
RESEARCH ARTICLE

Assessment of peritoneal microbial features

and tumor marker levels as potential

diagnostic tools for ovarian cancer

Ruizhong Miao1, Taylor C. Badger2, Kathleen Groesch3,4, Paula L. Diaz-SylvesterID
3,4,

Teresa Wilson3,4, Allen Ghareeb3,4, Jongjin Anne Martin4, Melissa Cregger5,6,

Michael Welge7, Colleen BushellID
8, Loretta Auvil7, Ruoqing Zhu9, Laurent Brard4,10,

Andrea Braundmeier-Fleming2,4,10*

1 Department of Statistics, University of Virginia, Charlottesville, Virginia, United States of America,

2 Department of Medical Microbiology, Immunology and Cell Biology, SIU School of Medicine, Springfield,

Illinois, United States of America, 3 Center for Clinical Research, SIU School of Medicine, Springfield, Illinois,

United States of America, 4 Department of Obstetrics & Gynecology, SIU School of Medicine, Springfield,

Illinois, United States of America, 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of

America, 6 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee,

United States of America, 7 National Center for Supercomputing Applications, University of Illinois at Urbana-

Champaign, Champaign, Illinois, United States of America, 8 Applied Research Institute, University of Illinois

at Urbana-Champaign, Champaign, Illinois, United States of America, 9 Department of Statistics, University

of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America, 10 Simmons Cancer Institute

at SIU, Springfield, Illinois, United States of America

* abraundmeier88@siumed.edu

Abstract

Epithelial ovarian cancer (OC) is the most deadly cancer of the female reproductive system.

To date, there is no effective screening method for early detection of OC and current diag-

nostic armamentarium may include sonographic grading of the tumor and analyzing serum

levels of tumor markers, Cancer Antigen 125 (CA-125) and Human epididymis protein 4

(HE4). Microorganisms (bacterial, archaeal, and fungal cells) residing in mucosal tissues

including the gastrointestinal and urogenital tracts can be altered by different disease states,

and these shifts in microbial dynamics may help to diagnose disease states. We hypothe-

sized that the peritoneal microbial environment was altered in patients with OC and that

inclusion of selected peritoneal microbial features with current clinical features into predic-

tion analyses will improve detection accuracy of patients with OC. Blood and peritoneal fluid

were collected from consented patients that had sonography confirmed adnexal masses

and were being seen at SIU School of Medicine Simmons Cancer Institute. Blood was pro-

cessed and serum HE4 and CA-125 were measured. Peritoneal fluid was collected at the

time of surgery and processed for Next Generation Sequencing (NGS) using 16S V4 exon

bacterial primers and bioinformatics analyses. We found that patients with OC had a unique

peritoneal microbial profile compared to patients with a benign mass. Using ensemble

modeling and machine learning pathways, we identified 18 microbial features that were

highly specific to OC pathology. Prediction analyses confirmed that inclusion of microbial

features with serum tumor marker levels and control features (patient age and BMI)

improved diagnostic accuracy compared to currently used models. We conclude that OC

pathogenesis alters the peritoneal microbial environment and that these unique microbial
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features are important for accurate diagnosis of OC. Our study warrants further analyses of

the importance of microbial features in regards to oncological diagnostics and possible prog-

nostic and interventional medicine.

Introduction

Epithelial ovarian cancer (OC) is the most deadly cancer of the female reproductive system. In

the US alone, over 22,530 new cases and 13,980 deaths were estimated for 2019 [1]. To date,

there is no effective screening method for early detection of OC [2]. Consequently, greater

than 60% of OC cases are diagnosed at an advanced stage (III, IV) [1]. Because women with

early stage OC normally report non-specific symptoms (bloating, upset stomach, constipa-

tion), workup is usually delayed until a pelvic mass is found during a routine annual exam or

found incidentally during abdominal imaging [2, 3]. When an adnexal mass is discovered, the

current diagnostic armamentarium may include ultrasound assessment of the tumor and anal-

yses for serum levels of tumor markers, Cancer Antigen 125 (CA-125) and Human epididymis

protein 4 (HE4) [2, 4, 5]. Recently, the American College of Radiology Ovarian-Adnexal

Reporting Data System Committee has standardized the terminology to be used by sonogra-

phers, to reduce the “subjectivity” of ultrasound assessment for ovarian cancer diagnosis [6];

however, this review concluded that multimodal approach of sonography and elevated CA-

