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Abstract We study the collective dynamics of a Leaky
Integrate and Fire network in which precise relative
phase relationship of spikes among neurons are stored,
as attractors of the dynamics, and selectively replayed
at different time scales. Using an STDP-based learning
process, we store in the connectivity several phase-
coded spike patterns, and we find that, depending
on the excitability of the network, different working
regimes are possible, with transient or persistent re-
play activity induced by a brief signal. We introduce
an order parameter to evaluate the similarity between
stored and recalled phase-coded pattern, and measure
the storage capacity. Modulation of spiking thresholds
during replay changes the frequency of the collective
oscillation or the number of spikes per cycle, keeping
preserved the phases relationship. This allows a coding
scheme in which phase, rate and frequency are disso-
ciable. Robustness with respect to noise and hetero-
geneity of neurons parameters is studied, showing that,
since dynamics is a retrieval process, neurons preserve
stable precise phase relationship among units, keeping
a unique frequency of oscillation, even in noisy condi-
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tions and with heterogeneity of internal parameters of
the units.
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1 Introduction

It has been hypothesized that, in many areas of the
brain, having different brain functionality, repeatable
precise spatiotemporal patterns of spikes play a crucial
role in coding and storage of information. Temporally
structured replay of spatiotemporal patterns have been
observed to occur during sleep, both in the cortex and
hippocampus (Nadasdy et al. 1999; Ji and Wilson 2007;
Euston et al. 2007; Lansink et al. 2009), and it has
been hypothesized that this replay may subserve mem-
ory consolidation. The sequential reactivation of hip-
pocampal place cells, corresponding to previously expe-
rienced behavioral trajectories, has been observed also
in the awake state (awake replay) (Diba and Buzsaki
2007; Davidson et al. 2009; Girardeau and Zugaro 2011;
Carr et al. 2011), namely during periods of relative im-
mobility. Awake replay may reflect trajectories through
either the current environment or previously, spatially
remote, visited environments. A possible interpretation
is that spatiotemporal patterns, stored in the plastic
synaptic connections of hippocampus, are retrieved
when a cue activates the emergence of a stored pattern,
allowing these patterns to be replayed and then consol-
idated in distributed circuits beyond the hippocampus
(Carr et al. 2011). Cross-correlogram analysis revealed
that in prefrontal cortex the time scale of reactiva-
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tion of firing patterns during post-behavioral sleep was
compressed five- to eightfold relative to waking state
(Euston et al. 2007; Schwindel and McNaughton 2011),
a similar compression effect may also be seen in pri-
mary visual cortex (Ji and Wilson 2007). Internally
generated spatiotemporal patterns have also been ob-
served in the rat hippocampus during the delay period
of a memory task, showing that the emergence of con-
sistent pattern of activity may be a way to maintain im-
portant information during a delay in a task (Pastalkova
et al. 2008).

Among repeating patterns of spikes a central role
is played by phase-coded patterns (Siegel et al. 2009;
Kayser et al. 2009; Montemurro et al. 2008), i.e. pat-
terns with precise relative phases of the spikes of neu-
rons participating to a collective oscillation, or precise
phases of spikes relatively to the ongoing oscillation.

First experimental evidence of the importance of
spike phases in neural coding was observed in ex-
periments on theta phase precession in rat’s place
cells (O’Keefe and Recce 1993; O’Keefe and Burgess
2005), showing that spike phase is correlated with
rat’s position. Recently, the functional role of oscilla-
tions in the hippocampal-entorinal cortex circuit for
path-integration has been deeply investigated (O’Keefe
and Recce 1993; Lengyel et al. 2005a; O’Keefe and
Burgess 2005; Euston et al. 2007; Geisler et al. 2007;
McNaughton et al. 2006), showing that place cells and
grid cells form a map in which precise phase relation-
ship among units plays a central role. In particular it
has been shown (Burgess et al. 2007; Blair et al. 2008;
Welday et al. 2011) that both spatial tuning and phase-
precession properties of place cells can arise when one
has interference among oscillatory cells with precise
phase relationship and velocity-modulated frequency.

Further evidence of phase coding comes from the
experiments on spike-phase coding of natural stimuli
in auditory and visual primary cortex (Montemurro
et al. 2008; Kayser et al. 2009), and from experiments
on short-term memory of multiple objects in prefrontal
cortices of monkeys (Siegel et al. 2009).

These experimental works support the hypothesis
that collective oscillations may underlie a phase depen-
dent neural coding and an associative memory behavior
which is able to recognize the phase coded patterns.

The importance of precise timing relationships
among neurons, which may carry information to be
stored, is supported also by the evidence that precise
timing of few milliseconds is able to change the sign of
synaptic plasticity (Markram et al. 2011). The depen-
dence of synaptic modification on the precise timing
and order of pre- and post-synaptic spiking has been
demonstrated in a variety of neural circuits of different

species. Many experiments show that a synapse can
be potentiated or depressed depending on the precise
relative timing of the pre- and post-synaptic spikes.
This timing dependence of magnitude and sign of plas-
ticity, observed in several types of cortical (Markram
et al. 1997; Feldman 2000; Sjostrom et al. 2001) and
hippocampal (Bi and Poo 1998; Magee and Johnston
1997; Sjostrom et al. 2001; Debanne et al. 1998; Bi
and Poo 2001) neurons, is usually termed Spike Timing
Dependent Plasticity (STDP).

The role of STDP has been investigated both in su-
pervised learning framework (Legenstein et al. 2005),
in unsupervised framework in which repeating patterns
are detected by downstream neurons (Masquelier et al.
2009, Gilson et al. 2011), cortical development (Song
and Abbot 2001), generation of sequences (Fiete et al.
2010; Verduzco-Flores et al. 2012) and polychronous
activity (Izhikevich 2006), and in an associative memory
framework with binary units (Scarpetta et al. 2011a, b).
However, this is the first time that this learning rule has
been used to make a IF network to work as associative
memory for phase-coded patterns of spike, each of
which becomes a dynamic attractor of the network.
Notably, in a phase coded pattern not only the order of
activation matters, but the precise spike timing intervals
between units.

We therefore present a possibility to build a circuit
with stable phase relationships between the spikes of a
population of IF neurons, in a robust way with respect
to noise and changes of frequency. The first important
result of the paper is the measurement of the storage
capacity of the model, i.e. the maximum number of
distinct spatiotemporal patterns that can be stored and
selectively retrieved, since it has never been computed
in a spiking model for spatiotemporal patterns.

Several classic papers (see Scarpetta et al. 2001, and
references therein) have focused on storage capacity
of binary model with static binary patterns (Hopfield
1982), and much efforts have been done to use more
biophysical models and patterns (Gerstner et al. 1996,
1993; Hopfield 1995; De Almeida et al. 2007; Amit and
Treves 1989; Battaglia and Treves 1998; Anishchenko
and Treves 2006; Borisyuk and Hoppensteadt 1998;
Leibold and Kempter 2006; Memmesheimer and
Timme 2006; Olmi et al. 2010; Scarpetta et al. 2002,
2011b), but, up to our knowledge, without any calcula-
tion of the storage capacity of spatiotemporal patterns
in IF spiking models. Notably, by introducing an order-
parameter which measures the overlap between phase
coded spike trains, we are able quantitatively measure
of the overlap between the stored pattern and the
replay activity, and to compute the storage capacity as
a function of the model parameters.
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Another important result is the study of the different
regimes observed by changing the excitability parame-
ters of the network. In particular, we find that near the
region of the parameter space where the network tends
to become unresponsive and silent there is a regime in
which the network responds selectively to cue presen-
tation with a short transient replay of the phase-coded
pattern. Differently, in the region of higher excitability,
the patterns are replayed persistently and selectively,
and eventually with more then one spike per cycle.

