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Abstract: Although docetaxel-based regimens are common and effective for early-stage triple-
negative breast cancer (TNBC) treatment, acquired drug resistance frequently occurs. Therefore,
a novel therapeutic strategy for docetaxel-resistant TNBC is urgently required. Signal transducer
and activator of transcription 3 (STAT3) plays a pivotal role in the tumorigenesis and metastasis
of numerous cancers, and STAT3 signaling is aberrantly activated in TNBC cells. In this study, a
docetaxel-resistant TNBC cell line (MDA-MB-231-DTR) was established, and mechanisms for the an-
titumor activity of pulvomycin, a novel STAT3 inhibitor isolated from marine-derived actinomycete,
were investigated. Levels of activated STAT3 (p-STAT3 (Y705)) increased in docetaxel-resistant cells,
and knockdown of STAT3 recovered the sensitivity to docetaxel in MDA-MB-231-DTR cells. Pul-
vomycin effectively inhibited the proliferation of both cell lines. In addition, pulvomycin suppressed
the activation of STAT3 and subsequently induced G0/G1 cell cycle arrest and apoptosis. Pulvomycin
also significantly inhibited the invasion and migration of MDA-MB-231-DTR cells through the modu-
lation of epithelial-mesenchymal transition markers. In an MDA-MB-231-DTR-bearing xenograft
mouse model, the combination of pulvomycin and docetaxel effectively inhibited tumor growth
through STAT3 regulation. Thus, our findings demonstrate that the combination of docetaxel and
STAT3 inhibitors is an effective strategy for overcoming docetaxel resistance in TNBC.

Keywords: signal transducer and activator of transcription 3; triple-negative breast cancer; resistance;
metastasis; docetaxel; pulvomycin

1. Introduction

Although cancer mortality rate has steadily decreased due to improvements in early
diagnosis, the five-year survival rate for some types of cancers is unsatisfactory owing to
a lack of specific therapeutic options [1,2]. Approximately 30% of all cancers in women
are breast cancer (BC) and BC is the second leading cause of cancer-related mortality in
women [3,4]. Resection surgery, radiation therapy, and conventional chemotherapies are
the most common and effective therapeutic strategies for early-stage BC. Among newly
diagnosed BCs, approximately 20% are referred to as triple-negative breast cancer (TNBC),
which is absent of hormone receptors (estrogen receptor and progesterone receptor) and
human epithelial growth factor receptor 2. TNBC is the most aggressive cancer type, with
a high recurrence rate and high intractability because they do not respond to targeted
therapies for hormone receptors [5,6]. Cytotoxic chemotherapies based on taxanes (e.g., pa-
clitaxel and docetaxel) are a mainstay of TNBC treatment; docetaxel is more frequently
used not only because of its higher activity but also its convenient dosing schedule [7,8].
However, taxanes are reported to cause severe side effects, such as temporary hair loss,
vomiting, and peripheral neuropathy, due to their relatively low selectivity for cancer cells
compared with normal cells [9]. Moreover, long-term treatment with taxanes is limited
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due to the emergence of acquired resistance within the treatment period [10,11]. Therefore,
novel therapeutic strategies for patients with taxane resistance are urgently required.

Signal transducer and activator of transcription 3 (STAT3), a transcription factor and
signaling molecule, regulates the transcription of genes involved in various cellular func-
tions [12,13]. Mounting evidence suggests that STAT3 is overexpressed in TNBC cells
and plays a pivotal role in their survival, progression, and metastasis [14,15]. Hence, the
regulation of STAT3 signaling with STAT3 inhibitors might benefit patients with TNBC who
do not respond to cytotoxic chemotherapies. Furthermore, recent studies have reported
that (i) STAT3 inhibition can potentiate the antitumor activity of cisplatin [16]; (ii) in-
hibitor of Janus kinase 2 (JAK2) blocks STAT3 activation and, thus, overcome tamoxifen
resistance [17]; and (iii) activation of STAT3 induces resistance to many targeted cancer
therapies [18]. Therefore, we hypothesized that targeting STAT3 signaling is a promising
approach for overcoming acquired-chemoresistance in TNBC. However, STAT3 inhibitors
are not FDA-approved for TNBC due to lack of potency [19].

Pulvomycin was originally discovered as a macrolide antibiotic from Streptomyces
sp. [20]. Even though it was reported that pulvomycin prevents bacterial translational
elongation factor as a promising antimicrobial compound [21], its anticancer activity has
been poorly studied. Previously, we isolated the macrocyclic lactone pulvomycin along
with new congeners pulvomycins B-D from the marine-derived actinomycete Streptomyces
sp. HRS33, which were collected from an estuary between the Han River and the Yellow
Sea in the Republic of Korea [22]. Pulvomycin exhibited potent growth inhibitory activity
against a panel of cancer cells with IC50 values of 0.8–4.1 µM [22]. However, molecular
mechanisms involved in the antiproliferative activity of pulvomycin and whether it can
affect resistant cancer cells have not been elucidated. Given the remarkable effect of
pulvomycin on cancer cell growth, we have evaluated its activity on docetaxel-resistant
TNBC cells.

