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BACKGROUND Aortic valve stenosis of any degree is associated with poor outcomes.

OBJECTIVES The authors aimed to develop a risk prediction model for aortic stenosis (AS) prognosis using machine

learning techniques.

METHODS A prognostic algorithm was developed using an AS registry of 10,407 patients undergoing echocardiography

between 2008 and 2020. Clinical, echocardiographic, laboratory, and medication data were used to train and test a time-

to-event model, the random survival forest (RSF), for AS patient’s prognosis. The composite outcome included aortic

valve replacement or mortality. The SHapley Additive exPlanations method attributed the importance of variables and

provided personalized risk assessment. The algorithm was validated in 2 external cohorts of 11,738 and 954 patients with

AS.

RESULTS The median follow-up of the primary cohort was 48 (21-87) months. In this period, 1,116 patients underwent

aortic valve replacement, and 5,069 patients died. RSF had an area under the curve (AUC) of 0.83 (95% CI: 0.80-0.86)

and 0.83 (95% CI: 0.81-0.84) for outcomes prediction at 1 and 5 years, respectively. Using a cut-off of 50%, the RSF

sensitivity and specificity for the composite outcome, were 0.80 and 0.73, respectively. Validation performance in the 2

external cohorts was similar, with AUCs of 0.73 (95% CI: 0.72-0.74) and 0.74 (95% CI: 0.72-0.76), respectively. AS

severity, age, serum albumin, pulmonary artery pressure, and chronic kidney disease emerged as the top significant

variables in the model.

CONCLUSIONS In patients with AS, a machine learning algorithm predicts outcomes with good accuracy, and prog-

nostic characteristics were identified. The model can potentially guide risk factor modification and clinical decisions to

improve patient prognosis. (JACC Adv. 2024;3:101135) © 2024 The Authors. Published by Elsevier on behalf of

the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AS = aortic stenosis

AVA = aortic valve area

AVR = aortic valve

replacement

AUC = area under the curve

EMR = electronic medical

record

LV = left ventricle

ML = machine learning

PAP = pulmonary artery

systolic pressure

RSF = random survival forest

ST = survival trees
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T he prevalence of aortic stenosis (AS)
is increasing due to the aging popu-
lation.1 Although severe AS can be

fatal without aortic valve replacement
(AVR), surgical and transcatheter valve
replacement significantly improve prog-
nosis.2 However, AVR is indicated in patients
with severe symptomatic AS or severe AS
with reduced left ventricular systolic func-
tion. Numerous studies have shown that
even mild AS is associated with poor clinical
outcomes.3,4 The links between AS of any de-
gree and mortality may be, to some extent,
related to comorbidities. However, when
adjusted for baseline confounders, the risk
observed at mild degrees of valvular obstruc-
tion remains significant.
Recently, machine learning (ML) methods have
been adopted in cardiovascular research community,
and they have been applied successfully in valvular
disease as well, to predict survival or grade the dis-
ease.5,6 Most of the ML studies addressing patients
with AS are based on relatively simple classification
and clustering approaches. Also, these studies are
focused mainly on patients with moderate or severe
AS and include only routine echocardiographic mea-
surements. Since any degree of AS is related to
impaired outcome, there is a need to develop models
to predict risks and outcomes in patients with various
degrees of AS that include the comorbidities. Our
objective was to develop a risk prediction model for
AS within a large registry of patients with wide range
of AS severities, combining ultrasound and electronic
medical record (EMR) information, using advanced
ML techniques. Model validation was performed in
2 independent cohorts.

METHODS

PATIENTS AND CLINICAL DATA. The algorithm was
developed using data from the Kaplan Medical Center
AS Patients Prospective Registry. This registry com-
prises patients with AS who underwent echocardiog-
raphy between 2008 and 2020. We included
individuals with at least one echocardiogram with
sufficient data on AS severity, in accordance with
guidelines.7,8 Patients with AVR before the baseline
echocardiography study were excluded. Initially, the
patient cohort consisted of 12,757 patients. We
excluded 1,259 patients due to previous AVR, 121 pa-
tients due to subvalvular gradients, and 970 patients
due to incomplete echocardiographic data
(Supplemental Figure 1). The final cohort comprised
10,407 patients: 7,173 with mild AS, 2,007 with
moderate AS, and 1,227 with severe AS. The study
protocol was approved by the Kaplan Medical Center
Review Board and Ethics Committee, which waived
the need for informed consent.