The paper is organized as follows: Section 2 in-
troduces the Leaky-Integrate-and-Fire (IF) neuronal
model; Section 3 describes the STDP learning rule
used to design the connections; in Section 4 we study
the emergence of collective dynamics and introduce
an order parameter to measure the overlap between
the collective dynamics and the stored phase coded
patterns; Section 5 reports on the storage capacity of
the network, i.e. the maximum number of patterns that
can be stored and selectively retrieved in the network;
the parameter space and the different working regions
are also investigated in Section 5; in Section 6 we study
the robustness of the retrieval dynamics wrt noise and
heterogeneity; Section 7 reports on the implication of
this model in the framework of oscillatory interference
model of path-integration; summary and discussion are
outlined in Section 8.

2 The model

We consider a recurrent neural network with N(N − 1)

possible connections Jij, where N is the number of
neural units. The connections Jij are designed during
the learning mode, when the connections change their
efficacy according to a learning rule inspired to the
STDP. After the learning stage, the connections val-
ues are frozen, and the collective dynamics is studied.
This distinction in two stages, plastic connection in the
learning mode and frozen connections in the dynamics
mode, is a useful framework to simplify the analysis.
It also finds some neurophysiological motivations in
the effects of neuromodulators, such as dopamine and
acetylcholine (Hasselmo 1993, 1999), which regulate
excitability and plasticity.

The single neuron model is a Leaky Integrate-and-
Fire (IF) (Gerstner and Kistler 2002). This simple
choice, with few parameters for each neuron, is suitable
to study the emergence of collective dynamics and the
diverse regimes of the dynamics, instead of focusing
on the complexity of the neuronal internal structure.
We use the Spike Response Model (SRM) formula-
tion (Gerstner and Kistler 2002; Gerstner et al. 1993)

of the IF model, which allows us to use an event-
driven programming and makes the numerical simu-
lations faster with respect to a differential equation
formulation.

In this picture, the postsynaptic membrane potential
is given by:

hi(t) =
∑

j

Jij

∑

t̂ j>t̂i

ε
(
t − t̂ j

)
, (1)

where Jij are the synaptic connections, ε(t) describes
the response kernel to incoming spikes on neuron i,
and the sum over t̂ j runs over all presynaptic firing
times following the last spike of neuron i. Namely, each
presynaptic spike j, with arrival time t̂ j, is supposed to
add to the membrane potential a postsynaptic potential
of the form Jijε(t − t̂ j), where

ε
(
t − t̂ j

)

= K

[
exp

(
− t − t̂ j

τm

)
− exp

(
− t − t̂ j

τs

)]
�

(
t − t̂ j

)
(2)

where τm is the membrane time constant (here 10 ms),
τs is the synapse time constant (here 5 ms), � is the
Heaviside step function, and K is a multiplicative con-
stant chosen so that the maximum value of the kernel
is 1. The sign of the synaptic connection Jij sets the
sign of the postsynaptic potential’s change, so there’s
inhibition for negative Jij and excitation for posi-
tive Jij.

When the membrane potential hi(t) exceeds the spik-
ing threshold θ i

th, a spike is scheduled, and the mem-
brane potential is reset to the resting value zero. We
use the same threshold θth for all the units, except in
Section 6 where different values θ i

th are used and the
robustness w.r.t. the heterogeneity is studied. Clearly
the spiking threshold θth of the neurons is related to
the excitability of the network, an increase of the value
of θth is also equivalent to a decrease of K, the size
of the unitary postsynaptic potential, or, equivalently
to a global decrease in the scaling factor of synaptic
connections Jij.

Numerical simulations of this dynamics are per-
formed for a network with P stored patterns, where
connections Jij are determined via a learning rule de-
scribed in the next paragraph. We found that a few
number of spikes, given a in proper time order, are
able to selectively induce the emergence of a persistent
collective spatiotemporal pattern, which replays one of
the stored pattern (see Section 4).
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3 Designing the connections of the network

In a learning model previously introduced in Scarpetta
et al. (2001, 2002) and Yoshioka et al. (2007), the
average change in the connection Jij, occurring in the
time interval [−tlearn, 0] due to periodic spike trains of
period T, with tlearn >> T, was formulated as follows:

δ Jij = T
tlearn

0∫

−tlearn

dt

0∫

−tlearn

dt′ xi(t)A(t − t′)x j(t′) (3)

where T/tlearn is a normalization factor, x j(t) is the
activity of the pre-synaptic neuron at time t, and xi(t)
the activity of the post-synaptic one. It means that the
probability for unit i to have a spike in the interval
(t, t + �t) is proportional to xi(t)�t in the limit �t → 0.
The learning window A(τ = t − t′) is the measure of the
strength of synaptic change when a time delay τ occurs
between pre and post-synaptic activity. To model the
experimental results of STDP in hippocampal neurons,
the learning window A(τ ) should be an asymmetric
function of τ , mainly positive (LTP) for τ > 0 and
mainly negative (LTD) for τ < 0.

Equation (3) holds for activity pattern x(t) which
represents instantaneous firing rate, and is suitable to
use in analog rate models (Scarpetta et al. 2001, 2002,
2008; Yoshioka et al. 2007; Scarpetta and Marinaro
2005) and spin network models (Scarpetta et al. 2010,
2011b). Differently, here, being interested in spiking
neurons, the patterns to be stored are defined as pre-
cise periodic sequence of spikes, i.e. spike-phase coded
patterns. Namely, activity of the neuron j is a spike train
at times tμj ,

xμ

j (t) =
∑

n

δ(t − (tμj + nTμ)), (4)

where tμj + nTμ is the set of spikes times of unit j in the
pattern μ with period Tμ, and frequency νμ = 1/Tμ.
Therefore, following Eq. (3), the change in the connec-
tions Jij due to the learning of the pattern μ when the
time duration of the learning process tlearn is longer then
a single period Tμ, is simply given by

Jμ

ij =
∞∑

n=−∞
A(tμj − tμi + nTμ). (5)

The window A(τ ), shown in Fig. 1, is given by

A(τ ) =
{

ape−τ/Tp − aDe−ητ/Tp for τ > 0
apeητ/TD − aDeτ/TD for τ < 0,

(6)

with the same parameters used in Abarbanel et al. (2002)
to fit the experimental data of Bi and Poo (1998), name-
ly ap = γ [1/Tp + η/TD]−1, aD = γ [η/Tp + 1/TD]−1,

Fig. 1 (a) Plot of the learning window A(τ ) used in the learning
rule (see Eqs. (3), (5) and (6)) to model STDP effects. The
parameters of the function A(τ ) (Eq. (6)) are determined by
fitting the experimental data reported in Bi and Poo (1998)

with Tp = 10.2 ms, TD = 28.6 ms, η = 4, γ = 0.42. This
function satisfies the balance condition

∫ ∞
−∞ A(τ )dτ =

0. Notably, when A(τ ) is used in Eq. (5) to learn phase-
coded patterns with uniformly distributed phases, then
the property

∫
A(τ )dt = 0 assures that in the connec-

tion matrix the summed excitation (1/N)
∑

i,Jij>0 Jij and
the summed inhibition (1/N)

∑
i,Jij<0 Jij are equal in the

thermodynamic limit, and therefore it assures a balance
between excitation and inhibition.