Here, we present evidence supporting the role of STAT3 signaling in docetaxel-
resistant TNBC cells. Moreover, we report a novel STAT3 inhibitor, pulvomycin, which
exhibits promising antitumor activity against docetaxel-resistant TNBC cells both in in vitro
cell culture and in vivo xenograft models. We further demonstrated that combining pul-
vomycin and docetaxel resulted in overcoming docetaxel resistance. These findings in-
dicate that STAT3 can be used as a novel and promising target for treating docetaxel-
resistant TNBC.

2. Materials and Methods
2.1. Kaplan–Meier Plotter Analysis

The Kaplan–Meier Plotter (http://kmplot.com/analysis/) is an online database of
published microarray datasets that assesses the effect of 54 k genes (mRNA, miRNA, and
protein) on survival in 21 cancer types. In this study, the Kaplan–Meier Plotter was used
to evaluate the overall survival (OS) of patients with breast cancer. Hazard ratios (HRs)
with 95% confidence intervals (CIs) and log rank p-values were also computed (access date:
21 December 2020).

2.2. Cell Culture and Chemicals

The human breast epithelial cell line (MCF10A) and human TNBC cell lines (Hs578T,
MDA-MB-231, HCC38, and HCC1937) were provided by the American Type Culture Col-
lection (Manassas, VA, USA). The docetaxel-resistant cell line MDA-MB-231-DTR was
generated in vitro by culturing MDA-MB-231 cells with increasing doses (0.02–2 µM) of
docetaxel. MCF10A cells were cultured in Dulbecco’s modified Eagle’s medium/Nutrient
Mixture F-12 containing 5% donor horse serum, 100 ng/mL cholera toxin, 10 µg/mL human
insulin, 20 ng/mL epidermal growth factor, 0.5 µg/mL hydrocortisone, and penicillin–
streptomycin (sodium penicillin G: 100 units/mL; streptomycin: 100 µg/mL). TNBC cells
were cultured in media, namely Dulbecco’s modified Eagle’s medium for MDA-MB-231
and Hs578T cells and Roswell Park Memorial Institute 1640 medium for HCC38 and
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HCC1937 cells, supplemented with penicillin–streptomycin and 10% fetal bovine serum
at 37 ◦C in a humidified incubator with 5% carbon dioxide [23]. All reagents used for cell
culture, including culture media, fetal bovine serum, trypsin-EDTA solution (1×), and
penicillin–streptomycin solution (100×), were purchased from Gibco (Grand Island, NY,
USA). Laemmli sample buffer (2×) and 2-mercaptoethanol were purchased from Bio-Rad
Laboratories, Inc. (Hercules, CA, USA). Dimethyl sulfoxide (DMSO), bicinchoninic acid,
copper (II) sulfate solution, bovine serum albumin (BSA), trichloroacetic acid, sulforho-
damine B (SRB), and docetaxel were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.3. Western Blot Analysis

Total cell lysates were prepared in 2× sample loading buffer (250 mM Tris-HCl
(pH 6.8), 10% glycerol, 4% sodium dodecyl sulfate (SDS), 2% β-mercaptoethanol, 0.006%
bromophenol blue, 5 mM sodium orthovanadate, and 50 mM sodium fluoride; Bio-Rad,
Hercules, CA, USA). Protein concentrations were quantified through the BCA method [24]
using the BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Equal
amounts of protein (5–20 µg) were separated using 6–13% SDS-polyacrylamide gel elec-
trophoresis (PAGE) and transferred to polyvinylidene fluoride membranes (Millipore,
Bedford, MA, USA). The membranes were blocked with 5% BSA (Sigma-Aldrich) and
probed with anti-phospho-STAT3 (Y705), anti-STAT3, anti-cyclin E, anti-CDK2, anti-cyclin
D1, anti-CDK4, anti-CDK6, anti-survivin, anti-cleaved caspase-9, anti-cleaved caspase-3,
anti-cleaved PARP (D214), and anti-vimentin antibodies (Cell Signaling Technology, Bev-
erly, MA, USA); anti-β-actin horseradish peroxidase antibody (Santa Cruz Biotechnology,
Dallas, TX, USA); anti-E-cadherin and anti-N-cadherin antibodies (BD Biosciences, San
Jose, CA, USA); or anti-Ki-67 antibody (Abcam, Cambridge, UK). The blots were detected
using the WEST-Queen detection system (iNtRON Biotechnology, Seongnam, Korea) [25].

2.4. SRB Assay (Cell Proliferation Assay)

Cell proliferation was evaluated using the SRB assay [26]. Briefly, cells were seeded
in 96-well plates and incubated for 30 min (for zero-day controls) or treated with test
compounds for 72 h. After incubation, cells were fixed, dried, and stained with 0.4% (w/v)
SRB in 1% (v/v) acetic acid. The unbound dye was removed by washing, and stained
cells were resuspended in 10 mM Tris (pH 10.0). Cell proliferation was determined by
measuring the absorbance at 515 nm.