Mild AS was defined by an aortic valve area (AVA)
of 1.5 to 2.0 cm2 and a peak velocity of 2.5 to 2.9 m/s.
Moderate AS was characterized by an AVA of 1.0 to
1.5 cm2 and a peak velocity of 3 to 4 m/s, while severe
AS was defined as an AVA <1.0 cm2 and a peak ve-
locity >4 m/s. In cases of discordant AS severity, we
re-evaluated measurements and measured calcium
scores.9 The aortic valve calcium score was measured
only in patients with discordant AS severity and was
not included in the model. Left and right chamber
dimensions and function, valvular assessment, and
pulmonary artery pressure (PAP) measurements were
performed according to established guidelines.10,11

Some of the classic diastolic function indices were
excluded from the analysis due to a high percentage
of patients with atrial fibrillation and severe mitral
annular calcifications.12 However, we included left
atrial size and PAP as surrogates for diastolic
function.

Clinical data included age, gender, relevant
implantable cardioverter-defibrillator-10 codes for
cardiovascular diseases, and comorbidities such as
chronic lung disease, dementia, and osteoporosis,
obtained from the EMRs. We collected data on all-
cause mortality and AVR. Laboratory tests were
available in 80% of the patients, and all medications
were included in the dataset. Baseline data accounted
for the first echocardiography and its respective
clinical data, collected in a 3-month window. The
primary outcome of the model was a combined end
point of AVR and all-cause mortality. Patients
received follow-up and treatment from their primary
physicians and cardiologists, and any intervention
was performed in accordance with guidelines and
clinical judgment.

VALIDATION COHORTS. The model was validated
twice using: first, a cohort of 11,738 patients with AS
obtained from the Clalit Health Services database
(Clalit HMO). These patients underwent echocardi-
ography between 2013 and 2022. Clalit Health Ser-
vices provides care for 4.7 million patients,
representing 52% of the total Israeli population. The
clinical data, including demographics, risk factors,
and comorbidities were recorded as in the original
data from the Kaplan Medical Center. However,
echocardiography reports were available only for a
random selection of patients, and the electronic re-
ports had limited data. Specifically, information on
aortic and tricuspid regurgitations was not available,
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nor was data on PAP. The second cohort consisted of
954 patients with AS from the Hospital General Uni-
versitario Gregorio Marañón (HGUGM) in Madrid,
Spain. These patients underwent echocardiography
between July 1, 2015, and June 30, 2016. Clinical and
echocardiographic data for this cohort have already
been reported.4

MACHINE LEARNING MODEL. While most of the
previous studies that used ML techniques focused on
classification tasks, we addressed the task as time-to-
event. This enables us to handle censored data by
incorporating time-dependent impact of covariates
and enabling a direct estimation of survival proba-
bilities. All clinical and echocardiographic data were
used to train a time-to-event model for the prognosis
of AS patients using a random survival forest
(RSF).13,14 RSF is a powerful ensemble method that
combines the principles of random forests with sur-
vival analysis techniques. The RSF model is con-
structed by assembling a collection of survival trees
(ST). Survival trees are specifically designed to handle
censored data, which is common in survival analysis
where some events of interest have not yet occurred
or have been lost to follow-up. The structure of ST is
built by recursively partitioning the data based on the
independent variables. Each ST is built using a
random subset of patients. At each node of the tree,
the algorithm identifies the most informative variable
(eg, age) and its corresponding threshold (eg, 80) and
then separates the patients into branches (eg, age <80
vs age $80 years) such that patients in each branch
have similar survival patterns. Each tree predicts a
survival function—the probability of surviving up to a
certain time “t.” To make an overall prediction for
new patients, their data will run through each tree to
obtain multiple survival function estimates. These
are averaged across trees to produce the model’s
consensus prediction. An illustrative shallow tree is
shown in Supplemental Figure 2. The details of ML
method and statistical analysis are summarized in
Supplemental Methods.

