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Two draft genomes affiliated with Smithella spp. were obtained from a methanogenic alkane-degrading enrichment culture by
single-cell sorting and metagenome contig binning, and a third was obtained by single-cell sorting of oil field produced water.
Two genomes contained putative assABC genes encoding alkylsuccinate synthase, indicating genetic potential for fumarate acti-
vation of alkanes.
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Smithella and Syntrophus (Syntrophaceae) have been impli-
cated in long-chain n-alkane degradation by methanogenic

communities (1, 2) but few have been cultivated (2) or se-
quenced. The sole draft Smithella genome (Smithella ME-1;
NZ_AWGX00000000.1) was coassembled from single cells sorted
from a methanogenic n-hexadecane-degrading culture (3), but
the genome of the cultivated type strain, Smithella propionica LYP,
has not been sequenced (4). A complete Syntrophus genome is
available (S. aciditrophicus SB; NC_007759.1) but it harbors no
known genes for anaerobic hydrocarbon biodegradation. Thus,
additional genomes from these bacterial genera would contribute
to understanding hydrocarbon bioremediation under anaerobic
conditions.

Single-cell sorting (http://www.bigelow.org) of a methano-
genic alkane-degrading culture (SCADC) (5) and produced water
from an oil field in southern Alberta (6) yielded two single cells
(SC-F21 and SC-D17, respectively) affiliated with Smithella. These
were subjected to multiple displacement amplification and se-
quenced as single-cell amplified genomes (SAGs) using Illumina
Mi-Seq (7), and then assembled de novo using CLC Genomics
Workbench (CLC-Bio, USA) with a k-mer size of 40. A third draft
genome was obtained by binning SCADC metagenome contigs
(5) using sequence homology- and composition-based methods.
All genomes were subjected to sequence decontamination (7) and
annotated using RAST (8).

The SC-D17 draft genome is 1.6 Mbp on 271 scaffolds with
43% GC content, whereas SC-F21 is 1.6 Mbp on 245 scaffolds with
50% GC content. The SCADC draft genome is ~3.3 Mbp on 247
scaffolds (1,000 –74,000 bp) with 44% GC content. Alignment and
classification of the16S rRNA gene sequence (Silva Aligner)
(http://www.arb-silva.de/aligner/) indicated �98% similarity to
Smithella, supported by phylogenetic analysis placing SC-D17,
SC-F21, and SCADC within the Smithella-affiliated clade (2).
Therefore, the two SAGs were named Smithella sp. SC-D17 and
Smithella sp. SC-F21, and the SCADC binned genome was named

Smithella sp. SCADC. Two-way average nucleotide identity anal-
ysis between Smithella ME-1 (NZ_AWGX00000000.1) and the
three new draft genomes (1000-bp window read size) revealed
high similarity to Smithella SC-D17 (1524 fragments; 82% simi-
larity) and Smithella SCADC (2842 fragments; 86% similarity) but
lower pairwise similarity to Smithella SC-F21 (98 fragments; 85%
similarity). Comparison of single-copy gene numbers in the draft
genomes to Smithella aciditrophicus SB (NC_007759.1) indicates
that the Smithella SC-D17 and SC-F21 genomes are partially
(�70%) complete and Smithella SCADC is nearly (�95%) com-
plete.

Sequence homologs of assA involved in alkane activation un-
der sulfate- and nitrate-reducing conditions by Desulfatibacillum
alkenivorans AK-01 and Azoarcus sp. HxN1, respectively (9, 10),
were detected in Smithella spp. ME-1 (3, 11), SCADC (11), and
SC-D17, but not SC-F21. In Smithella spp. SCADC and SC-D17,
assA is present in gene clusters containing assB, assC, and masE
homologs encoding alkylsuccinate synthase subunits (9, 10). The
dsrAB and dsrMKJOP genes crucial for sulfate reduction were not
detected in the three draft genomes, implying the inability to re-
duce sulfate, as in S. aciditrophicus SB (12). Whole-genome com-
parison is under way to study the functional roles of Smithella spp.
in methanogenic alkane degradation.

Nucleotide sequence accession numbers. The whole-genome
shotgun projects for Smithella sp. SC-F21, Smithella sp. SC-D17,
and Smithella sp. SCADC have been deposited at DDBJ/EMBL/
GenBank under accession numbers JQIE00000000, JQOA00000000,
and JQDQ00000000, respectively. The versions described in this
paper are versions JQIE01000000, JQOA01000000, and
JQDQ01000000.
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