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QMugs, quantum mechanical 
properties of drug-like molecules
Clemens Isert1,4, Kenneth atz  1,4, José Jiménez-Luna  1,2 ✉ & Gisbert Schneider1,3 ✉

Machine learning approaches in drug discovery, as well as in other areas of the chemical sciences, 
benefit from curated datasets of physical molecular properties. However, there currently is a lack 
of data collections featuring large bioactive molecules alongside first-principle quantum chemical 
information. The open-access QMugs (Quantum-Mechanical Properties of Drug-like Molecules) dataset 
fills this void. The QMugs collection comprises quantum mechanical properties of more than 665 k 
biologically and pharmacologically relevant molecules extracted from the ChEMBL database, totaling 
~2 M conformers. QMugs contains optimized molecular geometries and thermodynamic data obtained 
via the semi-empirical method GFN2-xTB. Atomic and molecular properties are provided on both the 
GFN2-xTB and on the density-functional levels of theory (DFT, ωB97X-D/def2-SVP). QMugs features 
molecules of significantly larger size than previously-reported collections and comprises their respective 
quantum mechanical wave functions, including DFT density and orbital matrices. This dataset is 
intended to facilitate the development of models that learn from molecular data on different levels of 
theory while also providing insight into the corresponding relationships between molecular structure 
and biological activity.

Background & Summary
Machine learning methodologies are increasingly becoming well-established tools in many chemistry-related 
disciplines, such as drug discovery1, material science2, and physical chemistry3. In recent years, significant pro-
gress has been made in quantum-based machine learning (QML) methods4, which aim to accurately and com-
putationally inexpensively predict the governing properties of atomistic systems, such as energies and forces5–12, 
dipole moments13, wave functions14,15 and electron densities16,17. Despite the success and promise surrounding 
the applicability of such approaches, several challenges remain for QML. Arguably, one of the most impor-
tant challenges is the increasing need for curated, comprehensive datasets13. While several options, such as the 
QM918, ANI-119, or PubChemQC20 datasets have paved the way for the development of current-generation 
QML methods5–8,21–23, the computational cost entailed in their generation limits both the scope of the explored 
chemical space (e.g., molecule size, atom-type diversity), and prospective modeling applicability13,24.

There has been a recent surge in interest in the delta-learning (Δ-learning) of chemical properties, which 
aims to use a machine learning model to predict a physically relevant quantity, such as those generated by 
density-functional theory (DFT) by utilizing information extracted with a computationally cheaper method22,25 
(e.g., semi-empirical approaches such as GFN2-xTB26–29 and PM630). Datasets that enable this type of learning 
are scarce and could promote the development of accurate models at potentially a fraction of the computational 
cost of more precise alternatives31. Furthermore, datasets that provide three-dimensional conformational data, 
for a wide variety of chemical space, at levels of theory higher than classical force fields32,33, could boost the per-
formance of machine learning methods in predicting properties from ensembles as well as generative models of 
conformations. Relevant examples include the PubChemQC-PM623 and GEOM33 datasets, which include mol-
ecules with properties computed using different semi-empirical levels of theory. Finally, there is a clear potential 
to open up new lines of research by combining biological annotations (e.g., from molecular databases such as 
ChEMBL34), and additional QM-derived physical information.

This work introduces QMugs (Quantum-Mechanical Properties of Drug-like Molecules), a data collection of over 
665 k curated molecular structures extracted from the ChEMBL database, with accompanying computed quantum 
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mechanical properties. Different levels of theory were combined in these calculations. Per compound, three conform-
ers were generated, and their geometries were optimized using the semi-empirical GFN2-xTB method26–29, whereas 
a comprehensive array of quantum properties was computed at the DFT level of theory using the ωB97X-D func-
tional35 and the def2-SVP Karlsruhe basis set36. The data collection presented herein is put in the context of other 
sets that also feature DFT-level properties. A descriptive evaluation against the QM918, ANI-119, and PubchemQC20 
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Fig. 1 (a) Principal-moments-of-inertia plot39 for molecules in the QMugs dataset. NPRx = x-th normalized 
principal moment, Ix = x-th smallest principal moment of inertia. (b) Venn diagram showing overlap between 
QMugs and other well-known datasets with DFT-level computed properties: QM918, PubChemQC20, and ANI-
119. Overlap was computed based on the uniqueness of the InChI representations of the contained molecules. 
Numbers do not add up to those reported in Table 1 because of InChI strings that occur multiple times.

