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Abstract 

The design of personalized cancer therapy based upon patients’ molecular profile requires an enormous amount of 

effort to review, analyze and integrate molecular, pharmacological, clinical and patient-specific information. The 

vast size, rapid expansion and non-standardized formats of the relevant information sources make it difficult for 

oncologists to gather pertinent information that can support routine personalized treatment. In this paper, we 

introduce informatics tools that assist the retrieval and curation of cancer-related clinical trials involving targeted 

therapies. Particularly, we adapted and extended an existing natural language processing tool, and explored its 

applicability in facilitating our annotation efforts. The system was evaluated using a gold standard of 539 curated 

clinical trials, demonstrating promising performance and good generalizability (81% accuracy in predicting 

genotype-selected trials and an average recall of 0.85 in predicting specific selection criteria).        

Introduction 

It is now affordable to sequence an individual patient’s genome and design personalized cancer treatment plans that 

directly target the underlying molecular aberrations. Personalizing therapy requires identifying the molecular 

alterations that “drive” cancer development in an individual patient, as well as associations between specific 

genomic alterations and specific targeted therapies. This information is used to optimally match patients to approved 

drugs and ongoing clinical trials of investigational targeted therapies. The process involves review and analysis of 

biomedical literature and other resources that provide information about molecular biology, targeted therapies and 

clinical trials. This laborious, manual process does not scale.  

At MD Anderson Cancer Center (MD Anderson), the Institute for Personalized Cancer Therapy (IPCT) is dedicated 

to providing personalized cancer therapy to our patients. As part of our daily operation, IPCT’s decision support 

team is manually curating biomedical literature, databases of targeted therapies and clinical trials to assist our 

physicians with personalized therapy selection. To expedite this curation effort, our institute is developing an 

informatics infrastructure that applies automated (or semi-automated) tools to achieve the following goals: 1) to 

retrieve and analyze molecular, pharmacological, clinical and patient-specific information from biomedical 

literature, targeted therapy and clinical trial databases as well as electronic health records; 2) to represent them in a 

standardized format and integrate them into a knowledge repository that is easy for the curators to navigate; and 3) 

to offer interfaces that enable the physicians to easily retrieve and visualize high quality curated information. In this 

paper, we report our progress in constructing a curated knowledge base of cancer-related clinical trials that involve 

targeted therapies, specifically regarding the identification of genotype-selected clinical trials and the genes used as 

their selection criteria.  

To provide informatics support to facilitate this, we must properly identify gene entities inside the trial documents. 

However, gene name ambiguity is prevalent and causes a serious problem for the computational programs that try to 

extract genomic information from text 
1
. Several methods have been proposed to disambiguate gene mentions in the 

biomedical literature 
2-5

. However, very little work has been done to address this issue for clinical trial documents. 

Wu et al. developed a system that used natural language processing (NLP) techniques to disambiguate the status of a 

genetic lesion mentioned in a clinical trial document 
6
. Specifically Wu’s system captured four features of a gene 

mention: 1) the contextual words and the associated information; 2) words that have dependency relationships to the 

gene symbol based on the dependency parse tree from Stanford Parser 
7
; 3) words expressing negation status; and 4) 

section headers including “title”, “summary” and “eligibility criteria”. Using a training set of 4332 manually 

annotated sentences, Wu et al. constructed a support vector machine-based classifier to identify the status of a gene 

mention as belonging to one of the following nine categories: 1) Drug Class (e.g., AKT inhibitor MK-2206); 2) 

Gene Status Altered or Gene Status Not Altered (e.g., any HER2 status); 3) Gene Status Altered (e.g., with 
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documented BRAF mutation); 4) Gene Status Not Altered (e.g., wild type MET status); 5) Gene Status Unknown 

(e.g., KRAS mutation unknown); 6) Alteration Detected or Not Detected (e.g., selecting patients’ whose HER2 

status is measured); 7) Gene Status (e.g., to compare MET status); 8) Gene (e.g., PIK3CA is a gene involved in the 

PI3K/AKT pathway); and 9) English Word (e.g., these requirements have to be met). The system achieved a highest 

accuracy of 89.8%, demonstrating its applicability in the real-world task of clinical trial annotation.  

In this study, we adapted Wu’s system 
6
 and assessed its performance using trials curated by the MD Anderson 

Cancer Center IPCT decision support team as the gold standard. Our evaluation demonstrated the merit of applying 

the system to facilitate manual curation and also validated the generalizability of the existing NLP tool.  

Methods 

Our system consists of a clinical trial retrieval and preprocessing component, a gene recognition component and a 

gene mention disambiguation component adapted from Wu’s system.  