125 may be most beneficial. The error with using imaging (even if standardized) and CA-125

is that these modalities are still flawed, not standard practice in every oncology clinic, and are

not effective for early diagnosis of disease [7, 8]. CA-125 is elevated in most cases of epithelial

OC (~80%) [9–11]; however, CA-125 is also known to be elevated in patients with benign

tumors [3] and a variety of other health conditions such as endometriosis, uterine fibroids,

diverticulitis and cirrhosis of the liver [10, 12–14]. Additionally, elevated levels of CA-125

(� 35 U/mL for postmenopausal women) may be found in only ~50% of women with stage I

OC [10, 14]. Thus, the literature suggests the use of more than one biomarker as a means of

increasing the sensitivity for the early detection of OC [10, 14, 15]. HE4 is a relatively new bio-

marker that is overexpressed by ovarian carcinomas [10, 11, 16]. HE4 has been reported to be

the most sensitive biomarker for detecting stage I OC and it is expressed by approximately

30% of OC cases that do not express CA-125 [3]. Furthermore, the U.S. Preventative Task

Force recommends against screening for OC in low-risk, asymptomatic population with the

current tools available [17]. Thus, it is essential to develop new tools to identify women at risk

and accurately diagnose prior to surgical intervention, which ultimately will help maximize

successful outcomes through personalized medicine.

An innovative approach to diagnose different cancer phenotypes is through profiling a

patient’s microbial features (known as the microbiome). Previous studies have shown that

microorganisms (bacterial, archaeal, and fungal cells) residing in mucosal tissues including the

gastrointestinal and urogenital tracts can be altered by varied disease states, and these shifts in

microbial dynamics may help to diagnose disease states before they become symptomatic [18–

22]. An individual’s inflammatory status is also known to impact microbial dynamics and

patients who have immune mediated diseases have unique microbial profiles [23–26]. The

known association between OC and peripheral inflammation suggests the likelihood of a

unique microbial signature associated with OC. Recently, through Next Generation Sequenc-

ing (NGS), research has shown that human microbial profiles are associated with cancer devel-

opment and progression [27, 28]. In addition, human associated microbiota have the potential
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to alter estrogen metabolism through enzymatic cleavage of glucoronidases that shunt estro-

gens for excretion or absorption. Through this process, microbial profiles have the potential to

either suppress or promote estrogen driven cancers [27–29], which may explain the variability

in response to endocrine treatments between individuals. However, this has only been

reported through analysis of vaginal or gastrointestinal microbial profiles. In this work, we

examined the microbial profile of peritoneal fluid, due to its intimate relationship with the

ovarian tumor microenvironment. First we used machine learning analyses to select the top

microbial features. We then combined our selected microbial feature set with CA-125 and

HE4 serum and peritoneal fluid levels to determine if these combined feature sets may be a

superior predictor of disease using standard Area Under the Curve (AUC) and Receiver Oper-

ating Curve (ROC) performance measures.

We hypothesized that the altered microbial environment induced by the onset of ovarian

cancer pathogenesis will alter microbial dynamics (Fig 1). These changes to microbial profiles

and site specific analysis of tumor markers, which can be easily and rapidly identified using

existing toolsets, could then serve as a more sensitive and specific platform for diagnosis and

potential staging of OC, rather than analysis of serum biomarkers and ultrasound imaging

either alone or together. This biological systems approach along with machine learning analy-

sis would, therefore, ultimately represent a rapid, user-friendly, reliable, and point-of-care tool

that could enhance diagnostic accuracy for OC and would enable the development of decision

trees (surgical and pharmaceutical) to improve oncologic care for OC. The discovery of a

potential “onco-biome” has implications for determining prognosis, staging and even novel

screening tests utilizing microbial sampling.

Materials and methods

Patient eligibility and recruitment process

This was a cross-sectional pilot study approved by the local Institutional Review Board

(Springfield Committee for Research Involving Human Subjects) under the protocol 12–656.