Dataset
Unique 
compounds

Total 
conformations

Heavy atoms 
max (mean) Method

Δ-learning 
possible

Wave 
functions

QM9 133,885 133,885 9 (8.8) B3LYP/6–31 G(2df,p) ✗ ✗

ANI-1 57,462 22,057,374 8 (7.1) ωB97X/6–31 G(d) ✗ ✗

PubChemQC 3,982,436 3,982,436 51 (14.1) B3LYP/6–31 G(d) ✗ ✓

QMugs 665,911 1,992,984 100 (30.6) GFN2-xTB + ωB97X-D/
def2-SVP ✓ ✓

Table 1. Descriptive statistics of the dataset reported herein in the context of other DFT-level molecular 
datasets and the information provided by each. The number of molecules for PubChemQC corresponds to that 
available on the website of the project57. Heavy atom averages are weighted by the number of conformations.
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Fig. 2 Distribution of properties for the molecules contained in the QMugs dataset.
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datasets is provided in Fig. 1b, as well as in Table 1. With an average of 30.6 and a maximum of 100 heavy atoms per 
compound (Table 1 & Fig. 2), QMugs features molecular samples that are considerably larger than those provided by 
other previously-reported datasets. QMugs also provides a larger number of distinct molecules than QM9 and ANI-
1. Though the total number of provided molecules in QMugs is lower than that provided in PubChemQC, QMugs 
provides multiple conformers per molecule and therefore enables the training of QML models which can differen-
tiate between molecular constitution and conformation. QMugs additionally provides a wide range of properties on 
multiple levels of theory. Furthermore, the vast majority of the included compounds (~641 k, 96.3%) were previously 
unreported in other DFT data collections, while also providing equivalent information at additional levels of theory, 
namely GFN2-xTB. QMugs provides quantum mechanical wave functions represented as local bases of atomic orbit-
als (i.e., DFT density and orbital matrices). Single-point properties as well as wave functions were computed with the 
Psi4 software suite37 for all the conformers (~2.0 M) present in the database. As previously reported for the ChEMBL 
database38, most of the considered drug-like molecules in this study fall within the rod-disk axis in the principal 
moments of inertia plot39 (Fig. 1a).

Overall, the potential utility of the presented dataset is fourfold: (i) it will provide researchers with a dataset 
containing substantially larger molecules than previously reported, in order to either directly predict quantum 
chemical properties, or to learn a property mapping between two popular quantum mechanical levels of the-
ory (i.e., GFN2-xTB and ωB97X-D/def2-SVP); (ii) it will facilitate the development of novel machine-learning 
methodologies for the generation of molecular conformations and molecular property predictions via their 
ensembles; (iii) it will facilitate the development of novel deep learning frameworks for the prediction of the 
quantum mechanical wave function in a local basis of atomic orbitals; and (iv) it will enable research towards the 
exploration of quantum featurization in the context of pharmacologically relevant, annotated biological data.

Methods
Molecules were extracted from the ChEMBL database34 (version 27). Conformers were generated using RDKit 
(http://www.rdkit.org) and GFN2-xTB26–29. DFT (ωB97X-D/def2-SVP) calculations were carried out via Psi437. 
A similar approach was adopted in a previous study on transition-metal complexes13. An overview of the 
data processing pipeline is given in Fig. 3, while individual steps are described in more detail in the following 
subsections.

