hepatotoxicity. In addition, retinol metabolism, steroid hormone biosynthesis, fatty
acid degradation, chemical carcinogenesis, drug metabolism-other enzymes, PPAR and
AMPK signaling pathways were also enriched in METH-treated wild-type mice (Figure 2D).
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Figure 2. Inflammatory pathways were enriched in the mouse liver of the METH-treated group
compared to the control by RNA-Seq analysis. (A) Principal component analysis; (B) Identification of
DEGs using the histogram and scatter plot methods (|log2FC| ≥ 1, p-value < 0.05) in METH-treated
wild-type (WT) group; (C) KEGG functional annotation analysis for metabolic pathways; (D) KEGG
enrichment analysis in METH-treated WT mice. Inflammatory mediator regulation of TRP channels,
the Toll-like receptor signaling pathway and the TNF signaling pathway (in the red boxes) were
enriched and correlated with the inflammatory process.

2.3. METH Treatment Aroused Liver Inflammation by Activating the TLR4 Pathway, Which Was
Suppressed by Antibiotic Pretreatment

Compared to the control group, the mRNA expression levels of Tlr4, Myd88, Traf6,
Rela, Il1b and Tnf were significantly upregulated in the livers of METH-treated mice
(Figure 3A). Moreover, the protein expression levels of TLR4, MyD88, TRAF6, NF-κB (p65),
IL-1β and TNF-α were significantly elevated by METH treatment (Figure 3B), indicating
the induction of inflammatory responses in the mouse liver. Antibiotic pretreatment
significantly suppressed the expression levels of TLR4, MyD88, TRAF6, NF-κB (p65),
TNF-α and IL-1β at both the mRNA (Figure 3A) and protein levels (Figure 3B).
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Figure 3. Expression of TLR4, MyD88, TRAF6, p65, IL-1β, and TNF-α at mRNA and protein levels
in mouse liver. (A) Relative mRNA expression levels of Tlr4, Myd88, Traf6, Rela, Il1b and Tnf in the
mouse liver. METH treatment upregulated the mRNA expression of Tlr4, Myd88, Traf6, Rela, Il1b
and Tnf, but antibiotic pretreatment inhibited the effect of METH treatment on the aforementioned
mRNAs. (B) The expression of TLR4, MyD88, TRAF6, p65, IL-1β and TNF-α proteins in mouse liver.
Abx, antibiotics. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. Silencing of the Tlr4 Gene in Mice Significantly Ameliorated METH-Induced Liver Injury

Compared to METH-treated wild-type mice, METH-treated Tlr4−/− mice exhibited
alleviated histopathological changes with slightly sparser cytoplasm and normal nuclei
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(Figure 4A,B). Furthermore, the relative liver weights were significantly decreased in the
two Tlr4−/− groups compared to the control and METH-treated wild-type mice (Figure 4C),
respectively. Serum AST, ALT, and LPS levels were significantly suppressed in METH-
treated Tlr4−/− mice compared to the METH-treated wild-type mice (Figure 4D).

Figure 4. Silencing the Tlr4 gene in mice significantly ameliorated METH-induced hepatic injury.
(A) METH-induced histopathological changes (shrunken nucleus, loose cytoplasm, and extensive
vacuolar degeneration; arrows) were remarkably weakened in Tlr4−/− mice. Bar = 50 µM. (B) The
scores of histological changes; (C) The relative liver weights of the wild-type (WT) and Tlr4−/− mice;
(D) Differences in serum AST, ALT, and LPS levels between the wild-type and Tlr4−/− mice. * p < 0.05,
** p < 0.01, *** p < 0.001.