Writing Eqs. (3–5), implicitly we have assumed that,
with periodic phase-coded spike trains used to induce
plasticity, the effects of all separate spike pairs sum
linearly, each weighted by the same STDP window
reported in Fig. 1. Timing-dependent learning curves as
the one reported in Fig. 1 are indeed typically measured
by giving an order of 100 pairs of spikes repeatly,
with fixed phase relationship, and fixed frequency in a
proper range.

However, in different situations, for instance if the
frequency is too low or to high (Sjostrom et al. 2001), or
in case of few spike pairs (Wittenberg and Wang 2006),
the timing dependence of plasticity is not well described
by the bidirectional window used here, and a more
detailed model is needed to account for integration of
spike pairs when arbitrary trains are used (see Shouval
et al. 2010; Graupner and Brunel 2010, and references
therein).

The spikes patterns used in this work are periodic
spatiotemporal sequences, made up of one spike per
cycle and each of which has a phase φ

μ

j randomly
chosen from a uniform distribution in [0, 2π). In each
pattern, information is coded in the precise time delay
between spikes of unit i and unit j, which corresponds
to a precise phase relationship among units i and j.
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A spatiotemporal pattern represented in this way is
often called phase coded pattern. Pattern’s information
is coded in the spiking phases which, in turn, shape
the synaptic connectivity responsible of the emerging
dynamics and the memory formation.

The set of timing of spikes of unit j can be defined as
tμj + nTμ = (φ

μ

j )/(2πνμ) + n/νμ, where νμ is the oscil-
lation frequency of the neurons. Thus, each pattern μ is
represented through the frequency νμ and the specific
phases of spike φ

μ

j of the neurons j = 1, .., N. The
change in the connection Jij provided by the learning
of pattern μ is given by

Jμ

ij =
∑

n

A(tμj − tμi + nTμ)

=
∑

n

A

(
φ

μ

j

2πνμ
− φ

μ

i

2πνμ
+ n/νμ

)
. (7)

When multiple phase coded patterns are stored, the
learned connections are simply the sum of the contri-
butions from individual patterns, namely

Jij =
P∑

μ=1

Jμ

ij . (8)

Note that ring-like topology with strong unidirectional
connections is formed only in the case P=1, when a
single pattern is stored. When multiple patterns are
stored in the same connectivity, with phases of one
pattern uncorrelated with the others, bidirectional con-
nections are possible, and the more the stored patterns,
the less the ring-like is the connectivity. Even in the
cases when the connectivity is not ring-like the network
is still able to retrieve each of the P stored patterns in a
proper range of threshold values (see storage capacity
in Section 5).

4 Emerging of collective patterns in the neural
dynamics of the network

We study a recurrent network with N leaky Integrate
and Fire units, with connections fixed to the values
calculated in Eqs. (7) and (8) for different values of
P. The results show that, within a well specified range
of parameters, our IF network is able to work as an
associative memory for spike-phase patterns.

In order to check if the network is able to retrieve
selectively each of the stored patterns, we give an
initial signal, made up of M � N spikes, taken from
the stored pattern μ, and we check if this initial short
cue is able to selectively trigger a collective sustained
activity that is the replay of the same stored pattern μ,

i.e. checking if the sustained activity has spikes aligned
to the phases φ

μ

i of pattern μ.
An example of successful selective retrieval process

is shown in Fig. 2 where, depending on the partial cue
presented to the network, a different collective activity
emerges with the phases of the firing neurons which
resemble one or another of the stored patterns.

In this work the cue is a stimulation with M spikes,
with M = N/10, at times tμi = Tstimφ

μ

i , 0 < i < M, with
Tstim = 50 ms. In the example shown in Fig. 2 the short
stimulation (which lasts less then 5 ms, shown in pink
in all the figures) has the effect to selectively trigger the
sustained replay of pattern μ.

Note that the retrieval dynamics has the same phase
relationship among units than the stored pattern, but
the replay may happen on a time scale different from
the scale used to store the pattern, and the collective
spontaneous dynamics is a time compressed (or dilated)
replay of the stored pattern. Indeed, the period of
the collective periodic pattern which emerges during
retrieval stage may be different then the period of the
periodic pattern used in the learning stage. In the ex-
ample of Fig. 2 the time scale of the retrieval dynamics
(Fig. 2(c), (d)) is faster then the time scale used to
learn the patterns (Fig. 2(a), (b)). In the following we
will study the factors affecting the time scale during
retrieval, given the time scale of the pattern used during
learning.

Clearly, regions of the parameter space in which the
network is unable to retrieve selectively the patterns
also exist. In these regions the retrieval dynamics may
correspond to a mixture of patterns or a spurious state,
i.e. a state which is not correlated with any of the
stored patterns because the number of stored patterns
exceeded the storage capacity of the network. As dis-
cussed below, the storage capacity, defined as the max-
imum number of encoded and successfully retrieved
patterns, depends on the frequency used during the
learning stage (which affects connectivity), and on the
spiking threshold of the units (which affects excitability
and network dynamics). Example of failure are shown
in Fig. 3. In Fig. 3(b) the network has too low excitabil-
ity and the response is not persistent, while in Fig. 3(a)
the emerging dynamics is not correlated with any of the
stored patterns.

To measure quantitatively the success of the re-
trieval, in analogy with the Hopfield model, we intro-
duce an order parameter, which estimates the over-
lap between the network collective activity during the
spontaneous dynamics and the stored phase-coded pat-
tern. This quantity is 1 when the phases φ j of neurons
j coincides with the stored phases φ

μ

j , and is close to
zero when the phases are uncorrelated with the stored



324 J Comput Neurosci (2013) 34:319–336

(b)(a)

(d)(c)

Fig. 2 Examples of selective successful retrieval ((c), (d)) of two
stored patterns ((a), (b)). The raster plot of 50 units (randomly
chosen) are shown sorted on the vertical axis according to in-
creasing values of phase φ1

i of the first stored pattern μ = 1.
The network has N = 3000 IF neurons, �th = 70 and connections
given by Eqs. (7) and (8) with P = 5 stored patterns at νμ = 3 Hz.
Two of the stored patterns used during the learning mode are
shown in (a), (b). The dynamics emerging after a short train of
M = N/10 spikes with phases similar to the pattern shown in
(a) and (b), is shown in (c) and (d) respectively. The dynamics
of the network, after a transient, is periodic of period T. The

spikes which belong to the trigger are shown in pink in (c) and
(d), the other different colors represent the value of ti/T mod 4,
where ti is the time of the spike of the unit i during the emerging
spontaneous dynamics. Figure (c) shows that when the network
dynamic is stimulated by a partial cue of pattern μ = 1, the
neurons oscillate with phase alignments resembling pattern μ =
1, but at different frequency. Otherwise, in (d), when the partial
cue is taken from pattern μ = 2, the neurons phase relationships,
even if periodic, are uncorrelated with pattern μ = 1, and recall
the phase of pattern μ = 2

ones. Therefore, we consider the following dot prod-
uct |mμ(t)| =< ξ(t)|ξμ > where ξμ is the vector having
components eiφμ

j , namely:

|mμ(t)| =

∣∣∣∣∣∣∣∣

1

N

∑

j=1,...,N
t−T∗<t∗j <t

e−i2π t∗j /T∗
eiφμ

j

∣∣∣∣∣∣∣∣
(9)

where t∗j is the spike timing of neuron j during the
spontaneous dynamics, and T∗ is an estimation of the
period of the collective spontaneous periodic dynamics.
The overlap in Eq. (9) is equal to 1 when the phase-
coded pattern is perfectly retrieved (i.e. same sequence

and phase relationships among spikes, even though on
a different time scale), while is of order � 1/