2.5. Plasmid Transfection

The TurboFectin Transfection Reagent (#TF81001; Origene, Rockville, MD, USA) was
used to transfect parental MDA-MB-231 cells with pCMV6-STAT3 (#RC215836; Origene) or
the pCMV6-Entry control vector (#PS100001; Origine). All transfection procedures were
performed according to the manufacturer’s protocol. After 48 h, MDA-MB-231 cells were
harvested for protein isolation.

2.6. MTT Assay (Cell Viability Assay)

Cell viability was evaluated using the MTT assay. Briefly, cells were seeded in 96-
well plates. On the next day, cells were treated with the indicated concentrations of
test compounds and incubated for 72 h. IC50 values were calculated through non-linear
regression analysis using the TableCurve 2D v5.01 software (Systat Software Inc., San
Jose, CA, USA). The combination effect was evaluated through combination index (CI)
values, which were calculated as follows: CI = D1/(Dx)1 + D2/(Dx)2. D1 and D2 are the
concentrations of the combined test compounds that achieve the expected effect. (Dx)1 and
(Dx)2 are the concentrations that achieve similar effects when test compounds are used
alone. CI values were compared with reference values according to Chou [27].
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2.7. RNA Interference

RNA interference for STAT3 was performed using siRNA duplexes purchased from
Bioneer Corporation (Daejeon, Korea). The coding strand for STAT3 was designed as
follows: #1-sense CUC CAA CAU CUG UCA GAU G and antisense CAU CUG ACA
GAU GUU GGA G; #2-sense UGU UCU CUG AGA CCC AUG A and antisense UCA
UGG GUC UCA GAG AAC A; and #3-sense CUA UCU AAG CCC UAG GUU U and
antisense AAA CCU AGG GCU UAG AUA G. MDA-MB-231-DTR cells were transfected
with 10 nM siRNA duplexes using Lipofectamine RNAiMAX (Invitrogen, Grand Island,
NY, USA) according to the manufacturer’s recommendations. Cells transfected with a
control non-specific siRNA duplex were used as controls for direct comparison. After 48 h,
MDA-MB-231-DTR cells were harvested for protein isolation.

2.8. Cell Cycle Analysis

Cell cycle dynamics were measured using flow cytometry. MDA-MB-231-DTR cells
were treated with either vehicle (DMSO) or pulvomycin in a complete medium for the
times indicated. After incubation, all adherent and floating cells were collected, washed
twice with phosphate-buffered saline (PBS), and fixed in 70% cold ethanol overnight at
−20 ◦C. The fixed cells were washed with cold PBS, resuspended in 100 µg/mL of RNase
A in a shaker for 30 min, and stained with 50 µg/mL PI in the dark. Then, the fluorescence-
activated cells were sorted, and their cellular DNA content was analyzed using a flow
cytometer (FACSCalibur flow cytometer; BD Biosciences, San Jose, CA, USA). Data were
calculated using the CellQuest v3.0.1 software (BD Biosciences), and distributions of cells
in each phase of the cell cycle were displayed as histograms.

2.9. Annexin V-Fluorescein Isothiocyanate and PI Double Staining

MDA-MB-231-DTR cells were treated with pulvomycin for 48 h in complete medium
and then stained with Annexin V-fluorescein isothiocyanate (V-FITC) and PI using the
Annexin V-FITC apoptosis detection kit (BD Biosciences, San Jose, CA, USA) according
to the manufacturer’s recommendations. Briefly, the incubated cells were harvested,
washed twice in cold PBS, resuspended in 1× binding buffer, and treated with Annexin
V-FITC and PI in the dark for 15 min. The stained cells were resuspended in 1× binding
buffer and immediately analyzed using a flow cytometer (FACSCalibur flow cytometer;
BD Biosciences).

2.10. Transwell Cell Invasion Assay

Twenty-four-well Transwell membrane inserts (diameter: 6.5 mm, pore size: 8 µm;
Corning, Tewksbury, MA, USA) were coated with 10 µL of type I collagen (0.5 mg/mL, BD
Biosciences, San Diego, CA, USA) and 20 µL of a 1:20 mixture of Matrigel (BD Biosciences)
in PBS. After treatment with the indicated compounds for 24 h, MDA-MB-231 human TNBC
cells (parent or docetaxel resistant) were harvested, resuspended in serum-free medium,
and plated (2 × 105 cells/chamber) in the upper chamber of the Matrigel-coated Transwell
insert. Media containing 30% FBS were used as the chemoattractant in the lower chamber.
After 24 h incubation, cells that had invaded outer surfaces of lower chambers were fixed
and stained using the Diff-Quik Staining Kit (Sysmex, Kobe, Japan) and imaged using the
Vectra v3.0 Automated Quantitative Pathology Imaging System (Perkin Elmer, Waltham,
MA, USA). Representative images from three separate experiments were evaluated, and the
number of invasive cells was semi-quantified using the ImageJ v1.52a software (National
Institutes of Health, Bethesda, MD, USA) [28].