RESULTS

A total of 10,407 patients, aged 77 (69-84) years, with
52% being women, were included in the primary
cohort. Sixty-nine percent of the patients had mild
AS, while 19% had moderate AS and 12% had severe
AS. The baseline characteristics of the patients are
shown in Table 1 and Supplemental Table 1. Patients
showed frequent comorbidities. Left ventricular (LV)
size and left ventricular ejection fraction were pre-
served, but there was evidence of left ventricular
hypertrophy, a dilated left atrium, and elevated PAP.
FOLLOW-UP. The median follow-up of the primary
cohort was 48 (21-87) months. During this period,
1,116 patients underwent AVR, and 5,069 patients
died, 463 of them after AVR. The Kaplan-Meier anal-
ysis of the outcomes according to baseline AS severity
grade is shown in Supplemental Figures 3A to 3C. The
clinical and echocardiographic predictors for the
combined end point of AVR and mortality are shown
in Supplemental Table 2. Many clinical and echocar-
diographic parameters were related to outcome.
Among others, moderate (hazard ratio: 1.57; 95% CI:
1.38-1.52; P < 0.001) and severe (hazard ratio: 2.50;
95% CI: 2.32-2.70; P < 0.001) AS were 2 of the most
relevant predictors of outcome.

DEVELOPING A MACHINE LEARNING MODEL FOR

PREDICTING OUTCOMES IN PATIENTS WITH AORTIC

STENOSIS. The RSF model showed an area under the
curve (AUC) of 0.83 (95% CI: 0.80-0.86) and 0.83
(95% CI: 0.81-0.84) to predict the composite outcome
at 1 and 5 years, respectively (Central Illustration). The
AUC of RSF for prediction outcome at 1 year was
significantly higher than for the conventional Cox
proportional-hazard model (0.77 [95% CI: 0.76-0.79],
P ¼ 0.02) (Figure 1A). Using a default cut-off of 50%
(above and below median), the RSF sensitivity and
specificity for end point predictions were 0.80 and
0.73, respectively, at the end of the first year. The RSF
model was also superior to Cox proportional-hazard
model for predicting separate outcomes of all-cause
mortality (AUC: 0.77 [95% CI: 0.74-0.8] vs 0.73
[95% CI: 0.71-0.75], respectively, P ¼ 0.014, Figure 1B)
and AVR (AUC: 0.92 [95% CI: 0.90-0.94] vs 0.89
[95%CI: 0.86-0.92], respectively,P¼0.033) (Figure 1C).

EXTERNAL VALIDATION OF THE MODEL. Character-
istics of both validation cohorts are shown in Table 1
and Supplemental Table 1. The Clalit HMO data-
base comprised 11,738 AS patients with a median age
of 78 (IQR: 64-89) years, and 54% were male. The
median follow-up was 39 (IQR: 16-62) months. During
this period, 2,419 patients underwent AVR, and 4,729
patients died. Significant differences exist between
the patient profiles in this database compared to the
Kaplan Medical Center database. The proportion of
males was higher, and there were differences in terms
of risk factors, comorbidity frequencies, and the
prevalence of moderate and severe AS cases within
this database. Nevertheless, despite these differences
and the absence of certain echocardiographic pa-
rameters, ML RSF model still demonstrated a high
level of accuracy, exhibiting a significant improve-
ment in predictive accuracy when compared to the
Cox proportional-hazards model within this database
(AUC at 1-year: RSF 0.73 [95% CI: 0.72-0.74], vs COX



TABLE 1 Main Data of the Training and Validation Cohorts

Kaplan Hospital
(n ¼ 10,407)

Clalit HMO
(n ¼ 11,738)

HGUGM
(n ¼ 954)

Demographics

Age (y) 77 (69-84) 78 (69-84) 78 (64-89)

Male 4,957 (47.7) 6,317 (53.8) 444 (46.60)