√
N when

phases of spikes are uncorrelated to the stored phases.
The order parameter |mμ| allow us to measure the
network storage capacity in the space of parameters θth

and νμ.
Note that the value of mμ(t) between two periodic

spike trains measures the similarity in the sequence
of spiking neurons and in the phase lag between the
spikes, being invariant by a simple change in time scale.
This is a suitable choice especially when the replay of
a spatio temporal pattern has to be detected indepen-
dently from the compression of the time scale. Note
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(b)(a)

Fig. 3 Example of neural response in two case of failure of
retrieval. A spurious state emerge in (a), while a short transient
response emerges in the case shown in (b). N = 3000 and νμ =
3 Hz as in previous picture, while the values θth and P are
θth = 10, P = 5 in (a) and θth = 95, P = 5 in (b). The dynamics

emerging after a short train of M = N/10 spikes with phases
equal to the stored pattern (pattern shown in Fig. 2(a)), is not a
self-sustained retrieval of the pattern. For clarity, the raster plot
of only 50 (randomly chosen) units are shown, sorted according
to increasing value of phase φi

1 of the stored pattern

that if we have a spike train that is not periodic, we
cannot define the period, however we can define the
order parameter Eq. (9) looking at the time-window T∗
which maximize the order parameter. This can be use-
ful in the case when one looks for a short replay hidden
in a not-periodic spike train, such in many experimental
situations.

The value of mμ(t) after a transient converges to
a stable value which is close to one when pattern μ

is retrieved (for example in Fig. 2(c) at large times
mμ=1 = 1, and mμ=2 = 0.01) while mμ(t) is of order �
1/

√
N for all μ in the case of failure of retrieval. Two

further cases of failure can occur: in Fig. 3(a) mμ(t) after
the transient has values in the range 0.01–0.02 for all μ

because the emerging dynamics is a spurious state not
correlated with any of the stored phase-patterns, while
mμ(t) is zero in Fig. 3(b) since the network becomes
silent.

In the following, the storage capacity of the model is
analyzed considering the maximum number of patterns
that the network is able to store and selectively recall.
In particular we investigate the role of two model pa-
rameters: the frequency of the stored patterns νμ, and
the spiking threshold θth affecting the excitability of the
network.

5 Storage capacity

Numerical simulations of the IF network with N =
3000 neurons were performed by systematically chang-
ing the value of the spiking threshold θth, the connec-

tions Jij, and for different number of patterns P and fre-
quency νμ. Here we propose results for a unique value
of the spiking threshold θth for all neurons, however the
behavior is also robust with respect to a variability in
the threshold values among neurons, as reported in the
next section.

Network storage capacity is defined as αc = Pmax/N,
where N is the number of neurons and Pmax is the
maximum number of patterns that can be stored and
successfully retrieved with an overlap |mμ| larger than
a certain value, which measures the degree of similarity.
Given that in our simulations the overlap |mμ(t)| at
large times has mostly two possible values, close to
one (success) or close to 1/

√
N (failure), we fixed the

desired similarity value to 0.5, since the whole storage
capacity analysis is very robust with respect to this
parameter (since the transition between low values and
high values of |mμ(t)| as a function of P is sharp).

Patterns with random phases were extracted and
used to define the network connections Jij with the rule
Eq. (8). After the stimulation with a short train of M =
N/10 spikes taken at times ti from the first pattern,
the dynamics is simulated and the overlap defined in
Eq. (9) with μ = 1 is evaluated at large times. If the
overlap |mμ=1(t)|, averaged over 50 runs, is greater
than 0.5 at time t > t̄ (where t̄ = 600 ms for all the
simulations), then we consider the retrieval successful
for that pattern. The maximum value of P, for which the
network is able to successfully replay each of the stored
patterns, defines the storage capacity of the network.

The storage capacity as a function of the spiking
threshold θth and storing frequency νμ is reported in
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Fig. 4(a), where Pmax is shown in a color-coded legend.
The largest capacity is achieved when the frequency of
the stored patterns during learning is νμ � 8 Hz and the
spiking threshold of the units during retrieval is θth �
130, which provides a capacity αmax = Pmax/N = 0.016.

In Fig. 4(b) we show the storage capacity Pmax as
a function of the frequency νμ once fixed the value of
the threshold θth to the optimal value, corresponding to
highest capacity for each frequency.

The optimal storing frequencies and threshold values
depend on the time constants of the model, such as the
τs, τm of the IF units and the temporal shape of the
learning kernel A(τ ), whereas different shapes of A(τ )

may subserve to different storing frequency ranges. In
this work τs, τm and A(τ ) are set to the values described
in Section 2, and the emergent collective dynamics is
studied as a function of the other network parameters.
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Fig. 4 (a) Storage capacity in a network of N = 3000 units, as a
function of the spiking threshold θth and oscillation frequency νμ

of stored patterns. The maximum number of patterns successful
retrievable Pmax is shown in color-coded legend, the value grows
from Pmax = 0 (dark blue) to Pmax = 50 (strong red). (b) The
storage capacity Pmax as a function of the frequency of stored
patterns, once fixed the threshold θth to the optimal value for
each frequency

Indeed, Fig. 4(b) shows that for the learning kernel
A(τ ) used here, there is peak in the storage capacity
around 8 Hz, in the range 2–20 Hz. Figure 4(a) also
proves that, for each stored frequency, a large interval
of spiking threshold values θth exists for which the
network is still able to work properly as associative
memory for phase-coded patterns.

The associative memory properties as a function
of the spiking threshold are reported in Fig. 5, when
the oscillation frequency of the patterns stored during
learning is νμ = 3 Hz. The region marked in green in
Fig. 5 corresponds to cases in which the retrieval is
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Fig. 5 (a) Storage capacity at νμ = 3 Hz: the region of success-
ful retrieval as a function of spiking threshold and number of
patterns is marked in green. The region with persistent activity
not correlated with any of the stored pattern is marked in red
(spurious states), and the region in which the network responds
with only a short transient and then becomes silent is marked
in blue (see examples in Fig. 3). (b) The probability that the
size Stot of the network response, measured as the number of
the spikes that follow the cue stimulation, is larger than n, with
n = 0, N/2, N, is shown as a function of spiking threshold θth, in
a network with νμ = 3 Hz and P = 1. As always in this paper
the number of units is N = 3000. The figure shows that near
θcrit

th � 90 there’s a transition from a region of persistent replay
to a region of silence
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successful and the cue is able to selectively activate
the self-sustained replay of the stored pattern (with
an order parameter mμ larger than 0.5). When spiking
threshold changes in the range 10 < θth < 90 the stor-
age capacity changes between Pmax/N = 1/3000 and
Pmax/N = 29/3000.

