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Abstract
Under the assumption that covalent bonds are rigid, it is possible to compare the estimations of rigidity based on anisotropic 
and isotropic B-factors. This is done by computing the difference of the mean-square displacements (Delta-u) of atoms A 
and Z along the covalent bond A–Z, which must be close to zero for a rigid bond. The analysis of a high-quality set of protein 
structures, refined at a resolution better than (or equal to) 0.8 Angstroms, showed that Delta-u is significantly close to zero 
when anisotropic B-factors are used, with an average 60% Delta-u reduction. This reduction is larger for larger B-factors 
and this suggests that care should be taken in data-mining procedures that involve isotropic B-factors, especially at lower 
resolution, when anisotropic B-factors cannot be determined and when the average B-factor increases.
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The benefits of high-resolution macromolecular crystal 
structures have been repeatedly described (Longhi et al. 
1998; Dauter et  al. 1997; Schmidt and Lamzin 2002; 
Schmidt and Lamzin 2010). The wealth of details in electron 
density maps at high resolution allows the characterization 
of the conformational disorder of many protein atoms, which 
may show two or three stable positions, and of the protein 
hydration by water molecules that cover the protein surface 
(Schmidt and Lamzin 2010; Schmidt et al. 2011; Bhat-
tacharjee and Biswas 2011). A remarkable feature of high-
resolution crystal structures is the anisotropic refinement of 
the atomic displacement parameters (therein after referred 
to as B-factors), which is impossible at lower resolution 
and which provides valuable information on local dynam-
ics (Schmidt et al. 2011; Carugo 2020; Carugo 2019a). 
However, a systematic comparison—based on independent 
and external criteria—of anisotropic B-factors, which can 

be refined only at high resolution, and isotropic B-factors, 
which are routinely refined at lower resolution, have never 
been published.

Anisotropic and isotropic B-factors can be compared by 
analyzing their ability to monitor the rigidity of the protein 
covalent bonds, a feature that is independent of the refine-
ment level but is directly related to the electronic structure 
of the proteins.

Covalent bonds are highly rigid and their deformation 
implies severe energy costs (Slater 1968). This has been 
exploited in macromolecular crystallography with the intro-
duction of refinement restraints (Tronrud 1996; Thorn et al. 
2012; Parois et al. 2018), which essentially assume that the 
difference of the mean-square displacements of atoms A and 
Z along the covalent bond A–Z must be close to zero. These 
restraints are usually relaxed at very high resolution, when 
they are no more essential to ensure a physically and chemi-
cally realistic structure description.

Axiomatically, it is possible to assume that covalent bond 
is rigid, especially at low temperature—crystal structures are 
routinely determined at 100 K nowadays—and this is moni-
tored by the Hirschfeld test (Hirshfeld 1976), according to 
which, as mentioned above, the components of the B-factors 
of the two atoms along the covalent bond must be the same.
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When isotropic B-factors (B) are available, the mean-
square displacement (u) of an atom is the same in all direc-
tions around the atomic average position, and the rigidity 
of the bond A–Z can be monitored by the function Delta-u, 
defined as:

which must be close to 0 Å, according to the Hirshfeld 
rigidity test (Hirshfeld 1976) (BA and BZ are the B-factors of 
atoms A and Z). With anisotropic B-factors (U), the Delta-u 
function must consider that the mean-square displacement 
(u) of an atom is not the same in all directions, and it must 
be computed as:

where n is the unit vector in the covalent bond direction, 
and UA and UZ are the anisotropic B-factors of atoms A and 
Z (Burgi 1994).

In the present communication, isotropic and anisotropic 
Delta-u values were computed and compared in a non-
redundant set of extremely high-resolution protein crystal 
structures extracted from the Protein Data Bank (Bernstein 
et al. 1977; Berman et al. 2000).

Only X-ray crystal structures refined at a resolution of 
at least 0.8 Å and determined in the 90–100 K temperature 
range were retained, and the following thirty crystal struc-
tures were eventually kept—chain identifiers in parenthe-
ses—once the sequence redundancy was reduced to 40% 
pairwise sequence identity with CD-HIT (Li and Godzik 
2006; Fu et al. 2012): 1ejg(A), 1gci(A), 1iua(A), 1r6j(A), 
1ucs(A), 1us0(A), 1w0n(A), 1 × 6z(A), 2b97(A), 2ixt(A), 
2izq(A), 2ov0(A), 2pve(A), 2vb1(A), 2wfi(A), 3mfj(A), 
3ui4(A), 3 × 2 m(A), 3 × 34(A), 4hp2(A), 4rek(A), 4ua6(A), 
5al6(A), 5kwm(A), 5nfm(A), 5tda(A), 5yce(A), 6e6o(A), 
6l27(A), 6s2m(A).