Hypertension 8,539 (82.1) 9,878 (84.2) 620 (64.7)

Diabetes mellitus 3,442 (33.1) 4,615 (39.3) 161 (16.7)

Hyperlipidemia 7,236 (69.6) 9,446 (80.5)

Heart failure 3,060 (29.4) 4,931 (42.0) 371 (38.8)

History of CABG or PCI 1,945 (19) 3,211 (27) 287 (28.8)

History of acute coronary syndrome 353 (3.4) 768 (6.5) 87 (9.1)

Atrial fibrillation 2,713 (26.1) 3,893 (33.2)

PVD/CVA 661 (6.4) 918 (7.8) 289 (28.5)

Mitral or tricuspid valve surgery 16 (0.2) 51 (0.4)

Pacemaker procedure 450 (4.3) 623 (5.3)

History of myocarditis 86 (0.8) 218 (1.9)

Chronic kidney disease 1,462 (14.1) 2,543 (21.7) 366 (38.3)

Pulmonary embolism/DVT 165 (1.6) 298 (2.5)

Dementia/Alzheimer’s 703 (6.8) 898 (7.7) 21 (2.2)

Echocardiography

Peak aortic valve gradient (mm Hg) 30 � 16 45 � 22 37 � 24

Mean aortic valve gradient (mm Hg) 19 � 19 28 � 15 24 � 15.3

Aortic valve area (cm2) 1.46 � 0.39 1.00 � 0.34 1.37 � 0.6

LVED diameter (mm) 46.08 � 6.28 46.59 � 6.48 45.95 � 7.91

LVES diameter (mm) 28.65 � 6.80 30.53 � 7.29 31.80 � 7.23

Posterior wall thickness (mm) 11.26 � 1.88 10.56 � 1.66 10.70 � 2.20

Interventricular septum thickness (mm) 12.42 � 2.09 11.76 � 2.08

Left atrial diameter (mm) 40.22 � 7.00 41.33 � 8.26

Left atrial area (cm2) 22.57 � 5.50 22.32 � 6.56

Aortic root diameter (mm) 30.40 � 30.40 28.52 � 28.52

Ascending aorta diameter (mm) 33.53 � 4.59 35.35 � 5.17

LVEF (%) 53.64 � 8.51 55.41 � 11.14 56.06 � 9.59

Pulmonary artery systolic pressure (mm Hg) 40.5 � 13.6 35.8 � 15.2

Mitral valve regurgitation

No/trace 1,751 (16.8) 4,34 (45.5)

Mild/mild to moderate 7,678 (73.8) 5,322 (45.3) 267 (28)

Moderate 710 (6.8) 4,575 (39.0) 135 (14)

Moderate to severe/severe 268 (2.6) 1,841 (15.7) 118 (12.4)

Aortic valve regurgitation

No/trace 4,567 (43.9) 807 (84.6)

Mild/mild to moderate 5,418 (52.1) 72 (7.5)

Moderate 334 (3.2) 21 (2.2)

Moderate to severe/severe 88 (0.8) 54 (5.7)

Tricuspid valve regurgitation

No/trace 1,529 (14.7)

Mild/mild to moderate 7,898 (75.9)

Moderate 728 (7.0)

Moderate to severe/severe 252 (2.4)

Values are median (IQR), n (%), or mean � SD.

CABG ¼ coronary artery bypass grafting; CVA ¼ cerebrovascular accident; DVT ¼ deep vein thrombosis; HGUGM ¼ Hospital General Universitario Gregorio Marañón; LVED ¼
left ventricular end-diastolic; LVEF ¼ left ventricular ejection fraction; LVES ¼ left ventricular end-systolic; PCI ¼ percutaneous coronary intervention; PVD ¼ peripheral
vascular disease.
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0.69 [95% CI: 0.68-0.70], P < 0.0001) (Figure 2A). The
HGUGM validation cohort consisted of 954 AS pa-
tients with a median age of 78 (IQR: 64-89) years, and
48% were male. The median follow-up duration was
43 (IQR: 18-72) months. Over the follow-up period, 92
patients underwent AVR, and 470 patients died. As
seen in Table 1, the patients in this cohort exhibited
differences compared to the Kaplan database. There
were some variations in comorbidities, and certain
variables were missing from this database. The
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model’s accuracy remained robust in this cohort as
well (AUC at 1-year: RSF 0.74 [95% CI: 0.72-0.76] vs
COX 0.72 [95% CI: 0.68-0.72], P < 0.002) (Figure 2B).

