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Background
Gene regulatory network (GRN), which represents interactions or causalities between 
genes, describes the developmental or regulatory process in a cellular system [1]. GRN 
inference is a focal point of systems biology to understand biological systems [2]. The 
traditional knock-out or perturbation experiments have been widely used to discover the 
regulations among genes and achieved success in some degree to understand the bio-
logical system [3]. However, these interactions discovered by the expensive and time-
consuming experiments are ’just the tip of the iceberg’ in a complex GRN. While the 
genome-wide inference of GRNs from high-throughput data by computational meth-
ods promises an economical channel to disclose the complex regulatory mechanism [4, 
5]. The challenge of computational methods is to build reasonable models to precisely 
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predict the interactions between regulators and targets from gene expression data [6]. 
Distinguishing the direct interactions from the indirect ones remains an important chal-
lenge in the reconstruction of GRNs because of the notoriousness of the inference meth-
ods with the indirect interactions inherited in the network [7, 8].

In recent years, various approaches have been developed to address these challenges in 
GRN inference, and some of them have achieved success in some degree [9]. According 
to the techniques involved, these approaches can be divided into two types, i.e., depend-
ence and equation-based methods [10]. In dependence-based methods, gene network 
is predicted by measuring the dependences among genes based on the methods such 
as Pearson correlation coefficient [11–13], mutual information [14, 15], and Granger 
method [16, 17]. This types of methods can measure the linear or nonlinear correlations 
independently but the results involve lots of redundant edges like indirect regulations 
[18–20]. In equation-based methods, the regulations and regulatory strengths among 
genes are described as equations [21]. Representative equation-based methods contain 
multiple linear regression [22], nonnegative matrix factorization [23], network com-
ponent analysis [24, 25], and linear programming [26], and random forest [27, 28]. The 
equation-based methods can catch the interactions based on the dynamic mechanism 
but the optimization technique sometimes impacts their capability of parameter estima-
tion for the high dimensionality of candidate regulators [29, 30].

Despite concurrent advances in GRN inference methods, most of them cannot dis-
tinguish direct correlations from the indirect ones [31]. Some dependence-based meth-
ods have been developed to discriminate direct and indirect connections of GRNs, such 
as partial correlation coefficient (PCC) [32], conditional mutual information (CMI) 
[33], part mutual information (PMI) [34], and conditional mutual inclusive information 
(CMI2) [35]. The equation-based methods are popular for their advantages of sparseness 
control and optimal estimation [36–38]. However, these methods are sensitive to the 
data with tow limitations which impact the performance of GRN inference seriously [39, 
40]. Firstly, the noise of the data, high dimensionality of genes, and small scale of sam-
ples will affect parameter estimation of optimization. Secondly, indirect interactions will 
be involved in the results [41, 42]. The challenge to improve the accuracy of regression-
based methods is to address these limitations [43, 44].

We previously proposed a noise and redundancy reduction strategy, namely NAR-
ROMI, based on recursive optimization that improved the performance on gene net-
work inference [45]. In this strategy, the network was updated by recursive optimization 
to remove the indirect interactions. The limitation of the strategy is that some direct 
interactions identified by previous step were not recognized by next step. In other 
words, accompanied with the elevated true positive rate (TPR), recursive optimization 
(RO) also improves false negative rate (FPR). In an algorithm for network inference, the 
balance between TPR and FPR is the key technique to improve its performance. Some 
techniques incorporating existing network information into the optimization problem 
have been proposed to improve network inference [46, 47].