The experimental group (n = 30) consists of eligible patients (age� 30) who presented to the

Department of Obstetrics & Gynecology, Gynecological Oncology division at Southern Illinois

University School of Medicine for surgical management of an adnexal mass or suspected ovar-

ian carcinoma. These patients were scheduled for an oophorectomy, bilateral salpingo-oopho-

rectomy (BSO), hysterectomy, hysterectomy/BSO, staging and/or debulking via laparotomy or

laparoscopy. Patients with a previously diagnosed malignancy within the pelvis or abdomen

(including recurring or previously diagnosed OC patients) were excluded; however, as

expected from previous clinical experience and reported data [1], most of the eligible patients

who were subsequently diagnosed with OC had advanced OC (stages III and IV). Eligible

patients were invited to participate in this study when they presented to the Gynecology

Oncology clinic for preoperative evaluation and diagnostic workup. Informed consent was

obtained at this preoperative visit. Although the number of samples used in this study is rela-

tively low, we incorporated robust statistical procedures including leave-one-out cross-valida-

tion [30]. These methods are specifically designed for low sample number and would

effectively prevent overfitting. Hence, the discoveries and conclusions of our analysis are statis-

tically sound.

Sample collection schedule and procedures

We obtained peritoneal fluid at the time of surgery from peritoneal washings that were per-

formed per standard of care. When present, ascites was first aspirated and then a standardized

volume (300 mL) of isotonic saline (0.9% NaCl) was infused into the peritoneal cavity and
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then re-aspirated to serve as our collection sample. Once collected, the fluid was refrigerated

until further processing (detailed below) was complete.

CA-125 and HE4 tumor marker levels

Serum tumor marker levels were measured preoperatively as standard of care and this infor-

mation was extracted from the subject’s electronic medical record.

Final pathology results from ovarian tissue sample(s) were utilized as the reference standard

for diagnosis of OC. Peritoneal fluid was centrifuged at 1300 x g for 20 min., supernatant was

Fig 1. Working hypothesis and model. The diagram illustrates how cancer pathophysiology may alter the microbial features

within the tumor microenvironment. These alterations may be: 1) directly through the production of metabolites by

malignant cells or 2) through the alteration of the patient’s immune system/inflammatory status. We hypothesize that

changes in microbial profiles associated with the presence of ovarian cancer may be characterized and used as diagnostic

tools.

https://doi.org/10.1371/journal.pone.0227707.g001
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removed and aliquots stored at -80˚C until analysis of CA-125 (Siemens Healthineers Immu-

lite 2000; Tarrytown, NY) and HE4 (EIA kit Fujirebio Diagnostics, Inc.; Malvern, PA) was per-

formed at the Division of Medical Screening and Special Testing Reference laboratory

(Women and Infants’ Hospital Providence, RI). For serum, standard laboratory reference

ranges were defined as< 35 U/mL for a normal CA-125 and< 140 pmol/L for a normal HE4,

absolute values were used for measurement of performance. For peritoneal fluid levels, > 500

for CA-125 (U/mL) and HE4 (pmol/L) were used which was more conservative than those

previously published [31, 32] to increase the sensitivity of their performance. Due to the vari-

ability of peritoneal fluid tumor marker levels, we classified patients based on our stated cut-

off values for measurement of performance. The peritoneal fluid pellet was used for DNA iso-

lation and sequencing of microbial organisms.

Next generation sequencing (NGS) of microbial communities

Next Generation Sequencing (NGS) of the bacterial 16S RNA gene was performed to charac-

terize each subject’s individual peritoneal microbial signature. DNA extraction of samples was

performed using the PowerSoil DNA isolation kit (Qiagen). Amplicon sequencing targeting

the V4 region of the 16S rRNA gene was employed on DNA extracted from each sample. Ini-

tial microbial sequence data processing was carried out using a combined USEARCH [33] and

QIIME [34] pipeline. Briefly, fastq files were loaded onto a server, where they were processed

(demultiplexed, trimmed, filtered, operational taxonomic unit (OTUs) clustered, removal of

chimeric sequences, and taxonomy assigned via RDP) and then mapped using USEARCH at

97% sequence identity threshold. The resulting OTU table was then parsed to obtain the differ-

ent OTU counts per sample and finally combined with taxonomy information and other meta-

data into a BIOM-formatted file [35].

Once the BIOM-formatted file was obtained, community analyses were conducted using

the VEGAN [36] and phyloseq packages [37] in R [38]. Additional analyses were conducted

using QIIME [39] and GALAXY software packages [40–42].

Microbial feature selection: Machine learning analyses

To identify peritoneal microbial features associated with OC, we utilized an ensemble method-

ology which combines traditional statistical approaches with machine learning methods to

perform key predictor selection and ranking. The feature selection analysis is outlined in Fig 2.