In chemical terminology, the term “conformation” refers to any arrangement of atoms in space, whereas 
“conformer” refers to a conformation that is a local minimum on the potential energy surface of the molecule40. 
In the analyses that follow, the term “conformation” is loosely used to refer to both, unless explicitly mentioned 
otherwise.

Data extraction and SMiLeS processing. Single-protein targets with assay information for at least 10 
compounds with unique internal identifiers were extracted from the ChEMBL database. Several activity and 
annotation filters were subsequently applied to these compounds (see Supporting Information for a detailed 
query description). This procedure resulted in 685,917 molecules with unique external identifiers (ChEMBL-IDs), 
represented by their Simplified Molecular Input Line Entry Specification (SMILES)41. Molecules were neutral-
ized, and salts and solvents were removed (“washing”) using the ChEMBL Structure Pipeline package42. For 
compounds consisting of multiple separate fragments, all fragments except the one with the highest number of 
heavy atoms were discarded after the washing. Additionally, molecules containing fewer than 3 or more than 100 

Fig. 3 Overview of the data generation process. Molecules were extracted from the ChEMBL database, 
standardized, and filtered, and starting conformers were generated using the RDKit software package. 
Metadynamics (MTD) simulations were performed using the GFN2-xTB semi-empirical method to generate 
three diverse conformations before final geometry optimization. Molecules that did not pass a series of 
geometric sanity checks were removed. DFT-level properties (ωB97X-D/def2-SVP) were computed using Psi4 
software.

https://doi.org/10.1038/s41597-022-01390-7
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heavy atoms, as well as radical species and molecules with a net charge different from zero after the attempted 
neutralization, were removed. Atom types included in the QMugs dataset are hydrogen, carbon, nitrogen, oxygen, 
fluorine, phosphorus, sulfur, chlorine, bromine, and iodine.

conformer generation and optimization. With the procedure described herein, a compromise between 
efficient molecular conformational search and practical computational expense considerations was sought. 
Similar to previous studies13,43, the semiempirical GFN2-xTB method was used as a surrogate for full DFT geom-
etry optimization, as the latter is associated with challenging computational costs when considering the size and 
number of molecules in the QMugs dataset.

The RDKit (http://www.rdkit.org) implementation of the Experimental-Torsion Knowledge Distance 
Geometry (ETKDG) method44 was used to generate up to 100 conformers for each molecule, with a maxi-
mum of 1000 embedding attempts and an initial coordinate assignment using distance-matrix eigenvalues and 
default settings (boxSizeMult = 2.0, forceTol = 1e-3). Upon no successful conformer generation, it 
was re-attempted via random assignment of the starting coordinates. The resulting conformers were further 
minimized using the Merck molecular force field45 (MMFF94s) for a maximum of 1000 iterations, with default 
settings (nonBondedThresh = 100.0). The lowest-energy conformer (according to the selected force 
field) for each structure was then used as a starting point for meta-dynamics (MTD) simulations. Stereocenters 
that were previously undefined in the SMILES extraction procedure were assigned in this conformer generation 
process.

For each generated conformer, an MTD simulation was performed with the xTB software package28 for a 
duration of 5 ps with time steps of 1 fs, at a temperature of 300 K. The biasing root-mean-square deviation 
(RMSD) potential used for all MTD simulations is given by α= ∑ Δ=E k exp( )i