To reduce FPR and improve TPR simultaneously in one model, we developed a redun-
dancy silencing and network enhancement technique (RSNET) for inferring GRNs. In 
the proposed method, the redundant interactions are silenced by significant MI firstly 
and then the recursive optimizations based on the updated results. In the meanwhile, the 
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candidate genes with highly dependent parameters measured from the data by mutual 
information (MI) are constrained in the model as network enhancement items. In the 
process of the algorithm, the noisy regulators will be filtered out by measuring the corre-
lations between regulators, the highly putative candidate regulators will be constrained 
as supervisors to improve the efficiency of optimization, and the indirect nodes will be 
filtered out by the recursive optimizations step by step. To assess the performance of 
RSNET method, we implemented the experiments on several gold-standard networks 
by using simulation study, DREAM challenge dataset and Escherichia coli network. The 
results show that RSNET method performed better than the compared methods in sen-
sitivity and accuracy. As a case of study, RSNET was used to infer the functional GRN 
for fruit development from gene expression data in apple. RSNET software is freely 
accessible at https://​github.​com/​zhang​lab-​wbgcas/​rsnet.

Results
RSNET algorithm

To accurately infer the underlying direct GRNs from the expression data, we develop 
a novel technique, i.e. redundancy silencing and network enhancement technique 
(RSNET). Figure 1 provides the flowchart of RSNET method.

As shown in Fig. 1a, we use the MI measure to decide a small but not biased searching 
space. With the different thresholds, we divide the candidate genes into three classes, i.e. 
the low dependent or independent, mid-dependent and high-dependent genes. Omit-
ting the low-dependent genes, we get the initial dimensionality of the regression model. 
With the other two classes of genes, i.e. mid-dependent and high-dependent genes, we 
estimate the regression parameters as regulatory strengths. In addition, we use the high-
dependent genes for the network enhancement items in the regression model, i.e. the 
high-dependent genes will be constrained in the model.

For each target gene, we use the constraint-based recursive optimization model for 
the estimation of regulatory strengths. We use the high-dependent genes as the network 
enhancement items in the regression model. This will induce more accurate estimation 
of parameters than the standard regression model. These network enhancement items 
have the priority to be kept in the result than other general genes because of the con-
strain technique. In the meanwhile, we filter out the indirect regulators gradually by 
RSNET algorithm.

Figure 1b shows the core procedure of RSNET method. According to the type of regu-
lators, we divided the regulatory space into three spaces, i.e. direct space, indirect space 
and noise space. For a given interested gene, there are three types of regulators, i.e. direct 
regulator, indirect regulator and noise regulator. There are four types of interactions, i.e. 
direct regulation, indirect regulation, noise regulation and neighbour regulation. In this 

Fig. 1  The flowchart of RSNET method. a The initial dimensionality is detected by using MI measure. The 
candidate genes will be separated to three classes, i.e. low-dependent, mid-dependent and high-dependent 
genes. b An example for the prediction. The regulatory spaces include three types, i.e. direct space, indirect 
space and noise space. There are four types of interactions, i.e. direct regulation, indirect regulation, noise 
regulation and neighbour regulation. c The regulatory strengths are estimated by combining MI measures 
and RSNET parameters. d The network inferred by RSNET. The final network excluded the noise and direct 
regulations

(See figure on next page.)

https://github.com/zhanglab-wbgcas/rsnet
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Fig. 1  (See legend on previous page.)
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algorithm, we will keep direct and neighbour regulations in the last prediction as real 
interactions, but filter out indirect and noise regulations to improve the prediction. Fig-
ure 1b provides an example for the prediction. In the prediction, Gi is a given interested 
gene and Rj (j = 1,2,…,10) are ten candidate genes in three regulatory spaces. R1, R2 
and R3 are three direct/real regulators in direct space. R4, R5 and R6 are three indirect 
regulators in indirect space. R7, R8, R9 and R10 are four noise regulators in noise space. 
For the interested gene Gi, we will filter out noisy and indirect regulators R4-R10 in the 
result.

To combine linear and nonlinear interactions between regulators and targets, we esti-
mate the regulatory strengths by combining MI measures and RSNET parameters with 
balance parameter (Fig. 1c). As shown in Fig. 1d, we construct the network by the com-
bined regulatory strengths. In the final network, we exclude noise and indirect regula-
tions. As real regulations of neighbour regulators, we keep the neighbour regulations in 
the final network.