Clinical Trial Retrieval and Pre-processing – To assist IPCT’s daily operation, we have developed a program that 

automatically retrieved and pre-processed potential targeted therapy clinical trials from Clinicaltrials.gov 
8
 and the 

MD Anderson clinical trial database 
9
. Given a set of applicable targeted therapies, the program automatically 

expanded the drug names by including known aliases (based on NCI’s drug dictionary 
10

) and retrieved matching 

clinical trials from Clinicaltrials.gov via its RESTful API (by constructing the search term for the “Interventions” 

field using the list of drug names concatenated with Boolean operator OR and formulating a query URL 

accordingly). The criteria for a match include: 1) the trial has to be an ongoing study (recruiting, not yet recruiting or 

available for expanded access); 2) it has to mention the drug name/alias in either the intervention or title sections; 

and 3) it needs to be applicable to at least one cancer type. The program then parsed the trial records (in XML 

format) returned by Clinicaltrials.gov, extracted and pre-processed pertinent information, and stored them in a 

tabular format. The fields included in the reformatted records were: Unique Trial Identifier (NCTID), Drugs, 

Applicable Conditions, Broadly Categorized Conditions, Detailed Recruitment Status, Phase, Title, Inclusion 

Criteria, Exclusion Criteria, General Criteria, Sponsors/Collaborators, Locations, and Hyperlinked URL to the Trial 

Document. If a trial was conducted at MD Anderson, then additional MD Anderson-specific information including 

the PI’s name, clinic, and MD Anderson recruitment status would be provided.  

It is worth noting that the criteria for selecting or excluding patients were typically provided under the eligibility 

section of the trial document and our program further divided the text into subsections based upon word boundaries 

(Inclusion or Exclusion) so the fields of Inclusion Criteria and Exclusion Criteria could be auto-populated. When no 

such boundary was found, all the content under eligibility would be used to populate a field called General Criteria. 

Gene Recognition Component – In the existing version of Wu’s system, the primary focus was to automatically 

disambiguate a gene mention. To identify the gene entities, Wu and colleagues first applied a string matching 

technique to identify potential occurrences of gene mentions and then used domain experts’ feedback (e.g., 

confirmation, rejection or suggestion of change) to finalize the component of gene recognition.  

To evaluate the feasibility of recognizing gene mentions without human intervention, in our adapted system, we 

constructed a gene recognizer by modifying a component from IPCT’s existing information retrieval (IR) pipeline. 

The IR pipeline used Lucene (a text search engine library) 
11

 to index any textual document repository. At query 

time, it could take a human gene symbol as input, automatically expand it to include the official gene name and 

known aliases as indicated by NCBI’s Entrez gene database 
12

, and retrieve the matching documents. The IR 

pipeline could also highlight the matched terms in text. To recognize genes for the purpose of identifying genotype-

selected trials and their selection criteria, we modified the IR pipeline by first indexing the inclusion, exclusion and 

general criteria of all the trials in the gold standard, then using a set of predefined genes as the query and labeling the 

matched gene mentions in the trial documents by their corresponding gene symbols. To maintain consistency with 

IPCT’s priorities, for the predefined gene list, we used a set of 543 genes whose molecular abnormality can be 

detected by at least one of the four sequencing panels offered at MD Anderson: CMS46 (46 gene Ampliseq 

platform, Ion Torrent, LifeTechnologies, Carlsbad CA), T200 and T300 (MD Anderson in-house targeted exome 

sequencing research platforms), and CMS400 (409 gene Ion Proton platform, Life Technologies, Carlsbad CA). 

Adaptation of the Gene Mention Disambiguator – The disambiguator reported by Wu and colleagues 
6
 was trained 

and tested using a 9-class categorization system. To make the tool applicable to IPCT’s curation tasks, we made the 

following adaptation: if the 9-class disambiguator labeled a gene mention to be class 2, 3 or 6 and the occurrence of 

the gene mention was not inside the trial’s exclusion criteria, then predicted the trial as genotype-selected and 

labeled the official symbol of the gene mention as a selection criterion. 
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Results 

Manual Curation and Generation of the Gold Standard – MD Anderson Cancer Center IPCT decision support 

team routinely performs manual review of clinical trials to answer the following questions: 1) whether the trial is 

genotype-selected, i.e., selecting for patients who have specific molecular abnormalities (e.g., PIK3CA mutation, 

MET amplification); 2) for a genotype-selected trial, which genes are the selection criteria; 3) whether the trial is 

genotype-relevant, i.e., does the trial involve a targeted therapy that is applicable to treating patients with matching 

molecular profiles (e.g. targeting downstream signaling activated by a molecular alteration); and 4) for a genotype-

relevant trial, alterations in which genes may be relevant. For trials that have multiple cohorts and a specific 

molecular alteration (e.g., HER2 amplification) only applies to one cohort, we annotated them as genotype-selected.  