N
i ibias

RMSD
1

2 , where N is the number 
of reference structures, ki the pushing strength, Δi the collective variable (i.e., the RMSD between structure i and 
a reference structure), and α the width of the Gaussian potential used in the RMSD criterion. Simulations were 
carried out with α = 1.2−1 and ki = 0.2 mEh with snapshots taken every 50 fs, resulting in 100 conformations 
stored with their corresponding energies. To obtain conformationally diverse samples, these structures were 
subsequently clustered into three groups via the k-means46 algorithm, as implemented in the scikit-learn47 (ver-
sion 0.23.1) Python package using the pairwise RMSD of the aligned structures as molecular features. The con-
formation with the lowest-energy value from each cluster was then selected for further processing. The three 
resulting conformations for each molecule were then optimized using the GFN2-xTB26–29 method using energy 
and gradient convergence criteria of 5 × 10−6 Eh and 1 × 10−3 Eh α−1, respectively, and the approximate normal 
coordinate rational function optimizer (ANCopt). Harmonic frequencies, entropies, enthalpies and heat capac-
ities at 298.15 K were extracted at the end of the geometry optimization process. Structures for which vibrational 
frequencies with imaginary wave numbers were obtained — indicative of failure to reach energy minima — were 
subjected to additional optimizations until no significant ones remained, up to a maximum of 100 attempts.

Quantum mechanical calculations. Single-point electronic calculations were performed for the opti-
mized geometries using the ωB97X-D quantum functional and the def2-SVP basis set as implemented in the 
open-source quantum-chemistry software suite Psi437. Single-point properties such as formation and orbital 
energies, dipole moments, rotational constants, partial charges, bond orders, valence numbers, as well as wave 
functions including α and β DFT-density matrices, orbital matrices, and the atomic-orbital-to-symmetry-orbital 
transformer matrix were obtained. For practical reasons, 52 structures whose DFT calculations required compu-
tational resources that exceeded empirically determined limits, or for which calculations were unsuccessful, were 
discarded (see Supporting Information for details).

Data Records
All computed molecular structures, as well as their corresponding properties and wave functions are accessible 
through the ETH Library Collection service48.

Format specification. A summary.csv comma-separated file contains computed molecular-level prop-
erties and additional annotations. A compressed tarball file (structures.tar.gz) of ~7 gigabytes (GB) 
contains plain MDL structure-data files49 (SDFs) with embedded atomic and molecular properties, grouped in 
sub-directories according to their respective ChEMBL identifiers. These SDFs include single-point electronic 
properties calculated on the GFN2-xTB and ωB97X-D/def-SVP levels of theory, as described in Table 2. A second 
compressed tarball file (vibspectra.tar.gz, ~3 GB) contains vibrational spectra.

Wave function files (i.e., DFT density and orbital matrices) as described in Table 3, are split into 100 com-
pressed tarballs (wfns_xx.tar.gz) of ~50 GB each for easier management and downloading. These are 
supplied as NumPy50 (.npy) binary files, which can be read using the Psi4 software package. Molecules (with 
all conformers grouped together) were assigned at random to the tarballs to enable easy use of subsets of the 
QMugs dataset without having to download all the files. The assignment of ChEMBL identifiers to tarballs is 
described in a tarball_assignment.csv file.

Technical Validation
optimized geometry sanity checks. Four consecutive geometry checks were performed to filter out 
structures for which the geometry optimization procedure converged to unrealistic conformations. To determine 
suitable thresholds for removing a structure from our dataset, the generated geometries were compared to experi-
mental reference values and to DFT-optimized geometries extracted from the PubChemQC dataset20. Specifically, 
we investigated (i) the deviation of bond lengths from experimental reference values, (ii) isomorphism between 
the initial molecular graphs and those obtained after geometry optimization, (iii) linearity of triple bonds, and 
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(iv) planarity of aromatic rings. Structures were removed from the dataset if they failed any of these tests. In total, 
10,986 (0.55%) conformations were discarded from the dataset. Each test is briefly described in the following 
subsections, with further technical details reported in the Supporting Information.