Simulation study

To evaluate the performance of RSNET method, the simulation study was implemented 
by using synthetic gene network and expression data. In this study, six networks with 
sizes 10, 50, 100, 500, 1000 and 5000 as well as matched expression data with samples 
5, 7, 10, 15, 20 and 25 respectively were generated. The expression noise with 10 per-
centages was randomly imbedded during the data simulation. In the experiment, our 
RSNET method was compared with methods LASSO, LP, RO, ARACNE, GENIE3 and 
NARROMI.

The results on benchmark networks with different were described in Fig. 2 with the 
receiver operating characteristic (ROC) curves. Our RSNET method performed better 
than other four methods with highest ROC curves which were plotted with red lines in 
Fig. 2a–f. To describe the performance metrics in detail, Table 1 listed the performance 
indices for these compared methods. RSNET method performed best on all the three 
dataset with AUC values 0.9946, 0.9968, 0.9668, 0.9661, 0.9325 and 0.8770. When the 
network size is more than 1000, the accuracy of RSNET is still high enough. We con-
clude that the network scale affects the performance of RSNET method very few. The 
results indicate that RSNET method improves network inference by silencing the redun-
dant edges. In addition, we also computed the running time of RSNET method on net-
works with different sizes. The CPU times for networks with sizes 10, 50, 100, 500, 1000, 
5000 were 0.0889, 1.0716, 3.4185, 43.9768, 164.0785 and 4059.2665 s. From the results, 
we can conclude that the RSNET is an efficient and time-saving method for network 
inference.

Performance on DREAM challenge networks

To evaluate the method, we also implemented the study on the benchmark gene net-
works and expression data from DREAM challenge. The gene expression data were 
simulated based on Yeast and E.coli gene regulatory networks that were experimentally 
confirmed [48]. The datasets include 3 Yeast and 2 E. coli networks with scales 10, 50 and 
100 [7]. The ROC curves for the compared methods on these datasets are provided in 
Fig. 3.
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Firstly, the experiment on small-scale network (Yeast 1) with 10 genes was imple-
mented. The threshold value for the parameter of low-regulations was set to 0.05, and 
the threshold value for the parameter of high-regulations was set to 0.2. RSNET method 
re-estimated regulatory strengths based on the result of the former computation until 
there was no change in network structure. The ROC curves of these compared methods 
are described in Fig. 3a. The results show that RSNET method performs the best among 
the compared methods. The AUC curve in red is for RSNET method and its AUC score 
reaches 0.945. Table 2 (Scale 10) provides the indices values such as TPR, FPR, PPV, etc. 
The indices values show that RSNET method do better that compared methods. This 
indicates that RSNET method can remove the redundant edges by redundancy silencing 
and network enhancement strategy.

Secondly, we evaluated the methods on the network (Yeast 1) with scale 50. For RSNET 
method, the threshold value for the low-regulation parameters was set to 0.05, and the 
threshold value for high-regulation parameter was set to 0.2. As a result of RSNET 
method, AUC score is 0.838. It performed best among the compared methods (Fig. 3b). 
TPR and FPR values showed that RSNET method outperformed other methods obvi-
ously (Scale 50, Table 2). With the scores 0.0594, 0.9273, 0.2210 and 0.3069, FPR, ACC, 
PPV and MCC proved the good performance of RSNET method. In this experiment, 
RSNET method successfully silenced the redundant edges over-estimated by previous 
methods.

Lastly, we evaluated RSNET method on network (Yeast 1) with scale 100. There are 
166 links in the gold-standard network. The threshold for low-regulation parameters 
was set to 0.03 and the threshold for high-regulation parameter was set to vale 0.1. 
As the result of the experiment, Fig. 3c described the AUC curves of these methods. 