Moreover, the mRNA expression levels of Myd88, Traf6, Rela, Il1b, and Tnf as well as
the protein expression levels of MyD88, TRAF6, NF-κB (p65), IL-1β, and TNF-α were signif-
icantly suppressed in METH-treated Tlr4−/− mice compared to wild-type mice (Figure 5),
suggesting alleviated liver inflammation. In addition, no significant difference was de-
termined among the groups in Tlr4−/− mice (Supplementary Figure S1), although slight
histopathological changes were observed in the livers of METH-treated Tlr4−/− mice
(Figure 4 and Supplementary Figure S1).
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Figure 5. Expression of MyD88, TRAF6, p65, IL-1β, and TNF-α at mRNA and protein levels in mouse
liver. (A) Relative mRNA expression of Tlr4, Myd88, Traf6, Rela (p65), Il1b and Tnf in wild-type
and Tlr4−/− mice; (B) Protein expression of MyD88, TRAF6, p65, IL-1β and TNF-α in mouse liver.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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2.5. Enriched Inflammatory Pathways in METH-Treated Wild-Type Mice Were Regulated by
Silencing Tlr4 in Mice

Samples from the METH-treated wild-type and Tlr4−/− groups were clustered by
PCA analysis (Figure 6A). In the METH-treated Tlr4−/− group, 125 upregulated and
182 downregulated genes were screened out compared to the METH-treated wild-type
group (Figure 6B) to demonstrate the effects of silencing the Tlr4 gene. The top 10 up- and
downregulated DEGs in the METH-treated Tlr4−/− group were listed in the Supplemen-
tary Table S2. The DEGs were annotated into different pathways via KEGG functional
annotation analysis in the METH-treated Tlr4−/− group (Figure 6C). In addition, inflamma-
tory mediator regulation of TRP channels (p < 0.001), Toll-like receptor signaling pathway
(p < 0.001), NF-κB signaling pathway (p = 0.082) and TNF signaling pathway (p = 0.141)
were identified in the METH-treated Tlr4−/− group through KEGG enrichment analysis (Fig-
ure 6D), suggesting the quenched inflammatory pathways by silencing Tlr4 in attenuating
METH-induced hepatotoxicity in Tlr4−/− mice. Interestingly, retinol metabolism, steroid
hormone biosynthesis, fatty acid degradation, chemical carcinogenesis, drug metabolism,
other enzymes, PPAR signaling pathway, and AMPK signaling pathway were also identi-
fied in METH-treated Tlr4−/− mice (Figure 6D), similar to METH-treated wild-type mice
(Figure 2D). Moreover, 472 upregulated and 191 downregulated DEGs were screened out
in the METH-treated Tlr4−/− group compared to the control (Supplementary Figure S2B),
which was identified into 20 significantly different pathways (Supplementary Figure S2D)
via KEGG enrichment analysis.

Figure 6. Inflammatory pathways were identified in the METH-treated Tlr4−/− group by RNA-Seq
analysis. (A) Principal component analysis; (B) Identification of DEGs using the histogram and
scatter plot methods (|log2FC| ≥ 1, p-value < 0.05) in the METH-treated Tlr4−/− group compared
to the METH-treated WT group. (C) KEGG functional annotation analysis for metabolic pathways.
(D) KEGG enrichment analysis in the METH-treated Tlr4−/− mice. Inflammatory mediator regulation
of TRP channels, Toll-like receptor signaling pathway, NF-κB signaling pathway and TNF signaling
pathway were identified in METH-treated Tlr4−/− group.
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3. Discussion

METH has been demonstrated to induce hepatotoxicity by initiating oxidative stress,
triggering inflammatory response, arresting cell cycle, and activating p53-mediated apopto-
sis and autophagy [5,8,20]. In the present study, we found that METH treatment induced
obvious histopathological changes in the liver of wild-type mice and increased serum
levels of AST and ALT, suggesting hepatic injury. Furthermore, inflammatory pathways
associated with inflammatory mediator regulation of TRP channels, Toll-like receptor sig-
naling pathway, NF-κB signaling pathway and TNF signaling pathway were enriched in
METH-treated wild-type mice by KEGG enrichment analysis, suggesting the involvement
of inflammatory pathways in METH-induced hepatic injury. Consistently, TLR4-mediated
proinflammatory cytokines were significantly increased by METH treatment at both the
mRNA and protein levels. However, pretreatment with antibiotics significantly attenuated
METH-induced hepatic injury, including alleviating histopathological changes, decreasing
the AST and ALT levels, and suppressing the expression of TLR4-mediated inflamma-
tory cytokines, consistent with our previous study [20]. Different from the BALB/c mice
in our previous study [20], C57BL/6 mice were used in the present study. Ascribing to
the difference in mouse strain, METH-induced significant losses of the body and liver
weights in BALB/c mice were not observed in C57BL/6 mice, although decreasing trends
were observed. Nevertheless, METH-evoked inflammatory response was more robust in
C57BL/6 mice.