OUTCOME RISK PREDICTION. We calculated a rela-
tive risk score for each patient in the registry.
Figure 3A displays the risk scores for patients with
mild, moderate, and severe AS. Notably, although risk
score is directly proportional to AS severity, some
patients with mild AS were found to have high risk
scores, and certain patients with severe AS showed
lower risk scores than expected. For the sake of
illustration, we divided the patients into 2 (Central
Illustration) and 4 groups based on the ML model’s
quartile risk score. Figures 3B to 3D shows the time
evolution of each risk score, adjusted by age and sex,
in the 3 studied cohorts (all P < 0.001).
VARIABLE TIME-DEPENDENT IMPACT ASSESSMENT.Us-
ing the time-dependent Brier score for right-censored
data, we estimated the average impact of each vari-
able on the predictive performance of the model
(Figure 4A). The variables were scored by importance
over time. We noted an incremental effect of age over
time, for example, while some effects, such as the
effect of mild AS, are decreasing over time, probably
due to the progression of the aortic valve severity
with time.

VARIABLE SELECTION BY IMPORTANCE. The ranking of
variables for the entire prognostic model was deter-
mined using the SHapley Additive exPlanations
(SHAP) method, as displayed in Supplemental
Table 3. AS severity, age, serum albumin, PAP, and
chronic kidney disease emerged as the top 5



FIGURE 1 Model Performance

(A) Comparison of predictive performance (AUC over time) of RSF model and Cox proportional-hazards survival model to predict combined outcome of AVR and all-

cause mortality over time in the primary cohort. (B and C) Comparison of RSF performance (AUC over time) vs Cox proportional hazards to predict all-cause mortality

(B) and AVR (C) over time. AUC ¼ area under the curve; AVR ¼ aortic valve replacement; RSF ¼ random survival forest.
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significant variables in the model. The significance of
each variable in predicting 1- and 5-year prognosis
based on variable values is shown in Figure 4B. AS
severity proves to be an important variable to predict
both 1- and 5-year prognosis. Age is a significant
predictor in the short term and gains greater impor-
tance in the long-term prognosis. The most relevant
echocardiographic predictors are PAP, LV function,
hypertrophy, mitral annular calcification, and left
atrial size. Clinical predictors include albumin level,
renal failure, anemia, and serum calcium levels. Us-
ing the SHAP model, we are able to predict the spe-
cific variables related to an individual patient’s
prognosis and forecast the effect of certain baseline
variables over time, as shown in Figure 4C. The dia-
gram illustrates a SHAP analysis to predict outcome of
an 80-year-old patient with mild AS. As highlighted in
this specific example, age, LV hypertrophy, and
borderline serum albumin are negative outcome-
related variables over time.
The effect of t ime of base l ine study on the
model . Patients were studied from 2008 to 2020.
During this time period, there were significant
changes in AS patients’ management, including the
introduction of transcatheter AVR, new medications,
etc. To address these changes, we tested the model in
2 different time periods: 1) 2008 to 2013; and 2) 2014
to 2020. Training separate models for each period
barely improved the predictive performance of the
original model (0.245% increase in weighted AUC at 1
year, P ¼ 0.351). Alternatively, we included in a single
RSF, the time frame as an additional variable,
yielding similar results (0.22% increase in weighted
AUC at 1 year, P ¼ 0.386). Interestingly, when exam-
ining the crude (nonadjusted) Kaplan-Meier curves,
we observed a prolonged time-to-event among pa-
tients assigned to the late period (2014-2020,
P ¼ 0.00037). To address this issue, we conducted an
additional test by training an adversarial classifier (a
random forest classifier) to distinguish between the
first and second periods using patients’ clinical data.
This model differentiates well between the 2 periods
(with an AUC of 0.838). This suggests that the period
information is already encoded within the existing
variables of the entire model, as exemplified by the
predominant administration of direct oral anticoag-
ulant and protein convertase subtilisin/kexin type 9
inhibitors, among others, in the second period.