Fig. 2  The ROC curves on synthetic dataset. a Scale 10. b Scale 50. c Scale 100. d Scale 500. e Scale 1000. f 
Scale 5000
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Table 1  The results on synthetic networks with scales 10, 50,100, 500, 1000 and 5000

Approach FPR TPR ACC​ PPV MCC AUC​

Scale 10

LASSO 0.1220 0.6667 0.8400 0.5455 0.5052 0.7764

LP 0.0243 0.7778 0.9400 0.8750 0.7895 0.8591

RO 0.0731 0.7778 0.9000 0.7000 0.6768 0.8862

GENIE3 0.1707 0.4444 0.7600 0.3636 0.2539 0.7317

ARACNE 0.1463 0.5556 0.8000 0.4545 0.3795 0.7480

NARROMI 0.0243 1.0000 0.9800 0.9000 0.9370 0.9919

RSNET 0.0000 0.8889 0.9800 1.0000 0.9315 0.9946
Scale 50

LASSO 0.00611 0.5556 0.9860 0.6250 0.5822 0.7484

LP 0.00203 0.5556 0.9900 0.8333 0.6759 0.7579

RO 0.01222 0.5556 0.9800 0.4545 0.4925 0.7669

GENIE3 0.02037 0.3333 0.9680 0.2308 0.2615 0.9131

ARACNE 0.07536 0.7778 0.9220 0.1591 0.3296 0.9301

NARROMI 0.01222 0.6667 0.9820 0.5000 0.5685 0.9898

RSNET 0.01222 0.7778 0.9840 0.5385 0.6396 0.9968
Scale 100

LASSO 0.0081 0.7368 0.9870 0.6364 0.6782 0.8576

LP 0.0101 0.6316 0.9830 0.5455 0.5784 0.8795

RO 0.0101 0.6316 0.9830 0.5455 0.5784 0.8596

GENIE3 0.0193 0.3158 0.9680 0.2400 0.2592 0.8903

ARACNE 0.0428 0.5789 0.9500 0.2075 0.3267 0.9323

NARROMI 0.0101 0.6842 0.9840 0.5652 0.6139 0.9553

RSNET 0.0050 0.7895 0.9910 0.7500 0.7649 0.9668
Scale 500

LASSO 0.0018 0.5789 0.9966 0.5500 0.5626 0.8373

LP 0.0018 0.5789 0.9966 0.5500 0.5626 0.9291

RO 0.0022 0.5789 0.9962 0.5000 0.5361 0.8986

GENIE3 0.0140 0.4737 0.9940 0.1139 0.2268 0.9340

ARACNE 0.0072 0.5789 0.9912 0.2340 0.3645 0.9598

NARROMI 0.0024 0.5789 0.9960 0.4783 0.5242 0.9652

RSNET 0.0030 0.5789 0.9954 0.4231 0.4927 0.9661
Scale 1000

LASSO 0.0006 0.6316 0.9987 0.6667 0.6482 0.8392

LP 0.0008 0.6842 0.9986 0.6190 0.6501 0.8124

RO 0.0007 0.6842 0.9987 0.6500 0.6662 0.8665

GENIE3 0.0008 0.3158 0.9915 0.0657 0.1401 0.8844

ARACNE 0.0006 0.2105 0.9979 0.4000 0.2892 0.9296

NARROMI 0.0007 0.6842 0.9987 0.6500 0.6662 0.9316

RSNET 0.0009 0.7368 0.9986 0.6087 0.6690 0.9325
Scale 5000

LASSO 0.00058 0.0204 0.9985 0.0333 0.0253 0.5386

LP 0.00058 0.0204 0.9985 0.0333 0.0253 0.5998

RO 0.00092 0.0612 0.9982 0.0612 0.0603 0.6418

GENIE3 0.00605 0.1840 0.9932 0.0289 0.0331 0.8322

ARACNE 0.00034 0.0204 0.9987 0.0556 0.0707 0.8719

NARROMI 0.00102 0.0612 0.9981 0.0556 0.0574 0.8754

RSNET 0.00116 0.0612 0.9979 0.0492 0.0538 0.8770
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AUC score for RSNET method is 0.8594 which is greater than AUC scores of other 
methods. In this experiment, RSNET method got the highest scores in MCC, ACC, 
PPV and TPR, i.e. 0.3437, 0.9663, 0.2515 and 0.5120 (Scale 100, Table  2). RSNET 
method successfully silenced the redundant edges over-estimated by LP method and 
improved the TPR value from 0.1870 to 0.5120. The AUC value was improved by the 
redundancy silencing and network enhancement strategy from 0.6536 for LASSO 
method to 0.8594 for RSNET method.