We employed a two-stage feature screening (as part of the flowchart in Fig 2): First, OTUs are

assessed through ensemble feature selection. The ensemble feature selection includes random

forest variable importance [43], Lasso coefficient [44], t-test, distance correlation [45], and

Mann-Whitney test [46]. A review of these model based approaches can be found in Zhou &

Gallins, 2019 [47]. After selecting a subset of features that contains significant OTUs, we rank

them based on the Mann-Whitney test [46], which is believed to be more robust. In our analy-

sis, we ran random forest and Lasso using both the top-18 and top-43 OTUs, and used leave-

one-out cross-validation [48, 49] using Lasso [50] and random forests [51] to compare the two

choices. Cross-validation is a statistical out-of-sampling-testing procedure that can be utilized

to estimate the prediction error. Details regarding the next stage of feature selection will be

introduced in the results. Note that we did not choose to fit a model to all OTUs but rather

selected the significant/important ones because either random forest or Lasso provided a valid

p-value, also because we wanted to ensure that we did not overfit our model due to the small

sample size. For our data, the top OTU model yields smaller error for both Lasso and random

forests, hence it was used for the final result, which compared their predictive values with exist-

ing clinical measurements.
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Statistical modeling of the ovarian cancer classification

Comparing OTUs with existing clinical measurements. We considered two sets of mod-

els to assess the predictive power of OTUs (with phylogenetic grouping). In the first set, we

considered two different baseline models using either the serum features or the peritoneal

fluid features as predictors in the classification. Age and BMI serve as control features. The

first baseline model was defined as serum (S) tumor marker levels (CA-125 and HE4) with

Age and BMI. The second baseline model was defined as peritoneal fluid (PF) tumor marker

levels (CA-125 and HE4) with Age and BMI. The comparison models utilized different combi-

nations of OTU features, along with Age and BMI with or without tumor marker values. From

our previous feature selection approach, we selected the top ranked OTUs for this modeling

step which reduces the total number of potential features.

Modeling approaches. Due to the small sample size, there was a high risk of overfitting.

Hence, we considered two approaches, random forests and logistic regression with Lasso pen-

alty [50]. Random forests [51] are ensemble classifiers consisting of a large number of classifi-

cation trees. It is among the state-of-the-art machine learning tools and is known to perform

well for small sample-size studies. The Lasso logistic regression model [52] approach is

included for comparison due to its simple model structure and easy interpretation. This is a

penalized linear model, which imposes an L1 penalty on the coefficients. The L1 penalty

Fig 2. Feature selection and predictive modeling. The flow chart summarizes our analytical processes of data analysis. Feature empirical ranking was

utilized to select subsets of top and relevant features which are then utilized in the outer cross-validation loop of the Integrative Modeling Process.

Ultimately, signature profiles were identified and predictive accuracy and performance of the models were evaluated.

https://doi.org/10.1371/journal.pone.0227707.g002
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shrinks some of the coefficients to exactly 0, which effectively removes irrelevant features to

better deal with small sample size.

Cross-validation and evaluation metric. We used Leave-one-out cross-validation [48] to

evaluate and compare the performance of our models. The Leave-one-out cross-validation

works in the following way: First, we selected one subject out of the N total samples as the test-

ing sample. Then the rest N-1 samples are used to fit a classification model. The model is then

evaluated on the testing sample to assess the performance. We then rotate this procedure to all

N possible testing samples and calculate the overall classification error by averaging all the

results.

The random forest classifier consists of an ensemble of trees. Given a new sample, each of

these trees will produce one classification label. We can view the proportions of each label as

probabilities of the sample being in that class. Therefore, for each testing subject in the cross-

validation, the probability of that subject having ovarian cancer can be calculated. The subject

can be predicted as having OC if that probability is above 50%. However, noticing that our

dataset was slightly unbalanced in the response label, we used the receiver operating character-

istic (ROC) curve and calculated the area under the ROC curve (AUC) as the measure of per-

formance. This is a more robust approach compared to simple classification errors.

Tuning parameter and model selection of machine learning models. We use the “cv.

glmnet” function in R package “glmnet” for Lasso [53], and the “randomForest” function in R

package “randomForest” [54] for random forest classifier.