Deviation of bond lengths from experimental reference values. Bond lengths in the optimized structures were 
compared to average experimental reference values for bonds of the same bond type (single, double, triple, or 
aromatic) and between the same atoms. Reference values were obtained from the Computational Chemistry 

Property Symbol Unit Key Δ-ML

ChEMBL identifier — — CHEMBL_ID

Conformer identifier — — CONF_ID

Total energy URT Eh GFN2:TOTAL_ENERGY ♦

Internal atomic energy EAtom Eh GFN2:ATOMIC_ENERGY

Formation energy EForm Eh GFN2:FORMATION_ENERGY ♦

Total enthalpy HRT Eh GFN2:TOTAL_ENTHALPY

Total free energy GRT Eh GFN2:TOTAL_FREE_ENERGY

Dipole (x, y, z, total) μ D GFN2:DIPOLE ♦

Quadrupole (xx, xy, yy, xz, yz, zz) Qij D Å GFN2:QUADRUPOLE

Rotational constants (A, B, C) A, B, C cm−1 GFN2:ROT_RONSTANTS ♦

Enthalpy (vib., rot., transl., total) ΔH cal mol−1 GFN2:ENTHALPY

Heat capacity (vib., rot., transl., 
total) CV cal K−1 mol−1 GFN2:HEAT_CAPACITY

Entropy (vib., rot., transl., and 
total) ΔS cal K−1 mol−1 GFN2:ENTROPY

HOMO energy EHOMO Eh GFN2:HOMO_ENERGY ♦

LUMO energy ELUMO Eh GFN2:LUMO_ENERGY ♦

HOMO-LUMO gap EGap Eh GFN2:HOMO_LUMO_GAP ♦

Fermi level EFermi Eh GFN2:FERMI_LEVEL

Mulliken partial charges δM e GFN2:MULLIKEN_CHARGES ♦

Covalent coordination number Ncoord — GFN2:COVALENT_COORDINATION_NUMBER

Molecular dispersion coefficient C6 a.u. GFN2:DISPERSION_COEFFICIENT_MOLECULAR

Atomic dispersion coefficients C6 a.u. GFN2:DISPERSION_COEFFICIENT_ATOMIC

Molecular polarizability α(0) a.u. GFN2:POLARIZABILITY_MOLECULAR

Atomic polarizabilities α(0) a.u. GFN2:POLARIZABILITY_ATOMIC

Wiberg bond orders MAB — GFN2:WIBERG_BOND_ORDER ♦

Total Wiberg bond orders ∑ ≠ MA A B AB( ) — GFN2:TOTAL_WIBERG_BOND_ORDER ♦

Total energy URT Eh DFT:TOTAL_ENERGY ♦

Total internal atomic energy EAtom Eh DFT:ATOMIC_ENERGY

Formation energy EForm Eh DFT:FORMATION_ENERGY ♦

Electrostatic potential VESP V DFT:ESP_AT_NUCLEI

Löwdin partial charges δL e DFT:LOWDIN_CHARGES

Mulliken partial charges δM e DFT:MULLIKEN_CHARGES ♦

Rotational constants (A, B, C) A, B, C cm−1 DFT:ROT_CONSTANTS ♦

Dipole (x, y, z, total) μ D DFT:DIPOLE

Exchange correlation energy EXC Eh DFT:XC_ENERGY

Nuclear repulsion energy �VeN Eh DFT:NUCLEAR_REPULSION_ENERGY

One-electron energy Te
� Eh DFT:ONE_ELECTRON_ENERGY

Two-electron energy �Vee Eh DFT:TWO_ELECTRON_ENERGY

HOMO energy EHOMO Eh DFT:HOMO_ENERGY ♦

LUMO energy ELUMO Eh DFT:LUMO_ENERGY ♦

HOMO-LUMO gap EGap Eh DFT:HOMO_LUMO_GAP ♦

Mayer bond orders MAB — DFT:MAYER_BOND_ORDER

Wiberg-Löwdin bond orders WAB — DFT:WIBERG_LOWDIN_BOND_ORDER ♦

Total Mayer bond orders ∑ ≠ MA A B AB( ) — DFT:TOTAL_MAYER_BOND_ORDER

Total Wiberg-Löwdin bond orders WA A B AB( )∑ ≠ — DFT:TOTAL_WIBERG_LOWDIN_BOND_ORDER ♦