Outside the green region the number of patterns
exceeds the storage capacity and the retrieval fails.
There are two possible reasons for this behavior. At
low threshold, when the number P of patterns exceeds
the storage capacity Pmax, the network responds with a
self-sustained activity that is not correlated with any of
the stored patterns, i.e. a spurious state. In this regime,
marked with red color in Fig. 5(a), the order parameter
mμ(t) is of order 1/

√
N for all the stored patterns (see

also raster plot in Fig. 3(a)). On the contrary, in the
high θth regime, the network tends to become silent and
unresponsive. Indeed, in the region marked with blue
color, the network responds to the initial cue stimula-
tion with a short transient and then became silent. In
this case the value of mμ(t) is zero because there is no
self-sustained activity at time t > t̄, meaning that the
stored attractors become unstable when θth is too high
(see raster plot in Fig. 3(b)).

For values of the threshold greater than θ crit
th , inde-

pendently from P, the network activity is never persis-
tent, as reported in Fig. 5(a) where θ crit

th = 90.
At thresholds close to this critical value the network

responds with a transient activity that is a short replay
of the stored pattern, but not a persistent replay. The
size Stot of the network response, measured as the
number of spikes that follow the cue stimulation, is
reported in Fig. 5(b) as a function of θth, for a network
with νμ = 3 Hz, N = 3000 and P = 1.

In the following we investigate the replay activity in
the region with successful retrieval. We focused on the
dependence of the frequency of collective oscillations
during replay on the model parameters. Figure 6(a)
shows the collective frequency of replay as a function of
the frequency νμ of the patterns stored in the learning
stage with N = 3000. The red dots in the figure refer to
the frequencies of oscillations observed during retrieval
at the optimal spiking threshold (where the maximum
storage capacity occurs), while the bar indicates the
available range of frequencies of replay, accessible
through a change in the spiking threshold. Important
to note is that, in most of the cases, the frequency of the
stored pattern and the collective replay frequency do
not coincide, since the pattern is replayed compressed
(or dilated) in time, on a time scale dependent on the
network parameters. We observe that for the chosen
parameters τm, τs of the network, and the given shape
of A(τ ), the replay occurs on a compressed time scale

for all stored patterns of frequency lower then 25 Hz,
while the two time scale coincide when νμ � 25 Hz. The
dependence of the frequency of the collective oscilla-
tions on the spiking threshold is shown in Fig. 6(b). This
dependence is weak for stored frequencies higher than
10 Hz. Besides, for low stored frequencies (1–4 Hz) the
frequency of the replay is very sensitive to the threshold
value, changing from 6 Hz at high spiking threshold to
30 Hz at low threshold.

We also investigate the frequency’s dependence on
network size N. In Fig. 6(d) red dots are results for
a network with N = 10000 units, while blue squares
are results for a network with N = 1000 units. If what
counts is only the time lag between the single units
consecutive in the sequence, then one expects that
result with 1 Hz stored at N = 10000 would be similar
to 10 Hz stored at N = 1000, and this is not the case.
We see that when we use a storage frequency equal to
10 Hz (which corresponds to different time lag between
cells depending on N), then the oscillation frequency
during replay is around 30 Hz in both networks (both
N = 1000, and N = 10000), while, on the other hand,
if we have a storage frequency equal to 1 Hz the
oscillation frequency during replay may span a large
range (5 Hz–25 Hz) in both networks. Figure 6(d) also
shows that frequency of replay depends on the ratio
between spiking threshold and network size N, and that
the high sensitivity on spiking threshold value holds,
when stored frequency is low (1–4 Hz), also at different
values of the network size.

This open the possibility to govern the oscillation
frequency of the collective replay activity via neuro-
modulators which change the excitability and therefore
the spiking threshold of the neurons. Since in our model
(see Eqs. (1) and (2)) a change of the threshold is
equivalent to a change in the scale factor of all synaptic
connections, a similar effect might be achieved also by
simply driving the cells more due to increased synaptic
input. Importantly, the sensitivity of collective oscilla-
tion frequency on spiking threshold is not a sensitivity
of the single unit but of the collective behavior, since, as
discussed in Section 6, if we change the spiking thresh-
old of few units the collective rhythm is still unique for
the whole population. The replay frequency depends
on the average threshold among units, but all the units
have the same oscillation frequency during replay.

Moreover, for networks with νμ ≥ 10 Hz, whose re-
play frequency does not considerably change with spik-
ing threshold, the replay dynamics is still affected by the
spiking threshold. Indeed, in this case, the number of
spikes per cycle increases with lowering of the spiking
threshold. An example is reported in Fig. 7. The raster
plots show the same pattern replayed in three networks
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Fig. 6 (a) Frequency of the collective dynamics during replay as
a function of the frequency of stored patterns in the network with
N = 3000 units. Dots refer to replay frequency observed at opti-
mal spiking threshold. The bars refers to the range of frequency
available through changes in spiking threshold. (b) Frequencies
of the collective dynamics during replay as a function of the
spiking threshold and for different stored frequencies (see colors
legend). Pattern is replayed on a time scale which becomes faster
if we decrease threshold θth for the most of the frequencies
νμ. The dependence is much stronger for νμ ≤ 4 Hz. N = 3000.
(c) The number of spikes per cycle as a function of the spiking

threshold θth in networks with different frequency νμ of stored
pattern. (d) Frequency of the dynamics during replay as a func-
tion of ratio between spiking threshold and network size N. Red
dots are results for a network with N = 10000 units, while blue
squares are results for a network with N = 1000 units. Size of
the symbols refers to the stored frequency, small symbols (on the
top of the picture) correspond to stored frequency νμ = 10 Hz,
medium size symbols correspond to stored frequency νμ = 3 Hz,
and large symbols (bottom) correspond to stored frequency νμ =
1 Hz

having different values of the spiking threshold θth: a
burst of activity takes place within each cycle, with
phases aligned with the pattern, with a number of spikes
per cycle dependent on the value of θth. This behavior
is summarized in Fig. 6(c) where the number of spikes
per cycle is reported as a function of spiking threshold,
at different values of stored frequencies. Therefore, by
lowering the spiking threshold the replay activity occurs
with more than one spike per cycle, or on a faster time
scale (see Fig. 6(b), (c)).

The behavior of the output oscillation frequency
suggests that a parameters region exists where the net-

work always responds with one spike per cycle. In this
region an increase of the excitability produces a growth
of the frequency of oscillation up to a plateau value.
Differently, for higher excitability the frequency does
not increase while the number of spikes per cycle grows.
This means that the different frequencies, in addition
to the information coded in the phase relationship, can
code other information in relationship with the level
of spiking threshold: at high frequency the threshold
changes the number of spikes per cycle, while at low
frequency the threshold changes the frequency of the
collective oscillations during the replay.
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Fig. 7 Modulation of spiking
threshold changes the
number of spikes per cycle,
keeping preserved the phase
relationship among units.
Recall of the pattern μ = 1
for networks of
N = 3000 units, νμ = 20 Hz
and different values of
spiking threshold
θth = 80, 65, 40 is shown
respectively in (a)–(c).
Depending on the value of
the spiking threshold θth, the
phase-coded pattern is
replayed with a different
number of spikes per cycle.
Spike of the cue stimulation
are shown in pink, while the
response of the network in
black. For clarity, the raster
plot of only 50 (randomly
chosen) units are shown,
sorted according to increasing
value of phase φi

1 of the
stored pattern

(a) (b)

(c)

This open the possibility to have a coding scheme in
which, while the phases encode pattern’s information,
a change in frequency or a change in rate in each cycle
represents the strength and saliency of the retrieval or
it may encode another variable (Lengyel and Dayan
2007). The recall of the same phase-coded pattern with
a different number of spikes per cycle is particularly
interesting at the light of recent observations of Huxter
et al. (2003) in hippocampal place cells, showing the
occurrence of the same phases with different rates.
The authors prove that the phase of firing and firing
rate are dissociable and can represent two independent
variables, e.g. the animal location within the place field
and its speed of movement through the field.