Fig. 3  The ROC curves on DREAM challenge networks. a Scale 10. b Scale 50. c Scale 100

Table 2  The results on DREAM networks with scales 10, 50 and 100

Approach FPR TPR ACC​ PPV MCC AUC​

Scale 10

LASSO 0.8375 0.6000 0.2111 0.0822 − 0.1907 0.7025

LP 0.4125 0.1000 0.5333 0.0294 − 0.2026 0.7388

RO 0.5000 0.1000 0.4556 0.0244 − 0.2524 0.7975

GENIE3 0.1125 0.7000 0.8889 0.5000 0.6187 0.9212

ARACNE 0.1125 0.9000 0.8889 0.5000 0.6187 0.9300

NARROMI 0.1125 0.9000 0.8889 0.5000 0.6187 0.9294

RSNET 0.0375 0.7000 0.9333 0.7000 0.6625 0.9450
Scale 50

LASSO 0.1285 0.3506 0.8551 0.0813 0.1132 0.7110

LP 0.0847 0.3896 0.8988 0.1299 0.1820 0.6686

RO 0.1311 0.4935 0.8571 0.1089 0.1809 0.7268

GENIE3 0.0745 0.4805 0.9114 0.1729 0.2508 0.8004

ARACNE 0.0817 0.5974 0.9082 0.1917 0.3027 0.8325

NARROMI 0.0623 0.5325 0.9249 0.2169 0.3074 0.8389

RSNET 0.0594 0.5195 0.9273 0.2210 0.3069 0.8376
Scale 100

LASSO 0.0510 0.1807 0.9361 0.0569 0.0741 0.6536

LP 0.0462 0.4036 0.9445 0.1296 0.2063 0.6741

RO 0.0854 0.3735 0.9055 0.0693 0.1290 0.6856

GENIE3 0.0255 0.4096 0.9657 0.2315 0.3076 0.8407

ARACNE 0.0330 0.5060 0.9592 0.2069 0.3062 0.8572

NARROMI 0.0243 0.4639 0.9671 0.2452 0.3220 0.8584

RSNET 0.0259 0.5120 0.9663 0.2515 0.3437 0.8594
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The comparison results for networks Yeast 2, Yeast 3, E.coli 1 and E.coli 2 were pro-
vided in Additional file 1: Table S1 which shows the good performance of RSNET on net-
work inference. The results above proved the efficiency of RSNET method on DREAM 
gene network inference. As a new technique by redundancy silencing and network 
enhancement, RSNET proved itself a perfect direct interactions estimation technique.

Performance on real gene network

To evaluate the method by using real gene expression data to reconstruct gene network, 
we collected the benchmark network from the Escherichia coli network database [49] 
and gene expression data from Escherichia coli data bank [50]. As a result of the data 
processing, a network with 160 TFs and 1258 genes are generated. There are 2765 links 
among these genes in this benchmark network. The network degree of the benchmark 
network is around 2. To measure the performance of the compared method, the AUC 
scores for regulatory strengths of the candidate TFs on a given target gene (TG) and 
the AUC scores for regulatory strengths of a given TF on all the putative target genes 
were computed because the network size is too big. For the calculated AUCs, the box 
plot with minimum, maximum, median, and mean values was drawn. In addition, the 
numbers as well as percentages of TGs or TFs with more than certain AUC values were 
calculated.