Table 2. Calculated properties as stored in the SDFs of the QMugs data collection. Abbreviations: a.u., atomic 
units; vib., vibrational; rot., rotational; transl., translational. Properties that enable Δ machine learning are 
labelled with ♦.

https://doi.org/10.1038/s41597-022-01390-7


6Scientific Data |           (2022) 9:273  | https://doi.org/10.1038/s41597-022-01390-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Comparison and Benchmark DataBase (CCCBDB)51, and the largest absolute bond-length deviation from ref-
erence values was recorded per molecule. Bonds for which no reference value was available (0.75%) were omit-
ted. The same analysis was carried out for molecules from the PubChemQC dataset containing the same atom 
types as QMugs, in order to obtain a comparable set with respect to the present atom types. The PubChemQC 
set (3,834,382 conformations with reference bond lengths) showed a deviation of 0.06 ± 0.04Å (median ± 1 
standard deviation), whereas the QMugs dataset (2,004,003 conformations with reference bond lengths) showed 
a deviation of 0.07 ± 0.03Å. Based on the observed distribution of bond-length deviations from experimental 
reference values (Figure S1) and manual investigation of example structures, 0.2 was determined to be a suitable 
threshold for a conformation to be removed from the dataset, which included 6,131 (0.31%) examples.

Molecular graph isomorphism. It was investigated whether atom connectivity could be reconstructed after 
removing bond information from the generated SDFs. To this end, molecular graphs constructed exclusively 
from atom positions and types were compared to those obtained using the original atom connectivity (see 
Supporting Information for details). 1,568 (0.08%) conformations for which the resulting molecular graphs 
were non-isomorphic failed this test.

Deviation of triple bonds from linear geometry. The deviation of triple bonds from their ideal linear geome-
try was examined. In this investigation, ring triple bonds were not considered owing to routinely-occurring 
deviations from linear geometry in systems with high ring strain52. The largest deviation from a 180 (linear) 
bond angle was recorded for each molecule containing at least one non-ring triple bond. The same analysis was 
performed on the PubChemQC dataset20. Triple-bond-containing molecules from PubchemQC and QMugs 
(273,320 and 165,101 samples, respectively) showed deviations of 1.38 ± 1.46° (median ± 1 standard deviation), 
and 1.46 ± 2.13°, respectively. Based on the observed distribution of triple bond angles from a linear geometry 
(Figure S2) and manual inspection of structures, a 10° deviation was identified as a suitable threshold. 1,147 
(0.06%) conformations failed this test.

Deviation of aromatic rings from planar geometry. The planarity of carbon-containing aromatic rings was also 
investigated. For each molecule containing aromatic carbon atoms, the largest dihedral angle between the two 
planes spanned by each aromatic carbon atom and its three neighbors was recorded (see Supporting Information 
for details). The same analysis was performed on the PubChemQC dataset20. Molecules from PubchemQC and 
QMugs (2,391,589 and 1,950,929 conformations with aromatic carbons, respectively) showed median dihedral 
angles ( ± 1 standard deviation) of 1.70 ± 1.85° and 2.99 ± 2.20°, respectively. Based on the observed distribu-
tion of dihedral angles from planar geometries (Figure S3) and manual inspection of structures, 2,769 (0.14%) 
conformations with aromatic carbon dihedral angles above 15° were discarded.