Solvent accessible surface areas for each atom were com-
puted with Naccess (Hubbard and Thornton 1993) and all 
the other computations were performed with locally written 
software.

Anisotropic Delta-u was computed for all protein cova-
lent bonds with anisotropic B-factors (Eq. 1), and isotropic 
Delta-u was computed with the equivalent isotropic B-fac-
tors (Eq. 2), which, for anisotropically refined atoms, are 
equal to

In general, and as expected, anisotropic Delta-u is smaller 
than isotropic Delta-u for all types of covalent bonds (see an 
example in Figure S1, Supplementary Material): on average, 
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it is 0.0108 (0.0001) Å smaller. This difference is larger for 
side-chain bonds [0.0157 (0.0002) Å] than for main-chain 
bond [0.0061 (0.0002) Å]. Only for 13% of the bonds, the 
isotropic Delta-u is slightly smaller than the anisotropic 
Delta-u and most of these cases concern the C–N backbone 
bonds. This percentage is smaller for side-chain bonds (10%) 
than for backbone bonds (17%).

This is certainly not surprising. In fact, given the assump-
tion that covalent bonds are rigid, this reflects the better 
modeling of atomic dispersion around the equilibrium posi-
tions in anisotropic refinements. In other words, the rigid-
ity of covalent bonds is better accounted for by anisotropic 
B-factors refinements, especially for side-chains, which tend 
to be more flexible.

However, the added value of the work presented here is 
the fact that this is a quantitative comparison, which points 
out that, given that the anisotropic and isotropic Delta-u are 
equal, on average, to 0.0075 (0.0001) and 0.0184 (0.0001) 
Å, the deviation from rigidity of the covalent bonds is 
reduced by 60% when anisotropic B-factors are refined. 
This improvement is remarkable and somehow surprising 
by its amount.

This can be appreciated also by the relationship between 
the anisotropic and isotropic Delta-u shown in Fig. 1a. While 
the isotropic Delta-u increases considerably, from values 
close to 0 Å up to 0.04 Å, the anisotropic Delta-u increases 
much less, only from 0.006 to 0.007 Å to about 0.01 Å. This 
confirms that the covalent bond rigidity is drastically better 
monitored by anisotropic B-factors.

Interestingly, both anisotropic and isotropic Delta-u tend 
to be larger for atom pairs that have a larger average isotropic 
B-factor (Fig. 1b). However, this is more pronounced for 
isotropic Delta-u, which increases from 0.01 to 0.04 Å when 
B increases from 5 to 20 Å2—note that the latter value is 
close to the maximum possible B value at very high resolu-
tion (Carugo 2018a, 2019b). On the contrary, the anisotropic 
Delta-u increases much less in the same B-factor range. This 
is represented, in the figure, by the fact that also the differ-
ence between isotropic and anisotropic Delta-u increases 
if the B-factors increase. This clearly indicates that large 
atomic positional dispersions cannot be described effectively 
by isotropic B-factor.

Similar trends are observed when the average solvent 
accessible surface area of the atoms that are covalently 
bound is considered (Fig. 1c). The isotropic Delta-u values 
increase if the solvent accessible area surface area increases, 
indicating that the rigidity is larger for covalent bonds buried 
in the protein core than for covalent bonds exposed to the 
solvent. On the contrary, the anisotropic Delta-u is nearly 
constant in the examined range of solvent accessible surface 
area and, as a consequence, the difference between isotropic 
and anisotropic Delta-u increases if the solvent accessibil-
ity increases. This supports the previous observations on 
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the relationships between Delta-u and equivalent isotropic 
B-factor and is not surprising since larger isotropic B-factors 
are expected for atoms more exposed to the solvent.

The data available in the Protein Data Bank allow one 
to estimate that the covalent bond rigidity is much better 
accounted for by anisotropic B-factors than by isotropic 
B-factors. A remarkable 60% reduction of the deviation 
from rigidity is observed, on average. If on the one side this 
is expected, on the other side, it points out that the informa-
tion provided by isotropic B-factors is of limited accuracy 

when protein dynamics must be quantitatively evaluated at 
a molecular level. Care should then be taken in data-mining 
procedures that involve isotropic B-factors (Carugo 2018b; 
Sun, Qu, Feng, Reetz 2019), from drug design (Johnson et al. 
2018), to atom position accuracy estimation (Dinesh Kumar 
et al. 2015), or to protein engineering (Reetz et al. 2006).

It is also important to remember that the inaccuracies 
of isotropic B-factors estimated in the present communica-
tion might be underestimated, since isotropic Delta-u was 
computed with isotropic equivalent B-factors and not with 
genuine isotropic B-factors. In other words, isotropic Delta-
u was computed with isotropic B-factors that resulted from 
anisotropic refinements and not with isotropic B-factors that 
can be refined at lower resolution.
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