The penalty parameter of Lasso is determined through 10-fold cross validation. Specifically,

during each step of the aforementioned leave-one-out cross validation, for a set of candidate

penalty parameter values, we calculate the classification error for each candidate value through

10-fold cross validation on the N -1 training samples. We then choose the parameter value that

yields the smallest classification error, fix the penalty parameter at that value, and fit the model

using all N -1 training samples.

For random forest classifier, there are also more than one tuning parameters. However, due

to the high complexity of random forest and relatively small sample size, fine tuning of its

parameters may increase the risk of overfitting. Therefore, we only use the default parameter

values provided by the R package “randomForest”. It turns out this set of parameter values

already leads to accurate classification results.

Results

Study population

A total of 44 subjects were enrolled in this study. After withdrawing subjects due to retracted

consent, screen fail, discovery that malignant masses originated in organs other than the ova-

ries and presence of ovarian borderline tumors, we analyzed samples from 30 subjects. Of

these, 10 were diagnosed with OC and 20 had benign ovarian masses. The majority of the sub-

jects in the ovarian cancer cohort of this study had advanced disease (6 patients with stage III,

2 stage IV and 2 stage II). Most of these patients had serous OC (9 subjects), there was 1 patient

diagnosed with grade 2 endometrioid OC. In the benign masses cohort, the vast majority of

the subjects were diagnosed with either cystadenomas (9 subjects) or cystadenofibromas (6

subjects), while 1 subject had a cystadenofibroma in one ovary and a cystadenoma in the

other, 2 subjects had hemorrhagic corpus luteum cysts, 1 subject had cystic endometriosis and

1 subject had a mature cystic teratoma.

Demographic information and menopausal status are shown in Table 1. We found that

patient age and BMI were significant factors in determination of malignancy or benign

adnexal tumors. Therefore, these 2 factors were included in all further downstream statistical
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models. Median values for tumor markers found in serum and peritoneal fluid are summa-

rized in Table 1.

Microbial DNA in peritoneal fluid

The principal coordinates analysis (PCoA) plot shown in Fig 3 provides graphic visualization

of clustering of OTUs identified via sequencing of the 16S microbial DNA in the peritoneal

fluid from all study subjects. We observed, with the exception of one outlier, a high level of

clustering of the data points from individuals with confirmed OC (Fig 3, red dots; n = 10/30).

This result was indicative of the presence of similar bacterial community profiles within the

peritoneal fluid samples from subjects with OC. However, patients diagnosed with benign

Table 1. Study population’s demographic information and tumor marker levels. Tumor markers values were compared using non-parametric Mann-Whitney test. All

other numerical variables were compared through Student’s t-test.

Benign

(n = 20)

Malignant

(n = 10)

p-value

Age (Mean ± S.E.M.) 56.0 ± 3.1 66.1 ± 3.0 0.047

Race Caucasian 20 9

African American 0 1

BMI (Mean ± S.E.M.) 36.4 ± 2.2 30.3 ± 1.9 0.048

Menopausal status Pre-menopausal 4 0

Post-menopausal 16 10

Serum levels (Median) CA-125 (U/ml) 19.5 362 0.0003�

HE4 (pM) 58 265 0.0008�

Peritoneal levels (Median) CA-125 (U/ml) 74 3032 0.0339�

HE4 (pM) 68.5 6530 0.0013�

�p < .05

https://doi.org/10.1371/journal.pone.0227707.t001

Fig 3. Microbiome: Principal Coordinates Analysis (PCoA). Non-metric dimensional analysis of 16S microbial

features in peritoneal fluid from patients with adnexal masses shows distinctive clustering of sample points from

patients diagnosed with OC (red dots, n = 10/30) compared to those with benign masses (blue dots, n = 20/30).

https://doi.org/10.1371/journal.pone.0227707.g003
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masses exhibited a more diverse profile of bacterial communities evidenced by the higher dis-

persion in the distribution of the data points from individuals with benign masses (Fig 3, blue

dots; n = 20/30).