2.11. Wound Healing Assay (Cell Migration Assay)

MDA-MB-231 human TNBC cells (parent or docetaxel resistant) were grown to 90%
confluence in a six-well plate. Subsequently, the cell monolayer was artificially wounded
using the SPL ScarTM Scratcher (SPL Life Sciences, Pocheon, Korea), and detached cells
were removed after washing with PBS. Wounded cell cultures were then incubated with
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media containing 1% FBS and various concentrations of pulvomycin for 24 h. Wounds
were photographed at 0 and 24 h under an inverted microscope (Olympus, Tokyo, Japan).
Wound areas were quantified using the ImageJ v1.52a software and presented as percent
cell migration (%) relative to the wound area at 0 h [29].

2.12. In Vivo Tumor Xenograft Model

All animal experiments were conducted according to the guidelines approved by
the Seoul National University Institutional Animal Care and Use Committee (IACUC;
permission number: SNU-200309-8, approval date: 25 March 2020). Female nude mice
(BALB/c-nu, aged 4–5 weeks, weighing 18 g) were purchased from Central Laboratory
Animal, Inc. (Seoul, Korea) and housed under pathogen-free conditions with a 12-h light–
dark schedule. MDA-MB-231 or MDA-MB-231-DTR cells were injected subcutaneously
into the flanks of mice (4 × 106 cells in 200 µL PBS), and tumors were allowed to grow for
10 days until tumor volume reached approximately 100 mm3. The mice were randomized
into vehicle control and treatment groups (n = 6) [30]. Vehicle control (normal saline
with 0.5% (w/v) Tween 80), docetaxel (10 mg/kg body weight), pulvomycin (10 mg/kg
body weight), or a combination of docetaxel (10 mg/kg body weight) and pulvomycin
(10 mg/kg body weight) was administered intraperitoneally (i.p.) three times per week for
24 days; mice were euthanized 1 week later. Tumors were excised, weighed, and frozen for
biochemical analysis. Tumor volume was measured using an electronic caliper according to
the following formula: tumor volume (mm3) = 3.14 × length × width × height/6. Toxicity
was evaluated based on body weight loss.

2.13. Ex Vivo Biochemical Analyses of Tumors

A portion of the frozen tumors excised from nude mice on the termination day of the
experiment was homogenized using the BioMasher-II (Optima, Tokyo, Japan) in Complete
Lysis Buffer (Active Motif, Carlsbad, CA, USA). Aliquots were stored at −80 ◦C. Protein
expression in tumor lysates was quantified using the Bradford assay [31].

2.14. Statistical Analysis

Data are presented as the mean values ± standard deviation (SD) for the indicated
number of independently performed experiments. Statistical significance (* p < 0.05,
** p < 0.01, and *** p < 0.001) was evaluated using Student’s t-test or one-way analysis of
variance coupled with Dunnett’s t-test.

3. Results
3.1. The Effects of Pulvomycin on p-STAT3 Expression Levels and Proliferation of Human
TNBC Cells

To confirm the involvement STAT3 in TNBC, the clinical significance of STAT3 ex-
pression in patients with BC and TNBC was analyzed for overall survival (OS) using the
Kaplan−Meier method. The auto-select best cutoff method was used to classify patients
with breast cancer. As shown in Figure 1A,B, high levels of STAT3 expression were associ-
ated with a decreased probability for OS compared with low levels of STAT3 expression in
both patients with BC and TNBC. These data indicate that in patients with TNBC, OS is
inversely correlated with levels of STAT3 expression; thus, STAT3 might be a therapeutic
target for TNBCs. Since STAT3 signaling is highly associated with TNBC cell prolifera-
tion [14], basal expression levels of activated-STAT3 (p-STAT3 [Y705]) were analyzed in a
panel of TNBC cell lines (Figure 1C). All tested TNBC cell lines (Hs578T, MDA-MB-231,
HCC38, and HCC1937) exhibited markedly higher p-STAT (Y705) expression when com-
pared to the normal breast epithelial cell line (MCF10A). In particular, MDA-MB-231 cells
exhibited the highest expression level of p-STAT3 (Y705); hence, the MDA-MB-231 cell
line was selected as a representative cell line for TNBC in subsequent experiments for
evaluating the effect of pulvomycin (Figure 1D). First, we assessed the effect of pulvomycin
on the proliferation of TNBC cell lines. Pulvomycin exhibited potent antiproliferative
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activity against all tested TNBC cell lines (Table 1). In addition, the antiproliferative activity
of pulvomycin against MCF10A was up to 20-fold lower than that against TNBC cells,
which indicates that pulvomycin exhibits a relatively selective antiproliferative activity
against TNBC cells compared with normal breast cells. STAT3 signaling is activated by the
direct phosphorylation of a specific tyrosine residue (Y705) [32]. To confirm whether the
antiproliferative activity of pulvomycin in TNBC cells is associated with STAT3 signaling,
levels of p-STAT3 (Y705) expression in pulvomycin-treated MDA-MB-231 cells were evalu-
ated through Western blot analysis. As shown in Figure 1E, the levels of p-STAT3 (Y705)
were downregulated by pulvomycin in a concentration-dependent manner.
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Figure 1. Relationship between signal transducer and activator of transcription 3 (STAT3) expression
and overall survival (OS) in breast cancer, and the effect of pulvomycin on p-STAT3 in MDA-MB-231
cells. (A) The Kaplan–Meier survival curve for breast cancer-associated OS with STAT3 expression.
(B) The Kaplan–Meier survival curve for TNBC-associated OS with STAT3 expression. (C) Levels
of p-STAT3 expression in several TNBC cell lines were analyzed using Western blot analysis. β-
Actin was used as an internal control. (D) Chemical structure of pulvomycin (E) MDA-MB-231
cells were treated with the indicated concentrations of pulvomycin for 24 h, and levels of p-STAT3
(Y705) and STAT3 expression were determined using Western blot analysis. β-Actin was used as an
internal control.
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Table 1. Antiproliferative activities of pulvomycin against human triple-negative breast cancer
(TNBC) cell lines.