To facilitate this study, i.e., to identify genotype-selected trials and their gene selection criteria, we constructed a 

gold standard of 571 clinical trials manually annotated by the IPCT team, where 153 trials were genotype-selected 

and the rest (418 trials) were non-genotype-selected. Notably there was no overlap between these trials and those 

used to train the 9-class disambiguator. Using our gold standard as a testing set, we assessed the performance of the 

gene recognition component and the adapted disambiguation component respectively. 

Gene Recognition Component – Of the 153 genotype-selected trials in our gold standard, our gene recognizer was 

able to correctly identify all genes annotated as selection criteria in 121 trials. In the remaining 32 trials, at least one 

gene was not properly recognized.  

Adapted Gene Mention Disambiguation Component – To assess the performance of our adapted disambiguator, we 

excluded the 32 trials that were not properly labeled by the gene recognition component and constructed a test set 

from the gold standard which included 121 genotype-selected trials and 418 non-genotype-selected trials. The binary 

classifier predicted 193 genotype-selected trials and 346 non-genotype-selected trials, yielding an accuracy of 81%. 

Precision and recall were 0.55 and 0.88 respectively, yielding an F score of 0.68. With the understanding that recall 

was not perfect (15 trials were erroneously labeled as non-genotype-selected), we entertained the following 

hypothetical analysis:  if our curators did not have to curate the trials that were predicted to be non-genotype-

selected, they would have saved 346 minutes worth of man power (approximately 1 minute used for concluding a 

trial that is non-genotype-selected), which made up 83% of all the time spent on annotating non-genotype-selected 

trials in the gold standard. 

We also evaluated the performance of the disambiguator in identifying genes that serve as selection criteria. The 

averages of precision, recall and F score were 0.69, 0.85 and 0.74 respectively. Overall, recall was higher than 

precision, which is consistent with our expectation, since for our task, a false negative (missed trial) is much worse 

than a false positive. Table 1 shows the performance of our system on nine genes that were annotated as the 

selection criteria for at least 5 clinical trials in the gold standard. 

Discussion 

In this paper, we presented an informatics system that facilitates the retrieval, analysis and curation of genotype-

selected clinical trials to guide personalized cancer treatment. We have adapted and extended an existing NLP tool 

trained at a different institution and investigated its applicability to our curation tasks. Using IPCT’s in-house 

curated clinical trials as the gold standard, we evaluated the performance of the modified system and observed 

promising results with an average accuracy of 81% in predicting genotype-selected trials and an average recall of 

0.85 in predicting the genes that serve as selection criteria. To understand the limitations of our current system and 

to shed light in our future direction, we performed an error analysis of the components of gene recognition and 

disambiguation. In the ensuing text, we elaborate on our analysis and identify opportunities for improvement which 

will be explored in our future studies.  

Gene Recognition Component – Our error analysis has revealed the following five reasons why the gene recognizer 

failed to identify all the gene mentions in 32 trials. 

1) Translocation/fusion genes (e.g., EML4-ALK): the individual components of a fusion gene were 

properly identified yet their co-occurrence in this context was not tagged as a fusion gene. There were 7 trials that 

were incompletely labeled due to this. An enhancement that recognizes the pattern of translocation/fusion genes and 

tags them appropriately will overcome this limitation. 

2) Gene mentioned outside of the eligibility criteria: in 8 trials, the selected genes were not mentioned in 

the eligibility criteria section, instead they were mentioned only in the title, summary or outcome description. While 

we still think it is reasonable to expect the trial document to be structured so critical information such as genes used 
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as selection criteria would occur in the eligibility criteria section, we can easily expand the sections to be analyzed to 

include title, summary and outcome. 

3) Incomplete dictionary: to enable automatic query expansion given a gene symbol, we used NCBI’s 

Entrez gene database as a dictionary to look up the genes’ common aliases and official name. However from the 6 

mislabeled trials we learned that such a dictionary would require some expansion. For instance, RAS is often used to 

refer to a family of genes encoding proteins in the RAS family, including NRAS, KRAS and HRAS, yet it is not 

included as an alias for any of these three genes. Similar observations have been made between the following 

alias/symbol pairs: RAF for BRAF, MEK for MAP2K1 or MAP2K2, PDGFR for PDGFRA or PDGFRB, and 

CD79 for CD79A or CD79B. To overcome this problem, we will supplement the current dictionary by integrating 

additional resources that contain information about gene names (such as GeneCard 
13

), and/or design rules that 

extrapolate an alias based upon the gene symbol. For instance, we can assume that a gene ending with a letter (e.g., 

CD79A) encodes a subunit of a protein (e.g., CD79) and automatically assign the root portion of the symbol (e,g., 

CD79) as an alias. In our current gene recognizer, we have already applied a similar rule for gene symbols ending 

with a digit (e.g., FGFR1/FGFR2/FGFR3/FGFR4) that belong to the same family (e.g., FGFR) and automatically 

included the family name as an alias.  