Figure  4a is the box plot for the AUCs of the target genes (TGs). We can find that 
RSNET outperforms other three methods in maximum, median and mean AUC values. 
Figure 4b is the box plot for the AUCs of the TFs. The result shows that RSNET per-
formed the best on minimum, median and mean AUC values. Figure 5a is the global/
average AUCs for all the TGs and Fig. 5b is the global/average AUCs for all the TFs. All 
the results show that RSNET method performs better than other compared methods. 
Table 3 provides average AUCs for TGs (or TFs) and the number of TGs (or TFs) with 
the AUC values higher than 0.8. All these results show that RSNET method performed 
the best among the compared methods.

Fig. 4  The AUC statistics for different methods. a Box plots for target genes (TGs). b Box plots for TFs
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Identification of apple fruit development‑specific network

In plant, the phenotype is decided by a certain functional gene network. As one of the 
most important phenotype, fruit development has become the research topic on fruit 
crop [51, 52]. As a case study, RSNET method was used to predict fruit development-
specific gene regulatory network in apple (Malus domestica ’Royal Gala’) from gene 
expression data. In the dataset, there are eight time-point samples from floral bud 
to ripe fruit during fruit development [53]. From the original gene expression data 
with 14846 genes, we selected 1682 genes with significant expression variances for 
network inference. With the selected gene expression data, RSNET method inferred 
a densely connected network with 1530 genes and 14446 edges. After deleting the 
edges with low correlation strengths, a core network with 313 genes and 1425 edges 
was the final network inferred. The Gene Ontology (GO) analysis for these genes and 

Fig. 5  The comparison of global AUC values for different methods. a The global AUCs for all the target genes. 
b The global AUCs for all TFs

Table 3  The AUC scores for compared methods on real Escherichia coli network

AveAUC​, Average of AUCs for TG/TF; AUV > 0.8, the number of TGs/TFs; ’()’, the numbers in brackets are percentages

Approach LASSO LP RO GENIE3 ARACNE NARROMI RSNET

AveAUC (TG) 0.7070 0.7039 0.7299 0.6836 0.7330 0.7347 0.7377
AUC > 0.8 (TG) 384 (30.52) 367 (29.17) 439 (34.89) 428 (34.02) 484 (38.47) 485 (38.55) 490 (38.95)
AveAUC (TF) 0.7132 0.7335 0.7439 0.7229 0.7499 0.7537 0.7560
AUC > 0.8 (TF) 57 (36.77) 58 (37.41) 71 (45.80) 60 (38.70) 68 (43.87) 71 (45.80) 72 (46.45)
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the comparison analysis with differential expression were implemented. Additional 
file 2: Table S2 shows the function of these identified genes.

To process GO analysis, all the nucleotide sequences from NCBI database in FASTA 
format were downloaded firstly and then annotate the sequences using the ’Blastn’ 
module in Blast2GO. After the analysis of ’blast’, ’mapping’, ’annotation’ and ’interpro-
scan’, a hierarchical relationship of GO items (http://​geneo​ntolo​gy.​org/) was achieved. 
With above GO items, the web tool WEGO2.0 (http://​wego.​genom​ics.​org.​cn/) was 
used for the visualization. Figure 6 shows the result of GO analysis for the genes iden-
tified. Out of 313 core genes, 147 genes were annotated and divided into three basic 
parts in GO first-level items (Additional file 3: Table S3). There are 98 items in bio-
logical process part, 30 items in cellular component and 128 items in molecular func-
tion part (Fig. 6a). To show the hierarchical relationship for the gene set, the second 
and third levels of GO items were provided separately (Fig. 6b, c). Listed in first and 
third places of the columns, two items catalytic activity (GO:0003824) and binding 
(GO:0005488) reveal that these genes are involved in some catalytic reactions and 
molecule activities, such as redox reactions, hydrolysis reaction, ion binding, organic 
cyclic compound binding, etc. Another two items metabolic process (GO:0008152) 
and cellular process (GO:0009987), listed in second and forth places, indicate that 
the genes regulate some metabolism related biological progresses. All items above 

Fig. 6  The GO analysis confirmed the genes predicted correlated with fruit development. a Table for 
the result of GO analysis including the number of genes involved in different GO terms. b Hierarchical 
relationship of the gene set in second level of GO items. c Hierarchical relationship of gene set in third level of 
GO items

http://geneontology.org/
http://wego.genomics.org.cn/
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confirm that the gene set identified by RSNET method are highly correlated with fruit 
developmental progress.