Machine based learning: Microbial Feature Selection

The potential of our peritoneal microbial feature set to predict the outcome measure of OC

was tested using the methodology described previously and depicted in Fig 2. All identified

microbial features were empirically ranked by their presence and abundance in the peritoneal

fluid of patients with pathologically confirmed OC. The top 76 OTUs were selected after per-

forming an ensemble screening which tested the importance of each microbial feature by anal-

yses of 10 different algorithms both marginal (Dcor, Mann-Whitney, MIC and t-test) and

embedded (Boruta, ElasticNet, Lasso, Random Forest, Randomized Lasso and SVM). Follow-

ing this initial selection, we then performed a whole screening step on the top 76 features by p-

value ranking. In Fig 4, we plotted the obtained p-values in increasing order. There are two

large gaps in Fig 4, corresponding to top-18 and top-43 OTUs respectively. These two gaps

suggest a natural cut-off at the top-18 and top-43 OTUs for the final model. As a result, 18 dif-

ferent microbial features were identified as being highly associated with patients with OC (Fig

4 and Table 2).

Of the microbial features identified, the common origin was that of microbiota found in

human gut or feces. The finding of these species in the peritoneal cavity can be through the

migration of these species from the colon to the urogenital canal. It may also be that the patho-

genesis of OC causes intestinal permeability leading to translocation of these species into the

peritoneal cavity, however the exact mechanism is unknown and was not the focus of this

investigation. The functionality of the microbial features varied but was centralized around

inflammatory mediators. It is widely known that the pathogenesis of OC induces peritoneal

inflammation and that this is one possible mechanism for disease metastasis [55–58]. Of par-

ticular interest, we found 3 different microbial features that may be directly related to disease

pathogenesis; estrogen responsiveness (Rikenellaceae (order) of the Bacteroidetes (Phylum)),

vascular permeability (Alphaproteobacteria (Class) of the Proteobacteria (Phylum)) and anti-

inflammatory properties (Akkermansia; muciniphila of the Verrucomicrobia (Phylum)). Fur-

ther analysis of our entire selected microbial feature list needs to be completed and may iden-

tify potential targets for therapeutic intervention.

Predictive analysis: Diagnostic accuracy

To determine which biological features are important for diagnostic accuracy, we tested the

ability of our microbial feature selection to diagnose OC and compared it against the currently

used biological markers (age, BMI, serum CA-125/HE4 tumor marker levels) and also CA-

125/HE4 tumor marker levels from the peritoneal fluid as our baseline models. Four subjects

with benign diagnosis and two subjects with confirmed OC were excluded from this predictive

analysis due to lack of pre-operative serum HE4 testing.

Initially, we measured the AUC for our baseline models using random forest analyses. Mea-

sures of CA-125 and HE4 levels from serum, patient age and BMI (baseline model 1) had a

0.804 AUC performance compared to 0.560 for peritoneal fluid CA-125/HE4, patient age and

BMI (Fig 5A). Combination of serum and peritoneal CA-125/HE4 data, together with patient

age and BMI did not significantly change AUC performance (0.806) (Fig 5B). This indicated

that tumor marker levels from the peritoneal fluid did not enhance the predictive power of

current clinical diagnostic tests (baseline model 1).
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We then determined the value of adding microbial features to our model fitting. We found

that the addition of the selected 18 OTUs with baseline model 1 had the best performing

model in AUC (0.94) of OC detection (Fig 5A). This model decreased in performance when

we used 43 microbial OTU features (0.857) (Fig 5B).

Variations of feature combinations were analyzed and included in the predictive model,

including OTUs with patient age and BMI (AUC = 0.782), OTUs with peritoneal fluid tumor

marker levels (AUC = 0.732), and OTUs with tumor marker levels from serum and peritoneal

fluid (AUC = 0.940). In each feature combination, as we increased the OTU feature set from the

18 highly selected variables to 43 variables, we found a decrease in AUC performance (Fig 5B).

Hence, our results suggest that, with age and BMI as control features, the serum features

outperform peritoneal tumor marker level features; however, microbial features within the

peritoneal fluid enhance the performance measurement of serum tumor marker levels for OC

diagnosis.

Discussion

In this study, the diagnostic utility of peritoneal microbial profiling and tumor marker (CA-

125/HE4) levels in the peritoneal fluid was tested for prediction of OC. A machine learning

Fig 4. Microbial Feature Selection. The plot shows screening of the top 76 features by p-value ranking. Each dot represents one feature.