Further geometrical assessment. The changes in the molecular geometries along the applied pipeline were 
examined in order to evaluate the effects of the applied steps. Figure 4a shows the mean pairwise RMSD of atom posi-
tions between the conformations of each molecule at different steps along the pipeline. Conformations sampled dur-
ing MTD simulations showed a mean pairwise RMSD of 2.40 ± 0.52° (median ± 1 standard deviation). The k-means 
clustering procedure accomplished the envisaged task of sampling conformations with higher geometric diver-
sity (2.67 ± 0.74°). During the geometry optimization process, conformational diversity decreased (2.48 ± 0.86°). 
Unsurprisingly, for some molecules featuring rigid structures, conformations tended to converge toward the same 
energy minimum (0.09% of molecules show a mean pairwise RMSD < 0.01° between their optimized conformers).

The degree to which the molecular geometries changed during the final optimization step was further ana-
lyzed. Molecules with initially more diverse conformations (higher mean pairwise RMSD of pre-optimized con-
formations) were shown to undergo a greater chance in atom positions (mean RMSD of pre- vs. post-optimized 
conformations) during optimization with the GFN2-xTB method (Fig. 4b). The observed heteroscedastic behav-
ior of these two properties indicates that while the mean RMSD of pre- vs. post-optimized conformations tends 
to increase with higher mean pairwise RMSD of pre-optimized conformations, its variance also increases.

Finally, the suitability of GFN2-xTB as a lower-cost surrogate for DFT-level geometry optimization (Fig. 4c) 
was confirmed. 500 randomly-chosen structures prior to semi-empirical geometry optimization from the 
QMugs dataset were further subjected to DFT-level geometry optimization (ωB97X-D/def2-SVP), discarding 
structures that could not be converged in 100 iterations or with the computational resources described in the 

Property Symbol Key

Alpha density matrix Dα matrix, Da

Beta density matrix Dβ matrix, Db

Alpha orbitals Cα matrix, Ca

Beta orbitals Cβ matrix, Cb

Atomic-orbital-to-symmetry-orbital transformer CAOTOSO matrix, aotoso

Mayer bond orders MAB MAYER_INDICES

Wiberg-Löwdin bond orders WAB WIBERG_LOWDIN_INDICES

Table 3. Calculated molecular properties stored in the wave function files provided in the QMugs data 
collection. Mayer and Wiberg-Löwdin bond orders included here represent a superset of the bond orders in the 
SDFs which additionally comprise bond orders for non-covalent bonds.
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Supporting Information. The RMSDs between the structures independently optimized at both levels of theory 
were then measured. The pairs of structures showed RMSDs of 0.47 ± 0.63° (median ± 1 standard deviation), 
indicating that the chosen semi-empirical method obtains similar geometries to those obtained with more 
expensive first-principle calculations. Large RMSDs in some example pairs (Fig. 4c) could be interpreted as 
indicative of convergence to distinct local minima.

For 2,067 molecules, their individual conformations have different SMILES describing two different (E)/(Z) 
isomers. Those structures are either α-β-unsaturated ketones, α-β-unsaturated nitriles, imine, or azo com-
pounds, for which isomerization might be plausible53,54. In part due to the applied “washing” procedure, 17,176 
molecules can be represented with a SMILES string that is shared with at least one other ChEMBL-ID.

Validation of single-point properties. To validate the general agreement between the two methods employed 
in this work, the correlation between a series of single-point properties computed on both levels of theory was analyzed. 
Both global molecular (Fig. 5) and local atomic/bond properties (Fig. 6, 7) were considered. All single-point molecular 
properties showed a high degree of correlation. Formation energies EForm (Fig. 5a), which were obtained by subtract-
ing atomic energies EAtom from total internal energies URT, show a Pearson correlation coefficient (PCC) of 0.998. 
Dipole moments μ and rotational constants A (excl. 22 small structures with very high rotational constants; Fig. 5b,c) 
displayed PCCs of 0.969 and 0.999, respectively. Orbital energies, namely the energies for highest occupied (HOMO) 
EHOMO and lowest unoccupied molecular orbitals (LUMO) ELUMO and HOMO-LUMO gap energies EGap showed PCCs 
of 0.769, 0.924 and 0.830, respectively (Fig. 5d–f). The observed PCCs for all six single-point molecular properties indi-
cate good agreement between the two methods. Atom-type-specific partial charges for the 10 atom-types in QMugs 
(Fig. 6, Table S1) as well as the 15 most abundant covalent bond types (Fig. 7, Table S2) also showed high correlations 