To explore whether the genes identified by RSNET method correlate with fruit devel-
opment, we analyzed the dynamical changes of their expression during the stages from 
floral bud to ripe fruit. We clustered the 313 genes into seven sub-clusters with cluster-
ing tool. Among of them, six sub-clusters are matched with the four plant physiological 
processes, i.e. floral bud/bloom (FB), early fruit development (EDF), mid-development 
(MD), and ripening (R) (Fig. 7a). This result showed that the sub-cluster 4 matched FB, 
the sub-cluster 5 matched EDF, the sub-clusters 1 and 7 matched MD and sub-clusters 
2 & 3 matched R exactly (Fig. 7b). Our analysis provides a gene list with significance for 
fruit development. Among of these genes in the list, 30 genes are highly related ones and 
283 genes are related ones. Compared to previous analysis by ANOVA method which 
selected 1955 genes, RSNET method show the superiority in smaller gene size for show-
ing the similar dynamical change with fruit development. With fewer genes, RSNET 
method significantly caught the dynamical changing during fruit development. The 
result shows two advantages of RSNET method in network inference. Firstly, RSNET 
method can identify the direct causal genes by filtering out the indirect and noisy genes. 
Secondly, RSNET method can identify significant genes but not a random selection from 
the whole genes.

Methods
Mutual information between gene pairs

The dependency between a gene pair can be measured by computing mutual informa-
tion (MI) of two gene expression vectors. For the advantage of nonlinear relationship 

Fig. 7  The clustering analysis for dynamical gene expression confirmed the genes predicted correlated with 
fruit development. a Seven sub-clusters of genes with dynamical changes during eight fruit developmental 
stages. b The heat-map of clustering of genes in four different fruit developmental stages



Page 13 of 18Jiang and Zhang ﻿BMC Bioinformatics          (2022) 23:165 	

measurement, mutual information has been widely used. For gene pair A and B, their 
mutual information (MI) can be described as [33]

With mathematical analysis, above formula can be commutated by [33]

where M is covariance matrix and |M| is the determinant of M. In particular, MI(A,B) = 0 
represents that genes A and B are independent.

In the first step of the proposed method, mutual information will be used to select the 
putative regulators from the global candidate genes for a given target gene.

Redundancy silencing and network enhancement technique

To quantitatively describe a gene regulatory network for the transcription procedure 
from DNA to RNA, a mathematical model involving transcription factors and target 
gene should be built [45, 54]. Among the reasonable models, regression model is the 
most popular one for its advantage of dynamic description of transcription. In this work, 
we provided an update model to silence the redundant regulations and enhance the 
high-confident edges. The redundancy silencing is implemented by the following recur-
sive optimizations with update results until there is no change for the result.

where y,X and β represent target gene, TFs, and regulatory strengths respectively. β̂ is 
the network enhancement items with 0 or 1. � and γ are parameters to balance the error 
and ensure the network sparseness respectively. The operator ⊗ is the Hadamard prod-
uct. The parameter β̂ will be estimated by mutual information firstly and then updated 
by optimizations [55]. As a linear programming model, Eq. (3) can be resolved for the 
estimation of β̃ which will be taken as regulatory strengths of network.

Pseudo‑code of RSNET algorithm

As follows is the pseudo-code of RSNET algorithm.

(1)MI(A,B) = −
∑

a∈A, b∈B

f (a, b) log
f (a, b)

f (a)f (b)
.