The 18 microbial features marked in red are highly associated with patients diagnosed with OC.

https://doi.org/10.1371/journal.pone.0227707.g004
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approach was utilized to perform predictive analysis of different datasets and compare the

accuracy of currently utilized diagnostic tools (serum tumor marker levels) against that of our

potential novel biomarkers (peritoneal tumor marker levels and microbial profiles). Our

results indicated that individuals diagnosed with OC have unique peritoneal microbial profiles

which are similar amongst OC patients, but have distinct characteristics compared to those

from subjects with benign adnexal masses. Indeed, we found that the best performing model

for prediction of malignancy (diagnosis) is the one that combines analysis of peritoneal OTUs

and serum tumor marker levels.

We initially hypothesized that measuring cancer markers in the vicinity of the pelvic mass

would have an increased diagnostic value compared to the standard of care measurements per-

formed in serum. However, analysis of diagnostic performance by AUC, indicated that tumor

marker levels measured in serum were better predictors of malignancy than those measured in

the peritoneal fluid. Our principal coordinates analysis indicated that not only the existence of

a unique microbial signature in subjects diagnosed with OC exists, evidenced by the fact their

samples clustered separately from samples obtained from subjects with benign adnexal masses,

Table 2. List of the top 18 microbial features highly specific to OC pathology.

OTU # Taxonomy Function Ref.

OTU_7 Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae;

Prevotella; stercorea

Human feces or vagina. Exact role unknown but Prevotella species are

known to have pathogenic function in inflammatory diseases.

[59–

61]

OTU_113 Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae Fecal microbiota that is associated with ESR1 function. Also associated with

inflammation induced by high fat diet.

[62,

63]

OTU_157 Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella Human feces or vagina. Exact role unknown but Prevotella species are

known to have pathogenic function in inflammatory diseases.

[59–

61]

OTU_233 Bacteroidetes; Bacteroidia; Bacteroidales; [Odoribacteraceae];

Odoribacter

Fecal microbiota. Some species associated with abdominal abscess and loss

of these species lead to host inflammation.

[64,

65]

OTU_1388 Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae;

Bacteroides; ovatus

Fecal microbiota. Negatively associated with acute GVHD. [66]

OTU_158 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae Fecal Microbiota. Increased in non-alcoholic fatty liver disease but

decreased in cirrhotic liver disorders

[67]

OTU_284 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Roseburia Fecal Microbiota that produces short chain fatty acids. Reduced in IBD. [68]

OTU_297 Firmicutes; Clostridia; Clostridiales; Ruminococcaceae;

Oscillospira

Fecal Microbiota increased with Chron’s disease [69]

OTU_770 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae Fecal Microbiota. Increased in non-alcoholic fatty liver disease but

decreased in cirrhotic liver disorders

[67]

OTU_884 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Clostridium;

colinum

Unknown

OTU_914 Firmicutes; Erysipelotrichi; Erysipelotrichales; Erysipelotrichaceae;

[Eubacterium]; dolichum

Gut Microbiota. Highly immunogenic and associated with inflammatory

gastrointestinal disorders.

[70]

OTU_1268 Firmicutes; Clostridia; Clostridiales Gut and vaginal microbiota. Many species of Clostridia have pathogenic

potential.

[71]

OTU_1836 Firmicutes; Clostridia; Clostridiales; Ruminococcaceae;

Faecalibacterium

Gut Microbiota. Decrease is associated with IBS [72]

OTU_217 Proteobacteria; Alphaproteobacteria; RF32 Highly diverse class. Pathogenic capability may be through an increase

vascular permeability and vascular damage.

[73]

OTU_570 Proteobacteria; Betaproteobacteria; Burkholderiales;

Alcaligenaceae; Sutterella

Gut microbiota. Associated with nonalcoholic steatohepatitis. [74]

OTU_1092 Proteobacteria; Alphaproteobacteria; Rhizobiales;

Bradyrhizobiaceae; Bradyrhizobium

Plant bacterium that are nitrogen fixers. [75]

OTU_1195 Proteobacteria; Alphaproteobacteria; Rickettsiales; mitochondria Highly diverse class. Pathogenic capability may be through an increase

vascular permeability and vascular damage.

[73]

OTU_274 Verrucomicrobia; Verrucomicrobiae; Verrucomicrobiales;

Verrucomicrobiaceae; Akkermansia; muciniphila

Gut microbiota. Has anti-inflammatory effects and may increase

immunotherapy effectiveness in cancer patients.