Initial model comprises 81 clinical and echocar-
diographic variables typically conducted and found in
the medical records of elderly patients with AS. To
streamline the model, we evaluated its predictive
accuracy using only 12 variables using the nested
cross-validation method. As seen in Supplemental
Figure 4, accuracy was not compromised when us-
ing the reduced model. However, it’s worth noting
that this simplified model is cohort-dependent, and
the variables may vary with the dataset.

The extra features (beyond the top 12) do not pro-
vide a significant contribution to the model’s predic-
tive capability. This suggests that these additional
features might be redundant or irrelevant. We



FIGURE 2 Validation of Model Performance in External Cohorts

Comparison of predictive performance (AUC over time) of RSF model and Cox

proportional-hazards survival model to predict combined outcomes in both the valida-

tion cohorts of Clalit HMO (A) and HGUGM (B). AUC ¼ area under the curve; HGUGM ¼
Hospital General Universitario Gregorio Marañón; RSF ¼ random survival forest.
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maintained the model with all features despite
achieving identical accuracy with a reduced feature
set. This approach could offer benefits such as
enhanced robustness to future data changes and
stability in model performance, especially if one of
the top features is missing or noisy. This is important
due to differences in various EMRs.

DISCUSSION

To our knowledge, this is the first study to use an
advanced ML framework for generating time-to-event
outcome predictions based on clinical data in patients
across all grades of AS. The model is built upon a
large, single-center dataset containing comprehen-
sive EMR and echocardiographic “real-world” data
that was validated on 2 external populations,
demonstrating good prognostic accuracy. Further-
more, the model can be employed to assess time-
dependent impact and importance of variable, pre-
dict individual patient risk, and variables related to
patient prognosis. This potential opens the door to
personalized, patient-tailored follow-up and
treatment.

AS ranks as the third most common cardiovascular
disease in the Western world, leading to premature
mortality and impacting quality-adjusted life years.15

Previous studies have demonstrated that AS, regard-
less of its severity, is linked to premature mortality,
particularly among older patients.4,15 The findings of
this study align with these observations, indicating a
high percentage of adverse outcome events in pa-
tients with all AS grades. Like other valvular diseases,
AS is frequently underdiagnosed and undertreated.16

The relatively low number of AVR and the relatively
high number of deaths in our study are consistent
with findings in other reports.3,4

We used the Cox model to predict patient out-
comes in our registry, which included patients with
various degrees of AS and a large amount of clinical
information. The Cox proportional-hazards model
yielded relatively good performance for predicting
patient outcomes. However, dataset analyses using
Cox proportional-hazards or any other generalized
linear models require careful model construction,
which is often impractical when dealing with a very
large number of predictors and complex unknown
interactions.17

Several studies have employed ML techniques,
primarily clustering and phenotyping, to enhance risk
stratification for AS patients. Notably, the patient
population in the primary registry significantly sur-
passes that of these previous studies. Bootstrap Lasso
Regression model was used to develop ASteRisk
score, which outperformed the classical clinical score,
in patients with moderate and severe AS.18 The ac-
curacy of both the Cox proportional-hazards model
and the RSF model in our study was higher, likely
owing to the larger registry size, the utilization of
advanced ML methods, and the incorporation of a
greater number of variables. We included patients
with mild AS as well, as done by Sengupta et al.6 In
their research, an unsupervised topological data
analysis method was employed to identify and clas-
sify AS patient groups with similar phenotypes. Their
ML model demonstrated superiority over conven-
tional AS severity grading in terms of accuracy and
prognostic capability, using only echocardiographic
parameters. Notably, they found that 9% of patients
initially classified as having nonsevere AS according
to standard criteria were reclassified into the high-
severity ML group. In our study, some patients with
mild AS also showed high-risk scores, while some