4) Tokenizer: a commonly adopted convention for describing a point mutation is to place a delimiter 

(white space or dash) between a gene symbol and the point mutation (e.g., BRAF V600E or BRAF-V600E). 

However, our error analysis of 3 mislabeled trials revealed that in some trial documents, the delimiter was omitted 

(e.g., BRAFV600E). While this may not cause a problem for a gene recognizer that applies substring matching, it 

does introduce an issue to more sophisticated (and probably more efficient) information retrieval strategies that use a 

tokenizer which relies on such delimiters to identify word boundaries. To resolve this, we will customize the default 

tokenizer to recognize a pattern of point mutations (e.g., V600E) as a separate word.  

5) Inferred by curators: there were 8 trials where the genes that were annotated as the selection criteria 

were not mentioned explicitly in the trial documents but were inferred by the curators based upon their domain 

knowledge. For example, the following text occurred in one trial that was mislabeled: “with tumor 

mutations/amplifications in one of 3 genetic pathways (DNA repair, PI3K or RAS/RAF)”. While our tool was 

capable of recognizing the genes whose symbol/aliases are consistent with the pathway name, it was unable to infer 

what genes are associated with the DNA repair pathway. To achieve a perfect recall in this category, we would have 

to integrate pathway information into the gene recognition component. 

We understand that the task of gene recognition and normalization is very sophisticated in its own right and the 

aforementioned analysis was not intended to be a comprehensive assessment of this component. Due to the scope of 

this study, we did not construct our gold standard in a manner that supports an in-depth evaluation of the gene 

recognizer. For future work, we plan to address this issue as well as exploring existing tools such as those evaluated 

at the BioCreative gene normalization competitions 
14

 (e.g. GenNorm 
15

, GeneTUKit 
16

 and IASL-IISR 
17

). 

Adapted Gene Mention Disambiguator Component – An examination of several trials that were erroneously 

classified by our disambiguation component revealed the following three common causes. 

1) Negation boundary: to identify negation status, Wu et al. used a training set of a localized 

negation/assertion lexicon constructed by the domain experts based on their review of the clinical trial training set 

and applied a support vector machine based method to identify the negation cases and assertion cases in the stage-2 

classification. The SVMs considered a rich set of features regarding negation status including: the direction of the 

negation words in relation to the gene symbols, the distance between the negation cues and the target gene symbol, 

and the punctuations. An error analysis is as follows. In situations like the following: “Patients with 

histologically/cytologically confirmed advanced solid tumors with FGFR1 or FGFR2 amplification or FGFR3 

mutation, for which no further effective standard anticancer treatment exists”, the disambiguator successfully 

predicted the first and second gene mentions as “Gene Status Altered” but wrongly classified the third (FGFR3) to 

be “Gene Status Not Altered” because it is very close to a negation cue (“no”).  In the future, we may explore the 

application of some existing negation analyzers to overcome this issue (e.g. NegEx by Chapman et al.
18

 and Bejan et 

al’s assertion analyzer 
19

). 

2) Drug class identification: in some cases, the disambiguation program failed to properly recognize that a 

gene is mentioned in the context of a drug. For example, the following cases were mislabeled as “Gene Status 

Altered”: “anti-EGFR antibody (cetuximab or panitumumab)”; “epidermal growth factor receptor (EGFR) 
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inhibitor”. Utilizing existing resources such as the UMLS that can help identify drug names could improve 

performance. 

3) Disease acronym identification: some cancer types have acronyms that can be confused with an alias of 

a gene. For instance, papillary thyroid carcinoma is often abbreviated as PTC, which also happens to be an alias of 

the gene RET. In our current system, such ambiguity has not been taken into consideration. We plan to address this 

issue in our future work.  

Conclusion 

The existing NLP tool was generalizable. Informatics tools may partially automate the process of information 

gathering for the delivery of personalized cancer therapy. By conducting an error analysis, we identified several 

ways of further improving the performance of our system, which will be explored in our future studies.  

Table 1.  Performance evaluation of the adapted disambiguator from gene perspective.    

  

Gene Symbol # of Associated 

Genotype-Selected 

Trials in Gold 

Standard 

Precision Recall F 

BRAF 63 0.94 0.79 0.86 

ERBB2 14 0.59 0.93 0.72 

ALK 14 0.93 1.00 0.97 

KRAS 11 0.65 1.00 0.79 

PIK3CA 11 0.82 0.82 0.82 

NRAS 8 0.88 0.88 0.88 

PTEN 7 1.00 0.86 0.92 

EGFR 6 0.45 0.83 0.59 

MET 5 0.45 1.00 0.62 
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