In addition, alteration of gut microbiota, including increased conditioned pathogens
and decreased probiotics, was observed in METH-treated mice in our previous study [23],
resulting in the alteration of metabolites, such as overproduction of LPS. LPS is a proto-
typical pathogen/microbe-associated molecular pattern (P/MAMP) and can translocate to
systemic sites [26]. The liver is the first organ that encounters microbial products, toxins
and microorganisms from the intestine [27]. In addition to the alteration of flora, the intesti-
nal barrier was also weakened by METH treatment [28], facilitating the translocation of
intestinal contents, including the overproduction of LPS. In the liver, LPS can be captured
by Toll-like-receptors (TLRs) and activate proinflammatory cascades [29]. METH induces
liver injury by stimulating the expression and secretion of a series of proinflammatory
cytokines [10,13]. In the present study, the serum level of LPS was significantly increased
in METH-treated wild-type mice compared to the control, consistent with the increase
in TLR4-mediated proinflammatory cytokines. In addition, multiple broad-spectrum an-
tibiotics have been reported to attenuate hepatic injury induced by intestinal bacteria
overgrowth [25], strengthen intestinal barrier functions, suppress serum endotoxin levels,
and moderate liver inflammation [30]. Consistently, the METH-induced increase in the
serum level of LPS was significantly suppressed in antibiotic-pretreated wild-type mice in
the present study, suggesting decreased production of LPS and the associated flora, which
might contribute to attenuating hepatic injury.

To further confirm the effects of TLR4-mediated inflammation on METH-induced
hepatic injury, Tlr4−/− mice were used in the present study. Similar to the antibiotic-
pretreatment in wild-type mice, histopathological changes, serum levels of AST, ALT,
and LPS, and expression of proinflammatory cytokines were significantly alleviated in
METH-treated Tlr4−/− mice compared to wild-type mice, indicating the significant role of
the TLR4-mediated inflammatory pathway in this case. Although slight histopathological
changes were observed in the livers of METH-treated Tlr4−/− mice, no significant difference
was determined among the other groups in Tlr4−/− mice (Supplementary Figures S1
and S2). Furthermore, several inflammatory pathways were identified in METH-treated
Tlr4−/− mice (Figure 6D), confirming the dampening effect of silencing the Tlr4 gene on
inflammatory pathways.

In summary, our findings suggest that METH induced overproduction and translo-
cation of LPS, consistent with our recent study, implying METH caused the increased
abundance of pathogenic gut microbiota [28]. In the liver, LPS induces inflammation by
activating the TLR4 pathway, which is one of the most important factors responsible for
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METH-induced hepatotoxicity. Pretreatment with antibiotics and silencing of the Tlr4
gene alleviated METH-induced hepatotoxicity by improving gut microbiota dysbiosis and
inhibiting inflammatory responses, respectively. These findings suggested that LPS-TLR4-
mediated inflammation exerted an important role in METH-induced hepatotoxicity, which
also took part in its toxic effects on mouse intestine [28]. In addition to LPS, different
metabolites might be relevant to METH-induced hepatotoxicity, necessitating evaluation of
the roles and mechanisms of metabolites in inducing hepatotoxicity.

4. Materials and Methods
4.1. Experimental Main Drugs

Methamphetamine (purity > 99%) was obtained from the National Institute Pharmaceuti-
cal and Biological Products Control (Beijing, China). Antibiotics, including neomycin, metron-
idazole, ampicillin and vancomycin, were purchased from Sangon Biotech (Shanghai, China).

4.2. Animals and Treatments

Wild-type mice (C57BL/6J, 6 weeks old, male) were provided by the Animal Labora-
tory Center of Southern Medical University. C57BL/10ScNJ mice (Tlr4−/−, TLR4-deficient
mice) were purchased from GemPharmatech Co., Ltd. (Nanjing, China). All mice were
housed in a standard SPF animal room at 24 ± 2 ◦C under 12 h light/dark cycle. The
mice were given food and water ad libitum and acclimatized for 7 days before the for-
mal experiment. The protocols for the animal experiments were approved by the ethics
committee of Southern Medical University (Approval Code: L2018123) and performed in
accordance with the guidelines of the National Institute of Health Guide for the Care and
Use of Laboratory Animals of the same university.