[76,

77]

https://doi.org/10.1371/journal.pone.0227707.t002
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Fig 5. AUC Analysis of models for OC diagnostic potential. A. AUC calculations for the baseline models 1 and 2 (left and middle panels, respectively) and

after adding the 18 top ranked OTUs to baseline model 1 (right panel). B. Summary of AUC values obtained for baseline models and various feature

combinations (S: serum; PF: peritoneal fluid).

https://doi.org/10.1371/journal.pone.0227707.g005
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but also suggested that the presence of disease produces a decrease in microbial diversity (less

dispersion in samples of OC vs. benign subjects). This loss of diversity associated with OC has

been previously described in cancer patients [78–81] along with the generally accepted idea

that more diverse microbiomes are more robust and healthier than less diverse ones [82].

Feature selection analysis identified 43 unique microbial features present in all samples

from subjects diagnosed with OC. Interestingly, 18 of these microbial features were identified

through our unique feature selection approach to be highly important in OC subjects. Further

descriptive analyses, such as metagenomic or transcriptomic profiling of these microbial fea-

tures would potentially identify microbial features that are involved with the pathophysiology

of OC or that could potentially be used for OC staging and screening.

Together, the principal coordinates and feature selection analyses support the peritoneal

microbiome as an important diagnostic tool in OC. Indeed, predictive analysis of diagnostic

accuracy performed via machine learning strategies indicated that adding microbial data to

the serum cancer marker level model improved overall diagnostic performance. However, a

predictive model including microbial data alone had reduced accuracy, indicating the need to

utilize serum cancer markers in combination with OTUs for optimal results.

The machine learning approach has a broad variety of applications ranging from speech

recognition to financial market analysis and it is becoming an increasingly important part of

bioinformatics. More recently, the use of this approach to analyze microbiome data in order to

predict disease and, specifically, cancer diagnoses has been reported [83, 84], but to date no

data has been published regarding its utility in the diagnosis/prognosis of OC.

We are aware that the samples analyzed in this work were collected during surgery from

symptomatic patients. Part of the standard surgical management of patients with adnexal mas-

ses, involves collecting peritoneal fluid to assess the presence of malignant cells, which can also

be used to determine its microbiome’s potential diagnostic value. However, peritoneal fluid

with the same characteristics and composition as that collected during surgery can also be

obtained without surgery via a procedure called culdocentesis. This procedure allows for peri-

toneal fluid to be collected from the cul-de-sac (pouch of Douglas) of the female patient. A spi-

nal needle is introduced through the posterior vaginal fornix into the peritoneal space of the

pouch of Douglas to allow for aspiration of peritoneal fluid [85]. Culdocentesis could poten-

tially be used for screening, as it can be performed in an outpatient setting with local anesthe-

sia, reducing costs and potential morbidity in comparison with surgery; in fact there is a large

body of evidence supporting culdocentesis’ safety [86–90]. In summary, we evaluated the abil-

ity of the microbial profile from the peritoneal fluid to identify patients with OC before testing

the practical implementation of this potential tool. As mentioned above, in OC patients symp-

toms typically arise at advanced stages, which leads to poor survival. However, the current rec-

ommendations are against screening OC in asymptomatic women with no family history of

the disease mainly due to the poor specificity and elevated number of false positives obtained

with the current diagnostic tools [17]. Developing a minimally invasive, highly accurate

screening test with a minimal number of false positives would be critical for: earlier diagnosis,

improved patient survival and to guide decision trees for surgical management of disease or

benign adnexal masses. If peritoneal microbial feature analysis determines that a patient has

early stage OC then the surgeon could proceed with minimally invasive approaches, such as

robotically assisted laparoscopy, to safely excise the primary tumor and stage the cancer; thus,

improving patient recovery time and quality of life [91, 92]. In this regard, the urogenital and

gastrointestinal microbial profiles (from samples obtained non-invasively) are currently being

tested utilizing this novel approach. This would potentially enable patients to be effectively

screened at various significant ages to determine if further workup is needed prior to symp-

toms being noticed.
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In summary, the application of microbial analysis and machine learning approaches for

diagnosis and prognosis of OC is a promising robust tool that has the potential of improving

health outcomes in this devastating disease and positively impacting gynecologic oncologic

care. Our pilot investigation into identification of microbial features that are associated with

OC which may have diagnostic potential warrants further investigations on the benefits of

adding peritoneal fluid microbial profiling to existing tool sets for improving early detection

and development of effective treatments of OC.
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