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Abstract

Background

Aberrant functional connectivity in brain networks associated with motor impairment after

stroke is well described, but little is known about the association with somatosensory

impairments.

Aim

The objective of this cross-sectional observational study was to investigate the relationship

between brain functional connectivity and severity of somatosensory impairments in the

upper limb in the acute phase post stroke.

Methods

Nineteen first-ever stroke patients underwent resting-state functional magnetic resonance

imaging (rs-fMRI) and a standardized clinical somatosensory profile assessment (extero-

ception and higher cortical somatosensation) in the first week post stroke. Integrity of inter-

and intrahemispheric (ipsilesional and contralesional) functional connectivity of the somato-

sensory network was assessed between patients with severe (Em-NSA< 13/32) and mild to

moderate (Em-NSA> 13/32) somatosensory impairments.

Results

Patients with severe somatosensory impairments displayed significantly lower functional

connectivity indices in terms of interhemispheric (p = 0.001) and ipsilesional
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intrahemispheric (p = 0.035) connectivity compared to mildly to moderately impaired

patients. Significant associations were found between the perceptual threshold of touch

assessment and interhemispheric (r = -0.63) and ipsilesional (r = -0.51) network indices.

Additional significant associations were found between the index of interhemispheric con-

nectivity and light touch (r = 0.55) and stereognosis (r = 0.64) evaluation.

Conclusion

Patients with more severe somatosensory impairments have lower inter- and ipsilesional

intrahemispheric connectivity of the somatosensory network. Lower connectivity indices are

related to more impaired exteroception and higher cortical somatosensation. This study

highlights the importance of network integrity in terms of inter- and ipsilesional intrahemi-

spheric connectivity for somatosensory function. Further research is needed investigating

the effect of therapy on the re-establishment of these networks.

Introduction

Modern brain imaging techniques such as resting-state functional magnetic resonance imag-

ing (rs-fMRI) allow to assess intrinsic network connectivity by exploring spontaneous fluctua-

tions of the blood oxygen level dependent (BOLD) signal in the low-frequency range while

people are at rest in the scanner [1]. In the healthy human brain, distinct functionally relevant

‘resting-state’ networks have consistently been identified across individuals with a high repro-

ducibility across time points and age ranges [2]. In seminal work by Biswal et al. [3], a first

description of the resting-state sensorimotor network was provided, and later also other func-

tionally relevant networks were described, including the default mode network and the atten-

tion network [4, 5].

In patient populations, alterations in networks have been associated with changes in behav-

ioral performance [6–10]. In stroke patients, the presence of neglect has been associated with

decreased functional connectivity in the dorsal attention network [8, 11–13]. Similar results

are reported for the association with motor performance [11, 14]. Alterations in functional

connectivity related to behavioral deficits have been described for different stages post stroke.

In general, overall decreased functional connectivity is found in the acute phase post stroke

[14, 15], where a gradual increase towards normalization during subacute and chronic phase is

reported to develop parallel with recovery of performance [16, 17].

Network changes are reported for inter- and intrahemispheric functional connectivity. In

post stroke aphasia, increased interhemispheric and contralesional intrahemispheric func-

tional connectivity and reduced ipsilesional intrahemispheric connectivity was associated with

poorer language skills [18]. With regard to motor function, decreased interhemispheric and

increased contralesional intrahemispheric functional connectivity are described [14]. The role

of the contralesional hemisphere has been described as changing over time, starting from

hyperactive due to a lack of inhibitory activity of the ipsilesional hemisphere towards a more

supportive role with decrease of functional connectivity towards normalization [19].

Since somatosensory and motor function are closely related concepts [20], and the sensori-

motor network is described for both functions [3], similar results are expected for somatosen-

sory function. However, evidence is limited. Chen et al [21] described increased functional

connectivity between contralesional mid temporal gyrus and the stroke area in patients with

Functional connectivity associated with somatosensory impairments of the upper limb after stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0205693 October 12, 2018 2 / 18

(SM); the Promobilia Foundation [grant number

15060](SM); the Foundation Van Goethem

Brichant (SM); the German Research Foundation

[grant number SFB 936 – project C2](SK; GT; BC).