Notably, the recall of the same phase coded pattern
with different frequencies of oscillation is also relevant
and accords well with the need to have stable precise
phase relationship among cells with frequency of oscil-
lation modulated by parameters such as the speed of
the animal (Blair et al. 2008; Welday et al. 2011).

The value of the frequency of collective activity
during the replay clearly is related not only to the
threshold and the stored frequency, but also to the

shape of the learning window A(τ ) and on the two
characteristic times of the model τs, τm. A systematic
study of the dependence of the replay time scale on
the shape of STDP and the characteristic times of the
neuron model has not yet done in a spiking model,
however a dependence on the asymmetry of A(t) has
been analytically found in a simple model with ana-
log neurons and a single characteristic time (Yoshioka
et al. 2007).

6 Effects of noise and robustness of collective
oscillation frequency and phase relationships

While in the Hopfield model the patterns are static,
and information is coded in a binary pattern Sμ =
Sμ

1 , . . . , Sμ

N , with Sμ

i ∈ {±1}, here, in this study, the
patterns are time dependent, and information is coded
in the phase pattern φμ = φ

μ

1 , ..., φ
μ

N with φ
μ

i ∈ [0, 2π ],
where the value φ

μ

i /(2πνμ) represents the time shift of
the spike of unit i with respect to the collective rhythm,
i.e the time delay among units. However, as for the
Hopfield model, the patterns stored in the network
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are attractors of the dynamics, when P do not exceeds
storage capacity, and the dynamics during the retrieval
is robust with respect to noise. We firstly check ro-
bustness w.r.t. input noise, i.e when a Poissonian noise
ηi(t) is added to the postsynaptic potential hi(t) given in
Eq. (1). The total postsynaptic potential of each neuron
i is then given by

hi(t) = ηi(t) +
∑

j

Jij

∑

t̂ j>t̂i

ε
(
t − t̂ j

)
(10)

where ηi(t) is modelled as

ηi(t) = Jnoise

∑

t̂noise>t̂i

ε
(
t − t̂noise

)
. (11)

The times t̂noise are randomly extracted for each neuron
i, and Jnoise are random strengths, extracted indepen-
dently for each neuron i and time t̂noise. The intervals
between times t̂noise are extracted from a Poissonian dis-
tribution P(δt) ∝ e−δt/(Nτnoise), while the strength Jnoise is

extracted from a Gaussian distribution with mean J̄noise

and standard deviation σ(Jnoise).
The network dynamics during the retrieval of a pat-

tern in presence of noise is shown in Fig. 8 with different
levels of noise (τnoise = 10 ms, J̄ = 0 and σ(Jnoise) =
0, 10, 20, 30 in a, b, c and d, respectively). Results show
that when the noise is not able to move the dynamics
out of the basin of attraction, the errors do not sum up,
and the phase relationship is preserved over time (see
Fig. 8(a)–(c)). If the input noise is very high, as in the
example of Fig. 8(d), the dynamics moves out of the
basin of attraction.

In order to see the effects of input noise level used
in Fig 8(c), (d), we report in Fig. 8(e), (f) the network
dynamics when the pattern retrieval is not initiated
(M = 0). In particular, Fig. 8(e) shows that the noise
level used in Fig. 8(c) is strong enough to generate
spontaneous random activity in absence of the initial
triggering, but is not sufficient to destroy the attrac-
tive dynamics during a successful retrieval. As in the

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8 (a)–(d) Robustness wrt noise. Raster plots show that,
when the pattern retrieval is triggered, network’s spikes continue
to have phase alignments resembling the pattern even in presence
of noise. Errors do not sum up until the system is in the basin of
attraction of the phase-coded pattern, as in (a)–(c). Different lev-
els of noise are used in (a)–(d) (σ(Jnoise) = 0, 10, 20, 30 respec-
tively), and pattern is triggered with M = N/10 as in previous
cases. Only in (d) the level of noise is too high and the system

goes out of the basin of attraction. (e), (f) For comparison, the
dynamics, when the retrieval is not triggered (M = 0), is shown
in subplot ((e) and (f)) in presence of the same noise used in (c)
and (d). Figure (e) shows that the noise used in (c) usually affects
strongly the dynamics of the network, however if the collective
oscillation is retrieved the system is robust wrt noise. Thresholds
in all figures are θth = 80, N = 3000, and synaptic connections Jij
are build learning P = 2 phase-patterns at ωμ = 3 Hz
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(a) (b)

Fig. 9 Robustness wrt heterogeneity of spiking threshold values.
Raster plots show that, when the pattern retrieval is triggered,
units participate to the network collective oscillation, showing all
the same frequency and phase alignments resembling the pattern,
even in presence of threshold values heterogeneity among units.

Spiking thresholds of neuron i are distributed according to θ i
th =

θth(1 + zζ ) with average θth = 80 and z = 0.2, 0.5 in (a) and (b)
respectively. All other parameters are as in Fig. 8(a) (N = 3000,
M = N/10, and synaptic connections Jij are build learning P = 2
phase-patterns at ωμ = 3 Hz)

Hopfield model, errors do not sum up and the dynamics
spontaneously goes back to the retrieved phase-coded
pattern for all the perturbations that leave the system
inside the basin of attraction.

Lastly, the robustness of retrieval w.r.t. heterogene-
ity of the spiking thresholds is investigated. This analy-
sis can be carried out by using a different value θ i

th of
spiking threshold for each neuron i:

θ i
th = (1 + zζi)θth (12)

where ζi is a random number extracted from a uniform
distribution in [−1, 1], and z is the degree of hetero-
geneity. Even with high degree of heterogeneity, the
emergence of the retrieval collective dynamics forces
all neurons to have exactly the same frequency of oscil-
lation and to keep a precise phase relationship, in a very
robust manner. Figure 9(a), (b) shows the dynamics
with threshold heterogeneity z = 0.2, 0.5 respectively,
while the remaining parameters are set to the values of
Fig. 8(a).

The above analysis shows that a unique collective
frequency emerges, which is the frequency correspond-
ing to the mean value of the θ i

th. This is also evident by
comparing Fig. 9(a), (b) with Fig. 8(a). At z = 0.5 it can
be seen an additional small phase shift proportional to
the value of θ of each neuron, but collective activity is
preserved. Clearly if z is too high and threshold values
are distributed out of the region of successful retrieval
the network is unable to retrieve the pattern and failure
happens, as already discussed in Section 5.