The mice of each murine strain were randomly divided into four groups (10 mice
per group): the control, METH, Abx + METH and Abx groups (Figure 7). The mice were
given 6 intraperitoneal (i.p.) METH injections were administered at doses of 1.5, 4.5 and
7.5 mg/kg once a day for two days per dose, and then 8 injections were administered at
a dose of 10.0 mg/kg four times per day at 2 h intervals [31]. Some of these mice were
treated with a mix of antibiotics (Abx), including neomycin (200 mg/kg), metronidazole
(200 mg/kg), ampicillin (200 mg/kg), and vancomycin (100 mg/kg) by gavage once a day.
Abx was pretreated for 15 days [32–34], while METH was started on the 8th day. Mice were
deep anesthetized and sacrificed 24 h after the last injection. Blood was quickly collected
for serological analyses. Part of the liver tissues from 3 hepatic lobules was fixed in 10%
formalin solution, while the other part was quickly frozen in liquid nitrogen and stored at
−80 ◦C for further analysis.

Figure 7. Experimental design.

4.3. Measurement of Serological Indicators

To collect serum, the blood was centrifuged for 15 min (3000 g) at 4 ◦C. The concen-
trations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), proinflam-
matory cytokines (TNF-α, IL-1β, and IL-18) and LPS in the serum were determined using
ELISA kits (Jiangsu Meibiao Biological Technology, Yancheng, China) according to the
manufacturer’s instructions.
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4.4. Observation of Histopathological Changes

After fixation, liver tissues were embedded in paraffin, sectioned into 3 µm pieces and
stained using hematoxylin and eosin (H&E). Histopathological changes were scored by
3 independent pathologists who were not included in our experimental team according to
the International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in
Rats and Mice [35].

4.5. Quantitative RT-PCR (RT-qPCR)

Total RNA was extracted from the liver tissues using a TRIzol reagent kit
(Gaithersburg, MD, USA) according to the manufacturer’s instructions. Then, the RNA
(2 µg per sample) was reverse transcribed into cDNA using HifairTM II first-strand cDNA
synthesis SuperMix (Shanghai, China). Quantitative PCR was conducted using HieffTM
qPCR SYBRR Green Master Mix (Shanghai, China) with a LightCycler® 96 System (Roche
Life Science, Penzberg, Germany). Primers used in the amplification were designed using
PrimerBank (https://pga.mgh.harvard.edu/primerbank/, accessed on 1 March 2020). The
primer sequences are exhibited in Table 1. β-Actin mRNA was used as the internal control.

Table 1. The primers for RT-qPCR.

Gene Name Forward (5′-3′) Reverse (5′-3′)

Tlr4 ATGGCATGGCTTACACCACC GAGGCCAATTTTGTCTCCACA
Myd88 TCATGTTCTCCATACCCTTGGT AAACTGCGAGTGGGGTCAG
Traf6 ATGCAGAGGAATCACTTGGCA ACGGACGCAAAGCAAGGTT

Rela (p65) AGGCTTCTGGGCCTTATGTG TGCTTCTCTCGCCAGGAATAC
Tnf CTGAACTTCGGGGTGATCGG GGCTTGTCACTCGAATTTTGAGA
Il1b GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG
Actb GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT

4.6. Western Blotting Analysis

Liver tissues were ground into a uniform paste, ruptured using an ultrasonic dis-
integrator, and lysed using RIPA buffer supplemented with 1% protease inhibitor. The
concentration of the total protein was determined using the Pierce™ BCA Protein Assay
Kit (Waltham, MA, USA). Then, the total proteins (20 µg per sample) were separated us-
ing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), transferred
onto polyvinylidine difluoride membranes (BIO-RAD, California, USA), blocked using 5%
skim milk for 2 h, and incubated with primary antibodies overnight at 4 ◦C. The mem-
branes were incubated with secondary antibodies for 2 h at room temperature. Primary
antibodies against TLR4 (Sc-293072, diluted 1:1000), MyD88 (Sc-74532, diluted 1:1000),
Traf6 (Sc-8409, diluted 1:1000), NF-κB p65 (Sc-8008, diluted 1:1000), IL1β (Sc-52012, diluted
1:1000) and TNF-α (Sc-52746, diluted 1:1000) were obtained from Santa Cruz Biotech-
nology, Inc. (Santa Cruz, CA, USA) and had been validated in previous studies [36–39].
Anti-β-actin (8H10D10) antibody was purchased from Cell Signaling Technology Inc.
(Boston, MA, USA).