Fig. 4 (a) Distributions of mean pairwise RMSD of atom positions between conformations of each molecule 
in the QMugs dataset at different stages along the pipeline. While the k-means sampling process selects 
conformations that are, on average, more geometrically diverse than the average pair of structures generated by 
MTD simulations, geometry optimization reduces the geometrical diversity between the optimized conformers. 
(b) Change in atom positions during geometry optimization vs. mean pairwise RMSD of conformations 
before optimization. Molecules with initially more diverse conformations displayed a greater change in atom 
positions than those with initially less diverse conformations. (c) Distribution of RMSD of structures prior to 
and after optimization with the semi-empirical GFN2-xTB method, and of structures optimized with the same 
approach vs. with ωB97X-D/def2-SVP. The structures of three molecules with varying differences between the 
two methods are shown as illustrative examples (black and gray correspond to GFN2-xTB and ωB97X-D/def2-
SVP-optimized structures, respectively). For illustrative purposes, the example molecules are aligned on their 
substructures.
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between the two methods used herein. Regarding partial charges, 7 out of the 10 atom types considered in QMugs 
were observed to have PCCs > 0.8, with the remaining carbon, nitrogen, and oxygen atom-types resulting in lower 
PCCs of 0.574, 0.124, and 0.274, respectively. Regarding bond orders, 10 out of the 15 show PCCs > 0.9 and 14 out of 
15 displayed PCCs > 0.75 (see Table S2 for additional metrics). Notably only carbon-fluorine bonds displayed a larger 
discrepancy between both levels of theory, with an observed PCC of 0.153. The observed correlations in both molecular 
and atomic single-point properties between GFN2-xTB and ωB97X-D/def2-SVP confirm the suitability of the former 
method as a computationally affordable starting point for Δ-learning of DFT-level properties.

Usage Notes
All data files can be accessed via any modern web browser, and can be programmatically downloaded using the 
provided instructions in the archive’s readme. The provided SDFs can be processed using standard cheminfor-
matics software (for example, RDKit, KNIME55), and wave function files using the Psi437 software package or 
directly using Numpy50.

a b c

d e f

Fig. 5 Comparison of molecular properties computed at the two levels of theory considered herein (GFN2-
xTB, ωB97X-D/def2-SVP) for the molecules contained in QMugs. The molecular formation energy EForm EForm 
in (a) was calculated by subtracting the atomic UAtom contributions from the total molecular energies URT. 
Only the rotational constants A are shown in (c) as their B and C counterparts showed highly similar values. 22 
conformations of small molecules show very large rotational constants and are not shown. RMSE and PCC for 
rotational constant A are 845.834 cm−1 and 0.091 respectively, if those structures are included. Abbreviations: 
RMSE, root mean squared error; PCC, Pearson’s correlation coefficient.

Fig. 6 Atom-type-specific partial charge correlations (GFN2-xTB, ωB97X-D/def2-SVP) for the QMugs dataset 
(see Table S1 in the Supporting Information for additional metrics).
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Code availability
All analyses were supported by the Python programming language (version 3.7.7) and its scientific software 
stack50. Molecular conformations were generated using RDKit (http://www.rdkit.org, version 2020.03.3) and 
GFN2-xTB26–29 (version 6.3.1). All quantum mechanical calculations were carried out with Psi437 (version 1.3.2). 
Molecular structure visualizations were created using PyMol56 (version 2.3.5) and ChemDraw (version 19.1.1.32). 
The rclone (https://rclone.org, version 1.54.0) WebDAV client was used for all data uploading purposes.
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