IC50 (µM) a MCF10A Hs578T MDA-MB-231 HCC38 HCC1937

Pulvomycin 18.62 1.11 0.92 1.32 1.03
Docetaxel b 0.23 0.01 0.02 0.02 0.05

a Results are expressed as the calculated half maximal inhibitory concentration (IC50) of test compounds (µM)
treated for 72 h. b Docetaxel was used as a positive control.

3.2. Establishment of Docetaxel-Resistant MDA-MB-231 Cells and Involement of STAT3 in
Docetaxel Resistance

Clinical evidence suggests that acquired resistance to previously treated chemothera-
peutics is the major cause of treatment failure [33,34]. Although docetaxel elicits favorable
initial responses against patients with TNBC, acquired resistance to docetaxel occurs after
one year of treatment [35]. To further elucidate mechanisms of docetaxel resistance in
TNBC cells, docetaxel-resistant MDA-MB-231 cells (MDA-MB-231-DTR) were established
through continuous exposure of drug-sensitive MDA-MB-231 cells to docetaxel. MDA-MB-
231-DTR cells exhibited approximately 90-fold resistance to docetaxel compared to parental
MDA-MB-231 cells (Table 2). However, pulvomycin exerted potent antiproliferative ac-
tivity with similar IC50 values in both cell lines. These data suggest that pulvomycin can
overcome docetaxel resistance in MDA-MB-231-DTR cells. STAT3 signaling was reported
to mediate drug resistance in various types of cancers [16–18]. Therefore, we evaluated
levels of p-STAT3 (Y705) expression to confirm whether STAT3 signaling is involved in
docetaxel resistance. MDA-MB-231-DTR cells exhibited p-STAT3 (Y705) overexpression
compared to their parent cells; p-STAT3 (Y705) overexpression was effectively reverted by
treatment with pulvomycin for 24 h (Figure 2A). To validate whether acquired resistance
to docetaxel in human TNBCs is associated with STAT3 expression, docetaxel sensitive
MDA-MB-231 cells were transfected with the STAT3 plasmid. The cytotoxic effect of
docetaxel decreased in STAT3-induced cells compared to control vector-transfected cells
(Figure 2B,C). By contrast, STAT3 knockdown in docetaxel-resistant MDA-MB-231 cells
with STAT3 siRNA recovered their sensitivity against docetaxel (Figure 2D,E). These data
support the hypothesis that STAT3 plays a critical role in the docetaxel resistance of TNBC
cells. We further evaluated whether pulvomycin could resensitize resistant cells to doc-
etaxel. Treatment with docetaxel and pulvomycin exhibited higher antiproliferative activity
compared to treatment with either drug alone, and the synergistic effects were calculated
through CI analysis using the Chou–Talalay method [27] (Figure 2F).

Table 2. Drug resistance profiles of MDA-MB-231 cells with resistance to docetaxel.