7 Relationship of this model with theories
of path-integration

Recently, path-integration system and the hippo-
campal-entorinal cortex circuit have been deeply
investigated (O’Keefe and Recce 1993; O’Keefe and
Burgess 2005; Burgess et al. 2007; Jeewajee et al. 2008;
Blair et al. 2008; Euston et al. 2007; Geisler et al. 2007;
McNaughton et al. 2006), showing that place cells and
grid cells form a map in which precise phase relation-
ship among units play a central role to generate the spa-
tial tuning. A number of models of the spatial firing
properties of place and grid cells were offered. Gener-
ally two main categories are distinguished: models which
focus on continuous attractor mechanisms and models
which use interference between oscillators at dynami-
cally modulated frequencies; however, deeper compu-
tational principles may exist that unify the different
cases of neural integration (Issa and Zhang 2012). In
oscillatory interference models (O’Keefe and Burgess
2005; Burgess et al. 2007; Blair et al. 2008; Welday et al.
2011; Zilli and Hasselmo 2010) (see also Giocomo et al.
2011, for a review) the total synaptic input to a neuron
(such as a grid cell or a place cell) is a weighted sum of
the activities of n oscillatory inputs, whose oscillation
frequency is modulated by the rat velocity and head di-
rection. Grid and place cells, according to these models,
derive their temporal and spatial properties simply by
detecting synchrony among such velocity-modulated
oscillatory inputs. The oscillatory interference theory is
one possible hypothesized mechanism of path integra-
tion and it has not been conclusively accepted or rejected.
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It is supported by recent studies suggesting that the pre-
dicted velocity-modulated oscillators exist as theta cells
(interneurons found throughout the septo-hippocampal
circuit) whose inter-burst frequency shows a cosine
modulation by running direction and a linear increase
with running velocity (Welday et al. 2011).

Such velocity-modulated oscillatory input was hy-
pothesized to come from single oscillatory neu-
rons (O’Keefe and Burgess 2005), or networks such
as subcortical “ring attractors” generating velocity-
modulated theta oscillations (Blair et al. 2008; Zilli and
Hasselmo 2010; Welday et al. 2011).

The properties of modulation and stability of fre-
quency, and stability of multiple phase relationships,
make our circuit a possible mechanism to build the
velocity-modulated oscillators of the oscillatory inter-
ference theory. Indeed our circuit has a collective os-
cillation frequency, which depends on the frequency
stored in the connectivity matrix, and that can be mod-
ulated by changing the parameters such as θth. Each
neuron in the circuit has a phase determined by its
position in that network, i.e. determined by the phase
φ

μ

i of the stored phase-pattern. If the parameter θth

is modulated by animal speed, then the collective os-
cillation frequency of the circuit is modulated by the
animal’s speed, while the neurons preserve stable phase
relationship among them.

The other persistent-firing models (Blair et al. 2008;
Zilli and Hasselmo 2010; Welday et al. 2011) of the
oscillators needed by the oscillatory interference theory
suffer from problems related to robustness, as those
encountered by the single-cell oscillatory models (Zilli
et al. 2009), due to the variability in the frequency
of persisting spiking (Giocomo et al. 2011). Indeed
the oscillatory interference models impose strict con-
straints upon the dynamical properties of the velocity-
modulated oscillatory inputs, which have to preserve
robust velocity-modulated frequency and stable phase
relationships among them on relevant time scales in a
manner robust to noise (many seconds, or dozens of
theta cycle periods) (Blair et al. 2008; Welinder et al.
2008; Zilli et al. 2009; Giocomo et al. 2011).

Notably, in our model, since connections Jij among
units in the circuit are fixed by the learning rule
(Eq. (7)), dynamics is a retrieval process and neurons
preserve stable precise phase relationship among units
and stable frequency even in noisy conditions, at least
when the dynamics is in the basin of attraction of that
phase relationship.

Even in the more recent spiking models (Zilli and
Hasselmo 2010; Welday et al. 2011) of the oscillatory
interference principle, in which many problems related
to noise are solved, the heterogeneity of parameters of

the cells which participate to the ring oscillator is not
taken into account.

Here we show that the circuit level interactions
among units make the oscillation frequency and the
phase-relationship of the system robust even with re-
spect to heterogeneity of the spiking thresholds of the
units (see Section 6).

This robustness, due to the proposed coupling which
forces all the units of the circuit to have exactly the
same period of oscillation and to have precisely the
same phase relationships of stored pattern, may be
useful in all cases of sequence coding.

Moreover, our circuit can be easily programmed to
cycle in different phase orders, by storing more than
one phase-pattern as attractors. The circuit is a robust
phase-shuffling ring oscillator, since the network has
the capability of shuffling the order in which its neurons
fire, by storing a variety of different phase-patterns
within the connectivity. If the oscillators predicted by
the interference theory can generate more than one
phase sequence, as in the model presented here, then
this could provide a potential mechanism to explain
the phenomenon of hippocampus remapping (Colgin
et al. 2008; Wills et al. 2005). One of the more inter-
esting discovery of place cells behavior is indeed the
remapping of the place cell representation of space in
response to a changes in sensory or cognitive inputs,
i.e. place cells change their firing properties (place cells
can appear disappear or move to other unpredictable
locations). This change may be abrupt and similar to the
switch from one attractor to another (Wills et al. 2005).
If the place cell will fire at a specific place where its
inputs become synchronized (Euston et al. 2007; Blair
et al. 2008; Welday et al. 2011; Giocomo et al. 2011),
by recalling a different phase-coded pattern among the
ones stored in our circuit, it will change the phases of
theta cells that are the inputs of the place cell, and it will
change the specific “place” where the inputs become
synchronized, and therefore it changes the place cell
representation of the space.

Finally we note that even thou our model is not a
continuous attractor, it shares many similarity with such
a class of models. Our model is a circuit with many dis-
tinct attractors, one for each phase-relationship stored
in the network, and the number of different attractor
states is set by the maximal storage capacity studied
here. Furthermore each attractor is a phase-coded pat-
tern, replayed with a collective resonant frequency that
can be modulated by changing for example the spiking
threshold of the units.

Even thou during exploration the activity of place
cells may be explained by the superposition of velocity-
controlled oscillators inputs, the recurrent connections
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inside the place cells network may have anyway a rele-
vant role.

During sleep, in absence of external input, the role
of recurrent connections increases, probably due to an
increase of excitability via neuromodulators or other
mechanisms, and the spontaneous activity of the net-
work show temporarily short replay of stored patterns,
probably initiated simply by noise.

So the pattern activated repeatly during experience,
is stored in the connectivity, and then activated during
sleep when the network is near a critic point and noise
is able to initiate short replay sequences.

Replay of phase-coded patterns of neural activity
during sleep has been observed in hippocampus and
neocortex (Schwindel and McNaughton 2011).

Notably in our model the time scale of reactivation is
different from the time scale of storing, depends on the
collective frequency which emerges from the connectiv-
ity, and may be accelerated or slowed down changing
parameters such as spiking thresholds. Therefore, our
model might be also relevant for replay in prefrontal
cortex (PFC) or other cortical areas in which replay is
accelerated with respect to awake activity.