FIGURE 3 Risk Scores

(A) Calculated relative risk score for patients with mild, moderate, and severe AS. Survival without AVR of patients according to model calculated risk scores quartiles,

adjusted by age and sex in the original cohort (B), the Clalit cohort (C), and the HGUGM cohort (D). AVR ¼ aortic valve replacement; HGUGM ¼ Hospital General

Universitario Gregorio Marañón; AS ¼ aortic stenosis.
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patients with severe AS, did not have the highest risk
scores. Kwak et al19 analyzed demographic, labora-
tory, and echocardiography parameters using unsu-
pervised cluster analysis, revealing 3 distinct groups
of patients with moderate and severe AS. The groups
exhibited significant differences in terms of comor-
bidities, cardiac function, outcomes, and causes of
death. Although Kwak et al19 incorporated clinical
data into the model, this data was limited.

In our study, important outcome predictors
included AS severity, age, PAP, LV hypertrophy and
function, left atrial size, albumin level, chronic kid-
ney disease, anemia, and serum calcium. Samad et al5

assessed clinical and echocardiographic data to pre-
dict patient survival, not restricted to AS patients, for
up to 5 years. Random forest model proved to be
effective for predicting 5-year survival, with age and
tricuspid regurgitation velocity, representing PAP,
emerging as the most important variables. In our
cohort, age and PAP also stood out as significant
variables, alongside AS severity, LV-related factors,
and comorbidities, which align with findings from
other studies. Serum albumin is a prognostic
biomarker in various cardiovascular diseases,
including heart failure, coronary artery disease, and
stroke.20 The reduced albumin level may be due to
nutritional deficiency, inflammation, and renal or
liver disease. The results identify serum albumin as a
prognostic risk factor for patients with AS. Serum
calcium, a significant variable in our model, has
prompted contradictory reports regarding its role in
AS.21,22 The significance of serum calcium may be
influenced by low albumin levels. While supple-
mental calcium was not a highly significant variable
in our model, there have been reports suggesting a
potential poor outcome association between supple-
mental calcium and vitamin D in patients with mild to
moderate AS and low serum calcium levels.



FIGURE 4 Feature Importance

(A) Time-dependent Brier score for right-censored data, presenting the time-dependent importance of the various variables. Brier score es-

timates the average impact of each variable on the model’s predictive performance. (B) Top variables for predicting both 1-year (left) and 5-

year (right) outcomes. Importance scores are scaled to show relative importance according to variable value. Red color represents a high

variable value, while blue color represents a low variable value. (C) An example of SHAP analysis results, showing patients’ specific outcome

predictors over time. AS ¼ aortic stenosis; LV, left ventricle; LA ¼ left atrial; SHAP ¼ SHapley Additive exPlanations.
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The developed algorithm exhibited good diag-
nostic accuracy. When tested on external cohorts, the
diagnostic accuracy remained good, albeit slightly
lower compared to the primary cohort. Such a dif-
ference in accuracy between the development and
validation cohorts is a common occurrence in ML. It is
important to bear in mind that a ML algorithm’s
knowledge is solely derived from the development
dataset, and it is expected to exhibit similar or lower
performance when applied to external datasets.23

Additionally, variations in patient populations,
particularly differences in the frequency of comor-
bidities and missing variables in both external data-
sets, can contribute to this variance in accuracy.
Outcome-significant variables, such as PAP, were
not available in the Clalit HMO database and were
present only in about 70% of patients in the HGUGM
validation cohort. Mitral annular calcification data
were not available in both validation cohorts. How-
ever, it is worth emphasizing that the variables used
in the model, including PAP, mitral annular descrip-
tion, and others, are “real-world” data typically found
in the medical records of elderly patients.