IC50 (µM) a MDA-MB-231 MDA-MB-231-DTR Fold Difference b

Pulvomycin 1.01 1.08 1.07
Docetaxel 0.02 1.83 91.50

a Results are expressed as the calculated half maximal inhibitory concentration (IC50) of test compounds (µM)
treated for 72 h. b The fold difference was calculated as the ratio of IC50 values between docetaxel-resistant-MDA-
MB-231 and parent MDA-MB-231 cells.
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on the viability of human triple-negative breast cancer (TNBC) cells. (A) Cells were treated with the
indicated concentrations of pulvomycin for 24 h, and levels of p-STAT3 (Y705) and STAT3 expression
were determined using Western blot analysis. β-Actin was used as an internal control. (B) Western
blot analysis of STAT3 expression in MDA-MB-231 cells 48 h after transfection with the control vector
or STAT3 plasmid. β-Actin was used as an internal control. Relative intensities of indicated proteins
were semi-quantitatively analyzed using NIH’s ImageJ v1.52a software. (C) The effect of docetaxel
on the viability of MDA-MB-231 cells with the overexpression of STAT3. Cells transfected with
either control vector or STAT3 plasmid were treated with various concentrations of docetaxel for
72 h, and cell viability was measured using the MTT assay. Data are presented as the mean ± SD
(n = 3). * p < 0.05 and ** p < 0.01 compared with the vector-transfected control. (D) MDA-MB-231-
DTR cells were transfected with scrambled siRNA or STAT3 siRNA for 48 h, and levels of STAT3
expression were determined using Western blot analysis. β-Actin was used as an internal control.
Relative intensities of indicated proteins were semi-quantitatively analyzed using NIH’s ImageJ
v1.52a software. (E) The effect of docetaxel on the viability of MDA-MB-231-DTR cells with the
knockdown of STAT3. Cells transfected with either scrambled siRNA or STAT3 siRNA #2 were
treated with various concentrations of docetaxel for 72 h, and cell viability was measured using
the MTT assay. Data are presented as the mean ± SD (n = 3). * p < 0.05 and ** p < 0.01 compared
with the vector-transfected control. (F) Cell viability was measured after combined pulvomycin and
docetaxel treatment for 72 h in MDA-MB-231-DTR cells. Based on cell viability results, CI values
were calculated to demonstrate the effect of the drug combination on MDA-MB-231-DTR cells.

3.3. Effects of Pulvomycin on Cell Cycle Regulation and Apoptosis in MDA-MB-231-DTR Cells

The eukaryotic cell cycle is a series of events through which cells progress and divide.
However, this universal process is aberrantly accelerated in most cancer cells [36,37]. In
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human TNBC cells, the activation of STAT3 signaling is closely related to cell cycle dysreg-
ulation; thus, inhibition of activated STAT3 might result in cell cycle arrest [38]. To confirm
that the antiproliferative activity of pulvomycin is associated with STAT3-mediated cell
cycle arrest, cell cycle phase distribution was determined using flow cytometry. Treatment
with pulvomycin (1, 2, or 4 µM) for 24 h considerably increased the cell population in
G0/G1 phase from 50.68% (control) to 75.62% (4 µM) (Figure 3A,B). The sequential activa-
tion of cyclin/CDK complexes regulates cell cycle progression [39,40]. To confirm whether
the effect of pulvomycin on G0/G1 arrest is related to the regulation of cyclins and CDKs,
levels of cyclins and CDKs involved in G0/G1 phase regulation were analyzed by Western
blotting. As shown in Figure 3C, pulvomycin-treated MDA-MB-231-DTR cells exhibited a
considerable decrease in the levels of all cyclins (cyclins E and D1) and CDKs (CDK2, CDK4,
and CDK6). STAT3 signaling is also associated with apoptosis control in cancer cells [41,42].
Cells were treated with pulvomycin for 48 h, and cell cycle distribution was analyzed
using flow cytometry. As depicted in Figure 4A,B, the population of cells in the sub-G1
phase (apoptotic cells) increased to 3.04%, 4.11%, and 26.06% after treatment with 1 µM,
2 µM, and 4 µM of pulvomycin for 48 h, respectively. These data suggest that prolonged
exposure to pulvomycin may induce apoptosis in MDA-MB-231-DTR cells. To support this
hypothesis, we performed flow cytometric analysis after double staining cells with Annexin
V-FITC/PI. As shown in Figure 4C,D, populations of apoptotic cells, including those in
early and late apoptosis, increased after treatment with pulvomycin for 48 h. To further
confirm whether the induction of apoptosis by pulvomycin correlates with the regulation
of apoptosis-related proteins, we performed Western blot analysis. Pulvomycin treatment
for 48 h downregulated levels of survivin, a member of the inhibitors of apoptosis protein
family, and upregulated levels of cleaved caspase-9, cleaved caspase-3, and cleaved poly
(ADP-ribose) polymerase (PARP) (Figure 4E).
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Figure 3. Effects of pulvomycin on cell cycle regulation. (A,B) MDA-MB-231-DTR cells were treated
with the indicated concentrations of pulvomycin for 24 h and fixed with 70% ethanol for 24 h. Cell
cycle distribution was determined in cells incubated with RNase A and PI for 30 min using flow
cytometry. Data are presented as the mean ± SD (n = 3). * p < 0.05 and ** p < 0.01 compared with the
control. (C) MDA-MB-231-DTR cells were treated with the indicated concentrations of pulvomycin
for 24 h, and levels of cyclin E, CDK2, cyclin D1, CDK4, and CDK6 expression were determined
using Western blot analysis. β-Actin was used as an internal control.
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Figure 4. Effects of pulvomycin on apoptotic cell death. (A,B) MDA-MB-231-DTR cells were treated
with the indicated concentrations of pulvomycin for 48 h and fixed with 70% ethanol for 24 h. After
incubation with RNase A and PI for 30 min, cell cycle distribution was determined using flow
cytometry. Data are presented as the mean ± SD (n = 3). ** p < 0.01 and *** p < 0.001 compared
with the control. (C,D) MDA-MB-231-DTR cells were treated with the indicated concentrations of
pulvomycin for 48 h and stained with Annexin V-fluorescein isothiocyanate (V-FITC) and PI. Annexin
V/PI-positive cells were analyzed using flow cytometry to evaluate the apoptotic cell population.
Data are presented as the mean ± SD (n = 3). * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the
control. (E) MDA-MB-231-DTR cells were treated with the indicated concentrations of pulvomycin
for 48 h, and levels of survivin, cleaved caspase-9, cleaved caspase-3, and cleaved poly (ADP-ribose)
polymerase (PARP) (D214) expression were determined using Western blot analysis. β-Actin was
used as an internal control.