All funding sources have no involvement in the

conduct of the research and preparation of the

article.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0205693


thalamic stroke. Further, only two papers investigated the effect of a somatosensory interven-

tion on functional connectivity. The first study, investigating the effect of passive propriocep-

tive wrist training on motor function, indicated an increase in functional connectivity in the

inferior parietal cortex [22]. The other study, investigating the effect of sensorimotor therapy

on somatosensory and motor function, reported a small increase in activated brain volume of

the deactivated area after four weeks of therapy. However, they did not found any changes in

connectivity of the superior thalamic radiation [23]. Finally, only one study investigated func-

tional connectivity of the somatosensory network in subacute ischemic stroke patients [24].

Particularly, they explored the association between performance on a touch discrimination

task and changes in resting state functional connectivity one and six months post stroke. Com-

pared to healthy controls, interhemispheric functional connectivity between sensorimotor

areas, bilateral primary somatosensory cortices and bilateral thalamus, was shown to be

reduced at one-month post stroke. Additionally, recovery of touch discrimination perfor-

mance was found to be strongly associated (R2 = 0.72) with increased contralesional intrahe-

mispheric functional connectivity between S2 and interparietal cortex and midtemporal gyrus

at 6 months compared to 1 months.

While the latter study provided initial insights in neural alterations in the subacute phase

post stroke, it is currently unclear whether similar neural alterations in inter- and intrahemi-

spheric connectivity of the somatosensory network are already evident in the acute phase post

stroke. Furthermore, insights in differences in functional connectivity between more severely

and mildly to moderately impaired patients are lacking. The study of Bannister et al. [24]

focused on one somatosensory modality (touch discrimination) during the rest phase in

between the task fMRI scanning periods. Therefore, it can be noticed that this brain-behavior

association is not yet explored in the acute phase, and specifically how impairments in differ-

ent modalities of somatosensory functioning including light touch, pressure, but also sharp-

dull discrimination and stereognosis, are reflected in changes in resting-state networks. To fill

this gap, the present study aims to investigate resting-state functional connectivity in the acute

phase post stroke and to identify how changes in inter- and intrahemispheric network connec-

tivity of several key somatosensory areas relate to behavioral performance and to severity of

impairments in several modalities of somatosensory function.

First, and in accordance to prior observations of reductions in interhemispheric connectiv-

ity post-stroke, we investigated whether reduced interhemispheric connectivity is evident in

the somatosensory network in the acute phase post stroke and particularly, whether the extent

of reduced interhemispheric connectivity relates to behavioral somatosensory impairments. In

terms of intrahemispheric connectivity, Bannister et al showed that the intrahemispheric con-

nectivity in the contralesional hemisphere was more strongly associated with improved

somatosensory function at six months compared to one month post stroke [24]. Here, we

aimed to explore whether levels of intrahemispheric connectivity in the acute phase post-

stroke are associated with the extent of somatosensory deficits. For both hemispheres sepa-

rately, we expected a decrease of functional connectivity that would be associated with

impaired somatosensory function, as seen in motor function [25].

Materials and methods

2.1 Subjects and setting

The study was carried out in accordance with the latest version of the Declaration of Helsinki

and approval from the ethics committee of both university hospitals was obtained. Written

informed consent was provided by all patients prior to participation. For this cross-sectional

observational study, 27 patients with upper limb sensorimotor impairments after stroke were

Functional connectivity associated with somatosensory impairments of the upper limb after stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0205693 October 12, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0205693


recruited from two acute stroke units in Belgium; University Hospitals Leuven and University

Hospital St-Luc Brussels; within the first four to seven days post stroke. Inclusion criteria for

participation in the study were: confirmed first-ever stroke based on the definition of the

World Health Organization (WHO MONICA project principal investigators) [26], both sub-

cortical and cortical lesions, minimum age of 18 years, sufficient cooperation to perform the

assessment and a motor and/or somatosensory deficit in the upper limb. The presence of a

motor impairment was defined as a score of<60 out of 66 on the upper extremity part of the

Fugl-Meyer motor assessment [27], whereas a somatosensory impairment was defined as a

score of�1 out of 2 on item 8 of the National Institutes of Health Stroke Scale (NIHSS) [28].