(2)MI(A,B) =
1

2
log

|M(A)| · |M(B)|

|M(A,B)|
,

(3)β̃ = min
β

∣

∣y− βX
∣

∣+ �|β| + γ

∣

∣

∣
β̂ ⊗ β

∣

∣

∣
.
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Benchmark networks and evaluation

To evaluate the efficiency of network inference, RSNET algorithm was implemented on 
synthetic and experimental gene expression data. For synthetic data, the method was 
assessed by using simulation study and the widely used dataset from DREAM challenge 
[7, 56]. For experimentally measured data, we used the gold-standard Escherichia coli 
data [49]. The experimental gene expression data was collected and preprocessed from 
the dataset for Escherichia coli [50]. There are 160 regulators, 1258 targets and 2675 links 
in the experimentally verified network. As a case study, we also used RSNET method to 
reconstruct functional GRN for apple fruit development from gene expression data [53].

To show the superiority of RSNET method, the comparisons with some popular meth-
ods including LASSO [36], LP [57], RO [45], GENIE3 [58], ARACNE and NARROMI 
[45] were implemented. LASSO represents the network inference based on regression 
model. LP represents the network inference method based on linear programming. RO 
represents the network inference based on recursive optimization method. GENIE3 rep-
resents the network inference method with random forest. ARACNE represents net-
work inference based on mutual information (MI). NARROMI represents the network 
inference based on a noise and redundancy reduction strategy.

To assess the performance of these compared methods, we use some standard quanti-
tative measures to score the prediction results. For example, accuracy (ACC), Matthews 
Coefficient Constant (MCC), positive predictive value (PPV), false positive rate (FPR) 
and true positive rate (TPR). We also plot the receiver operating characteristic (ROC) 
curve and calculate the area under ROC curve (AUC) based on above measures to show 
the performance.

Discussion
In this work, we developed a feature selection method based on a redundancy silenc-
ing and network enhancement technique to address the issue that numerous indirect 
interactions inherited in the predictions. In the proposed method, highly depend-
ent nodes are constrained in the model as network enhancement items to enhance 
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real interactions, and dimensionality of putative interaction is reduced adaptively to 
remove weak and indirect connections.

There are some advantages of RSNET method in network inference. Firstly, it 
improves the accuracy of network inference through a redundancy silencing and net-
work enhancement technique. The developed algorithm has the ability of filtering 
weak interactions, keeping high interactions, and silencing indirect interactions. In 
the initial step, MI filters out the noisy interactions by detecting low-, mid- and high- 
dependences. Then the high-dependence regulations are constrained in the model to 
keep these interactions in the result. The recursive optimizations with update candi-
dates reduce the indirect interactions step by step and keep the direct interactions in 
final prediction. Secondly, the network inferred by RSNET method is a directed net-
work. This is different from mutual information (MI)-based methods which cannot 
detect the directions of network. Thirdly, the technique combining both linear and 
nonlinear interactions overcomes the drawback of linear or nonlinear methods. As 
a technique for parameter estimation of regression and feature selection, this model 
can also be used for data mining in other areas.

Conclusion
In reconstruction of GRNs, distinguishing the direct interactions from the indirect 
ones is an important challenge because of the notoriousness of the inference methods 
with the indirect interactions inherited in the network. In this study, we present a 
redundancy silencing and network enhancement technique-based network inference 
method named RSNET. In the proposed method, the redundant interactions includ-
ing weak and indirect connections are silenced by recursive optimization adaptively. 
While the highly confident correlated regulators are constrained to improve the true 
positive rate of prediction. The results on gold-standard networks including simula-
tion study, DREAM challenge dataset and Escherichia coli network show the good 
performance of RSNET method. The case study for constructing apple fruit ripen-
ing GRN show that RSNET method can construct function-specific GRNs. This study 
provides a useful bioinformatics tool for inferring clean GRN from gene expression 
data.
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