3.4. Effects of Pulvomycin on Cell Invasion, Migration, and Epithelial-Mesenchymal Transition in
MDA-MB-231-DTR Cells

Metastasis is responsible for almost 90% of cancer-related deaths, and BC is one of the
most metastatic cancers, with metastasis rates reaching approximately 40% [43]. Moreover,
metastatic potential increases when cancer cells acquire resistance [44]. Because STAT3
target genes are involved in critical steps of metastasis [45], the metastatic potential of MDA-
MB-231-DTR cells was evaluated by analyzing epithelial-mesenchymal transition (EMT)
biomarkers. In docetaxel-resistant MDA-MB-231 cells, E-cadherin (an epithelial marker
for cell junctions) was downregulated, whereas N-cadherin (a mesenchymal marker) was
upregulated. These aberrantly regulated EMT biomarkers were considerably downreg-
ulated by pulvomycin (Figure 5A). To further investigate the effects of pulvomycin on
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cancer cell metastasis, Transwell invasion and migration (wound healing) assays were per-
formed. Consistently, MDA-MB-231-DTR cells exhibited increased invasion and migration,
which were inhibited by treatment with pulvomycin for 24 h (Figure 5B,C). Taken together,
these data indicate that pulvomycin exhibits anti-invasive and antimigration activities by
regulating EMT biomarkers in docetaxel-resistant TNBC cells.
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Figure 5. The effects of pulvomycin on epithelial-mesenchymal transition (EMT)-mediated cell
invasion and migration. (A) The cells were treated with the indicated concentrations of pulvomycin
for 24 h, and levels of p-STAT3 (Y705), STAT3, E-cadherin, N-cadherin, and vimentin expression
were determined using Western blot analysis. β-Actin was used as an internal control. (B) The cells
were pretreated with pulvomycin at the indicated concentration for 24 h, reseeded into the upper
chambers of Transwell inserts, and incubated for 24 h. Cells that invaded the lower chambers were
fixed, stained, imaged (left), and quantified using NIH’s ImageJ v1.52a software (right). Data are
presented as the mean ± SD (n = 3). *** p < 0.001 compared with the control. (C) Cell monolayers
were mechanically scratched and treated with pulvomycin for 24 h. Representative light microscopy
images of wound closure are shown (left). Wound areas were quantified using NIH’s ImageJ v1.52a
software (right). Data are presented as the mean ± SD (n = 3). ** p < 0.01 and *** p < 0.001 compared
with the control.

3.5. Antitumor Activity of Pulvomycin in an MDA-MB-231-DTR Cell-Implanted Xenograft
Mouse Model

To further confirm the synergistic effect of pulvomycin and docetaxel on the growth
of resistant tumors, antitumor activity was evaluated using a xenograft mouse model
implanted with MDA-MB-231 or MDA-MB-231-DTR cells. When the tumor volume
reached approximately 100 mm3, either vehicle (normal saline with 0.5% (w/v) Tween 80),
docetaxel (10 mg/kg body weight), pulvomycin (10 mg/kg body weight), or a combination