Pressure overload and myocardial hypertrophy
may play a significant role in a patient’s prognosis,
particularly in cases of severe and likely moderate AS,
and the hemodynamic consequences are accompa-
nied by ongoing cardiac damage over time. Recently,
a staging classification has been proposed, which
enhances risk stratification for patients with severe
AS.24 Staging includes LV remodeling, left atrial
remodeling and mitral regurgitation, PAP, and right
ventricular changes. Many of the highly important
outcome variables in our model align with the sig-
nificant determinants of this staging system. Our re-
sults extrapolate this staging to patients with lesser
AS severity and add extracardiac variables. Left ven-
tricular hypertrophy, whether entirely related to AS
or not, serves as a negative predictive variable, as do
other factors such as a dilated left atrium or elevated
PAP. Additionally, the model explores other factors
that are significant for patient outcomes. Variables
such as serum albumin, renal function, and poten-
tially liver function, along with anemia, carry signif-
icance in these patients. These factors should be
considered as valuable variables for staging. A deeper
understanding of the pathophysiological complexity
and heterogeneity among AS patients may provide
new insights that inform disease management,
expand therapeutic strategies, and ultimately opti-
mize patient outcomes.25

Using the ML model to assess patients’ risk,
potentially allows us to make informed decisions
about whether a patient requires frequent follow-up
and comorbidity management. Our model can
contribute valuable information to enhance person-
alized approaches for valvular follow-up and echo-
cardiographic examination timing. It enables to
monitor and address specific conditions such as renal
function, albumin levels (indicating nutritional sta-
tus), and signs of heart failure. For certain patients,
therapies targeting heart failure and renal failure,
such as sodium-glucose co-transporter-2 inhibitors or
spironolactone, may also be beneficial. Currently,
there is no indication to perform valve intervention in
patients with moderate AS or asymptomatic patients
with severe AS. Several randomized clinical trials are
being conducted and are very much awaited to
answer these important clinical questions. While our
study is observational and does not provide insights
into the time for intervention, it suggests the possi-
bility of AVR when a patient with moderate AS and
high-risk score accompanies left ventricular hyper-
trophy, a dilated left atrium, and elevated PAP, since
these variables are associated with a poor prognosis.

STUDY LIMITATIONS. We did not include longitudi-
nal, repeated measurement information among the
predictors. Due to the registry’s inclusion criteria,
which required only one echocardiogram, this
parameter lacked validity for a significant proportion
of patients. In addition, validation was conducted
using retrospective data from the cohorts. Prospec-
tive, long-term validation of a large number of pa-
tients would require an extensive amount of time for
inclusion and follow-up. Additionally, our dataset
lacks information on patients’ symptoms and bio-
markers, such as B-type natriuretic peptide (BNP).
The clinical significance of symptoms and NYHA
functional class in patients with mild AS and even
moderate AS is not known. In addition, symptoms in
this high-risk and elderly population can be nonspe-
cific. BNP levels were shown to have prognostic sig-
nificance in patients with AS, mainly severe AS.
Unfortunately, BNP testing was not conducted
routinely in all AS patients during the study period.
Left ventricular and left atrial strain are also impor-
tant factors in AS progression. This data was not
routinely collected during the study period.

CONCLUSIONS

Using advanced ML methods, we have developed an
algorithm that accurately predicts patient outcomes
across all grades of AS while identifying crucial
prognosis-related variables. This model assesses pa-
tients’ risk for adverse events, considering the time-
dependent impact of each variable, and offers the



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Aortic valve

stenosis of any degree is associated with poor outcomes. How-

ever, AVR is indicated in patients with severe symptomatic AS or

severe AS with reduced left ventricular systolic function.

COMPETENCY IN PATIENT CARE: Using the ML method, it is

possible to assess patients’ risk and identify variables that are

associated with adverse outcomes in patients with all grades of

AS. The algorithm offers the potential to guide risk factor

modification for improved prognosis.

TRANSLATIONAL OUTLOOK: This study was based on a

large cohort of patients with AS and was validated in 2 large

independent cohorts. A prospective validation will improve the

algorithm.
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potential to guide risk factor modification for
improved prognosis. Future enhancements to the
model will involve the inclusion of additional vari-
ables, such as LV and left atrial strain, as well as the
assessment of cumulative exposure to variable states
and therapies during follow-up.
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APPENDIX For supplemental methods,
tables, and figures, please see the online
version of this paper.
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