In the hippocampus, spikes representing adjacent
place fields occur in rapid succession within a single
theta cycle during behavior. Therefore, relative to this
within theta cycle rate, reactivation during sleep in
hippocampus is not accelerated. However, reactivation
in rat PFC is clearly compressed five to eight times rel-
ative to the waking state (Euston et al. 2007; Schwindel
and McNaughton 2011). Indeed, while in hippocampus
one may think that the coding sequence is the within-
theta cycle, in prefrontal cortex it is clearly seen that
the cross-correlation among cells during sleep replay is
time compressed compared with the cross-correlation
during waking state. The playback speed declines over
time as does the strength of the replay, which is con-
sistent for example with a simple increases of spiking
threshold in our model.

8 Discussion

We studied the temporal dynamics, including the stor-
age and replay properties, in a network of spiking
integrate and fire neurons, whose learning mechanism
is based on the Spike-Timing Dependent Plasticity.
The temporal patterns we consider are periodic spike-
timing sequences, whose features are encoded in the
relative phase shifts between neurons.

The importance of oscillations and precise temporal
patterns has been pointed out in many brain structure,
such as cortex (Buzsaki and Draguhn 2004), cerebellum

(D’Angelo et al. 2009; D’Angelo and De Zeeuw 2009),
or olfactory system (Gelperin 2006). The proposed
associative memory approach, with selective replay of
stored sequence, can be a method for recognize an item,
by activating the same memorized pattern in response
to a similar input. Another possibility is to have a way
to transfer a memorized item to another area of the
brain, such as for memory consolidation during sleep.
During sleep, indeed, few spikes with the right phase
relationship may initiate the retrieval of one of the
patterns stored in the network and this reactivation may
be useful for memory consolidation. The stored pattern
is an attractor of the network dynamics, that is the dy-
namics spontaneously goes back to the retrieved phase-
coded pattern for all the perturbations which leave the
system within the basin of attraction. Therefore phase
errors do not sum up, and the phase relationships may
be transferred and kept stable over long time scales.

The time scale of the pattern during retrieval, i.e.
the period of oscillation 1/ν, depends on (1) the time
constants of the single neuron τm and τs, (2) the spiking
threshold θth of the neurons, and (3) the connectiv-
ity, through the STDP learning shape A(τ ) and the
time scale of the pattern during learning mode 1/νμ.
Different areas of the brain may have different shape of
STDP to subserve different oscillation frequencies and
different functional role. Here we fix the shape of A(τ )

to the one observed in hippocampal cultures (see Fig. 1
and Bi and Poo 1998) and focus on the dependence on
the spiking threshold θth of the neurons. The spiking
threshold can modulate the frequency of the collective
oscillation, leaving unaffected the phase relationships
among the units. This opens a possible way to govern
the frequency of collective oscillation via neuromod-
ulators, and to encode information (such as velocity
of the animal) in the frequency of the oscillations, in
addition to the information encoded in the phase rela-
tionships. Notably, in a particular range of frequencies,
the spiking threshold does not affect the frequency
of oscillation but changes the number of spike per
cycle during the retrieval dynamics. This means that
information can be encoded via the number of spikes
per cycle, independently from the information coded
in the phase relationship among units, in agreement
with the observations of independent rate and phase
coding in hippocampus (Huxter et al. 2003). Important
to note, the phase relationships and the frequency of
the collective oscillation are both robust with respect to
noise and to heterogeneity of the spiking threshold of
the units.

A systematic study of the retrieval capacity of the
network is proposed as a function of two parameters
of the model: the frequency of the input pattern and
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the spiking threshold. The storage capacity, evaluated
as Pmax/N, is always lower than the storage capacity of
the Hopfield model. However, the information content
of a single pattern in our dynamical model with N units
is higher than the information content of a pattern in
the Hopfield model with N-units. Indeed, an Hopfield
pattern is a set of N binary values while our phase-
coded pattern is a set of N real number φ

μ

j ∈ [0, 2π ].
The role of STDP in the formation of sequences

has been recently investigated in Verduzco-Flores et al.
(2012) and Fiete et al. (2010). These studies have shown
how it’s possible to form long and complex sequences,
but they did not concern themselves on how it’s possi-
ble to learn and store not only the order of activation
in a sequence, but the precise relative times between
spikes in a closed sequence, i.e. a phase-coded pat-
tern. In our model not only the order of activation
is preserved, but also the precise phase relationship
among units. The tendency to synchronization of units
is avoided in our model, without need to introduce
delays or adaptation, due to the balance between ex-
citation and inhibition that is in the connectivity of
large networks when the phase coded pattern with
random phases is learned using the rule in Eqs. (5–
8). In our rule all the connections, both positive and
negative, scale with the time of presentation of patterns,
keeping always a balance. Indeed, since (1) the stored
phase are uniformly distributed in [0, 2π) and (2) the
learning window has the property

∫
A(τ )dt = 0, then

the connectivity matrix in Eq. (7) has the property
that the summed excitation (1/N)

∑
i,Jij>0 Jij and the

summed inhibition (1/N)
∑

i,Jij<0 Jij are equal in the
thermodynamic limit (indeed they are of order unity,
while their difference is of order 1/

√
N).

Under this conditions, we investigate how multiple
phase-coded patterns can be learned and selectively
retrieved in the same network, as a function of time
scale of patterns and network parameters.

The task of storing and recalling phase-coded memo-
ries has been also investigated in Lengyel et al. (2005b)
in the framework of probabilistic inference. While we
study the effects of couplings given by Eq. (5) in a
network of IF neurons, the paper Lengyel et al. (2005b)
studies this problem from a normative theory of autoas-
sociative memory, in which real variable xi of neuron i
represents the neuron i spike timing with respect to a
reference point of an ongoing field potential, and the
interaction H(xi, x j) among units is mediated by the
derivative of the synaptic plasticity rule used to store
memories.

The model proposed here is a mechanism which
combines oscillatory and attractor dynamics, which
may be useful in many models of path-integration, as

pointed out in Section 7. Our learning model offers a
IF circuit able to keep robust phase-relationship among
cells participating to a collective oscillation, with a
modulated collective frequency, robust with respect to
noise and heterogeneities. Notably the frequency of the
collective oscillation in our circuit is not sensible to the
single value of the threshold of each unit, but to the
average value of the threshold of all units, since all
units participate to a single collective oscillating pattern
which is an attractor of the dynamics.

Recently there is renewed interest in reverberatory
activity (Lau and Bi 2005) and in cortical spontaneous
activity (Ringach 2009; Luczak and Maclean 2012)
whose spatiotemporal structure seems to reflect the
underlying connectivity, which in turn may be the result
of the past experience stored in the connectivity.

Similarity between spontaneous and evoked cortical
activities has been shown to increase with age (Berkes
et al. 2011), and with repetitive presentation of the stim-
ulus (Han et al. 2008). Interestingly, in our IF model,
in order to induce spontaneous patterns of activity
reminiscent of those stored during learning stage, few
spikes with the right phase relationship are sufficient.
It means that, even in absence of sensory stimulus, a
noise with the right phase relationships may induce
a pattern of activity reminiscent of a stored pattern.
Therefore, by adapting the network connectivity to
the phase-coded patterns observed during the learning
mode, the network dynamics builds a representation of
the environment and is able to replay the patterns of
activity when stimulated by sense or by chance.

This mechanism of learning phase-coded patterns of
activity is then a way to adapt the internal connectivity
such that the network dynamics have attractors which
represent the patterns of activity seen during experi-
ence of environment.

Open Access This article is distributed under the terms of
the Creative Commons Attribution License which permits any
use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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