Biomedicines 2021, 9, 436 12 of 15

of docetaxel (10 mg/kg body weight) and pulvomycin (10 mg/kg body weight) were
intraperitoneally administered three times a week for 24 days. Studies have shown that
MDA-MB-231 cells respond well to docetaxel in a xenograft mouse model [46,47]. By
contrast, our xenograft model, which was constructed using MDA-MB-231-DTR cells,
exhibited negligible inhibition of tumor growth by docetaxel, whereas tumor growth was
effectively suppressed by pulvomycin. Furthermore, the combination of pulvomycin
and docetaxel exhibited remarkable antitumor efficacy in vivo (Figure 6A). No change in
body weight and overt toxicity was observed in the drug-treated group compared to the
vehicle-treated control group (Figure 6B). Consistent with our in vitro findings, additional
biochemical analyses of MDA-MB-231 and MDA-MB-231-DTR tumor tissues from vehicle-
treated groups revealed that activated STAT3 (p-STAT3 (Y705)) is considerably upregulated
in resistant tumor tissues (Figure 6C). However, levels of p-STAT3 (Y705) and Ki-67,
a cell proliferation marker, were downregulated in pulvomycin single- and combined-
administration groups (Figure 6D). These results demonstrate that the combination of
pulvomycin and docetaxel is a potential therapeutic strategy for patients with docetaxel-
resistant TNBC.
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Figure 6. The combined administration of pulvomycin and docetaxel can overcome docetaxel
resistance in an in vivo xenograft model. (A) Tumor volumes of the MDA-MB-231-DTR xenograft
mouse model intraperitoneally administered vehicle, docetaxel, pulvomycin, or a combination of
docetaxel (10 mg/kg body weight) and pulvomycin (10 mg/kg body weight) three times per week
for 24 days were measured every 3–4 days with an electronic caliper. * p < 0.05, ** p < 0.01, and
*** p < 0.001 were compared with the vehicle-administered control group. (B) Mouse body weights
were measured every 3–4 days to assess general toxicity. (C) Small portions of tumor tissue from
each group were homogenized in complete lysis buffer (Active Motif). Levels of p-STAT3 (Y705) and
STAT3 expression were determined using Western blot analysis. β-Actin was used as an internal
control. (D) Small portions of tumor tissue from each group were homogenized in complete lysis
buffer (Active Motif). Levels of Ki-67, p-STAT3 (Y705), and STAT3 expression were determined using
Western blot analysis. β-Actin was used as an internal control.

4. Discussion

Despite improvements in early diagnosis techniques and the development of promis-
ing therapeutic strategies against cancer, cancer remains the major cause of death because
of the acquired resistance to drugs and metastasis to other organs [48,49]. Notably, TNBC is
the most recalcitrant type of cancer due to the absence of therapeutic targets. Docetaxel, a
wide range cytotoxic chemotherapeutic agent, is the most effective strategy for both early-
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and late-stage TNBC. However, most TNBCs exhibit a high recurrence rate and increased
resistance to docetaxel-based therapies [50]. Previously, we reported that STAT3 is overex-
pressed and aberrantly activated in human TNBC cells, and suggested that targeting STAT3
signaling using SLSI-1216, a potential STAT3 inhibitor, might be a compelling strategy for
treating TNBCs [15]. In other reports, STAT3 signaling was found to be highly involved in
the resistance of various cancer types [16–18]. However, the relationship between STAT3
and docetaxel resistance in TNBC is unclear. We hypothesize that the acquired resistance
to docetaxel in TNBC might be overcome by targeting STAT3.

In this study, we established a docetaxel-resistant human TNBC cell line, namely
MDA-MB-231-DTR, and found that STAT3 was abnormally activated in this resistant-
cell line compared to the docetaxel-sensitive TNBC cell line. As STAT3 inhibitors have
not been clinically approved for cancer therapy due to their relatively low potency or
nonselective toxicity or both [51], we used pulvomycin, a STAT3 inhibitor isolated from
marine-derived actinomycetes, to treat this aggressive type of cancer. Pulvomycin ex-
hibited relatively selective growth inhibitory activity against human TNBC cells, namely
Hs578T, MBA-MB-231, HCC38, and HCC1937, compared to normal epithelial breast cells
(MCF10A) (i.e., 14–20-fold higher sensitivity for TNBC cells). Furthermore, the growth of
the MDA-MB-231-DTR was effectively inhibited by pulvomycin. Analysis of the molecular
mechanism revealed that the antiproliferative activity of pulvomycin against MDA-MB-
231-DTR cells was partially associated with the induction of G0/G1 cell cycle arrest and
apoptotic cell death. In addition, the involvement of STAT3 in docetaxel resistance was
demonstrated using induction and knockdown experiments in TNBC cells.

Interestingly, the metastatic potential (invasion and migration) of docetaxel-resistant
cells increased, indicating that STAT3 might be involved in both the resistance and metastatic
potential of human TNBC cells. The increased metastatic potential was also effectively
suppressed by pulvomycin treatment through the regulation of STAT3-mediated EMT.
Given the remarkable activity of pulvomycin, we were intrigued with the possibility of its
mitigation effect on docetaxel-resistant TNBC cells. The combination of pulvomycin and
docetaxel had enhanced antiproliferative and antitumor activities both in vitro and in vivo.
The enhanced activities on cancer cell growth by pulvomycin were partly associated with
the inhibition of STAT3 activation. These results indicate that the use of the STAT3 inhibitor
in combination with docetaxel might be a worthy strategy for treating docetaxel-resistant
patients with TNBC. However, the detailed mechanisms of how pulvomycin regulate
STAT3 activity warrant further study.

In summary, activated-STAT3 signaling is a driver of acquired-resistance to docetaxel
in TNBC cells. Furthermore, the macrocyclic lactone pulvomycin is a novel STAT3 inhibitor
with potent antitumor and antimigration activities against TNBC cells. The molecular
mechanism of action for the activities of pulvomycin in docetaxel-resistant TNBC cells
involves STAT3-mediated cell cycle arrest, apoptosis induction, and EMT pathway regula-
tion. Thus, targeting STAT3 signaling through pulvomycin may be a plausible therapeutic
approach for treating docetaxel-resistant TNBC.
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