The bands were visualized by enhanced chemiluminescence (BIO-RAD) and quanti-
fied using ImageJ software (version 1.52a) based on the integrated density values (IDVs).
β-Actin was used as the internal control. The relative IDVs were presented as bar charts.
The control group was designated a relative IDV of 1.

4.7. RNA-Sequencing (RNA-Seq) and Bioinformatics Analysis

RNA-sequencing was performed by Shanghai Majorbio Co., Ltd. (Shanghai, China).
Sample collection and preparation were conducted according to the manufacturer’s rec-
ommended protocol. Briefly, total RNA of liver tissues from the wild type and Tlr4−/−

groups (the control and METH treatment) was extracted using TRIzol® Reagent (Invit-
rogen), according to the manufacturer’s instructions. The RNA quality and quantity

https://pga.mgh.harvard.edu/primerbank/
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were determined using a 2100 Bioanalyzer (Agilent) and ND-2000 NanoDrop, respec-
tively. The transcriptome library was constructed using a TruSeq TMRNA sample prepa-
ration kit (Illumina, San Diego, USA). Briefly, mRNA was isolated and transcribed into
double-stranded cDNA using a cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA).
The cDNA was repaired, phosphorylated, attached to ‘A’ bases, enriched and screened
using PCR and beads for construction of the DNA Library. After quantification, the
DNA was sequenced using an Illumina HiSeq xten/NovaSeq 6000 sequencer. The raw
paired end reads were filtered using SeqPrep (https://github.com/jstjohn/SeqPrep, ac-
cessed on 1 December 2020) and Sickle (https://github.com/najoshi/sickle, accessed on
1 December 2020). The clean data were mapped to the reference genome using HISAT2
(http://ccb.jhu.edu/software/hisat2/index.shtml, accessed on 1 December 2020) and
StringTie (https://ccb.jhu.edu/software/stringtie/index.shtml?t=example, accessed on 1
December 2020). Gene expression was quantified using RSEM (http://deweylab.biostat.
wisc.edu/rsem/, accessed on 1 December 2020). The principal component analysis (PCA)
was conducted to verify whether the samples could be separated into different groups.
Differentially expressed genes (DEGs) were screened based on clean read counts. Signifi-
cant expression was based on DESeq2 Q value ≤ 0.05 and |log2FC| > 1. Using the KEGG
database, DEGs were classified into functional pathways. In addition, KEGG pathway en-
richment analysis was conducted to identify significantly different metabolic pathways. The
DEGs were significantly enriched at a Bonferroni-corrected p-value ≤ 0.05 compared with
the whole-transcriptome background by KOBAS (http://kobas.cbi.pku.edu.cn/home.do,
accessed on 1 December 2020). To better understand the effects of METH treatment and the
silencing Tlr4, the two wild-type groups, METH-treated wild type and Tlr4−/− mice, as
well the Tlr4−/− two groups were analyzed and compared in pairs, respectively.

4.8. Statistical Analysis

The data were presented as the mean ± SD. Statistical analysis was performed using
GraphPad Prism (version 7.0, GraphPad Software, San Diego, CA, USA). Comparisons
between two groups were conducted using two-sided Student’s t tests. One-way ANOVA
followed by Tukey’s post hoc test was used to calculate statistical significance in multiple
comparisons. A chi-square test was used to compare categorical variables in histological
changes. p values < 0.05 were considered statistically significant.

5. Conclusions

Silencing the Tlr4 gene effectively alleviated METH-induced hepatotoxicity by inhibiting
LPS-TLR4-mediated inflammation in mice liver in a way comparable to antibiotic pretreatment.
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