Patients with musculoskeletal and/or other neurological impairments such as previous stroke,

head injury or multiple sclerosis, as well as patients with stroke-like symptoms caused by sub-

dural hematoma, tumor, encephalitis or trauma, were excluded from this study. Other exclu-

sion criteria were a pre-stroke Barthel index score <95 out of 100 [29] and severe

communication, cognitive or language deficits. Note that eight out of the initial 27 patients

were not included in the final analyses due to excessive in-scanner head motion (mean frame-

wise displacement exceeding 0.5 mm). As such, final analyses were performed on a total of 19

patients.

2.2 Testing protocol

Patients were assessed in one single test session including a behavioral assessment and an MRI

brain imaging protocol in the acute phase post stroke (i.e., between the fourth and seventh day

post stroke).

2.2.1 Behavioral assessment. Somatosensory function of the affected upper limb was

assessed using the Erasmus MC modified (revised) Nottingham Sensory Assessment (Em-

NSA), stereognosis subscale of the original NSA, two-point discrimination test (2PD), and per-

ceptual threshold of touch (PTT). To assure standardization, behavioral assessment was per-

formed by one trained researcher. A detailed description of the behavioral assessment protocol

can be found in our previously published work [30]. All behavioral assessment tools are reli-

able and valid measurements [31–34].

The Em-NSA comprises four subscales: light touch, pressure, pinprick, and sharp-dull dis-

crimination [34]. A total score between 0 and 8 was obtained for each modality. A cut-off

score of<7 out of 8 for each subscale was defined as impaired function. A total score between

0 and 32 was calculated by summing all subscores. The original NSA was used to assess the

stereognosis function [31] by providing 11 commonly-used objects in the affected hand lead-

ing to a total score of 22. The cut-off score to define a stereognosis deficit was<19 out of 22

[35]. Two-point discrimination [32] tests the ability to detect two different stimuli that are

simultaneously applied at the fingertip of the index finger. A cut-off score of>5mm was

defined as impaired two-point discrimination function [36]. Finally, the perceptual threshold

of touch [33] assesses the minimal level of detection of a touch stimulus [33] by applying trans-

cutaneous electrical nerve stimulation (TENS) with a CEFAR Primo Pro (cefar medical AB,

Sweden). The scores were compared to age- and gender-matched norm values [37].

2.2.2 Statistical analysis of the behavioral assessments. Baseline characteristics and

behavioral assessments were analyzed using SPSS version 23. Descriptive analyses were per-

formed using median with interquartile range (IQR) and frequencies with percentages, as

appropriate. The prevalence of different somatosensory deficits such as light touch or sharp-

dull discrimination impairment were calculated using frequencies with percentages. Therefore,

the different somatosensory variables were dichotomized according to the presence of a deficit

or normal functioning, based on the above-mentioned pre-defined cut-off values.
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2.2.3 Brain imaging data acquisition. Anatomical and resting-state fMRI images of all

patients were acquired on the same 3.0 Tesla Philips MR scanner (Best, The Netherlands) with

an 8-channel phased-array head coil. Scan sessions started with the acquisition of the anatomi-

cal scan, followed by the resting-state fMRI scan. Anatomical images were acquired using

fluid-attenuated inversion recovery imaging (FLAIR) with the following parameter settings:

echo time (ET) = 350ms, repetition time (TR) = 4800ms, inversion time = 1650ms, field of

view (FOV) = 250x250mm2, slice thickness = 1.12mm and interslice gap = 0.56mm. The rest-

ing state fMRI images consist of a total of 30 parallel transverse orientated slices of 4mm thick-

ness with no interslice gap. Parameter settings were: TE = 33ms, flip angle 90˚, TR = 1700ms,

FOV = 230mm, matrix = 64x64, duration 7 min. During scanning, participants were lying in

supine position with eyes closed and were instructed to think of nothing in particular and to

not fall asleep. Based on an informal survey, no patients have fallen asleep during scanning.

2.2.4 Preprocessing of resting state data. Co-registration and delineation of the lesions,

white matter and cerebrospinal fluid were acquired form the T1-structural images to imple-

ment as confounding factor in the pre-processing of the resting state fMRI data. The process

of lesion segmentation was reported in detail in a previous study of our research group [38]. In

short, delineation of the lesion was manually performed in several steps by an experienced

rater (SK) to ensure accuracy of the lesion delineation. Linear transformation was applied to

transform the individual FLAIR data and lesion segmentation into a standardized brain tem-

plate in MNI space (Montreal Neurological Institute).

Preprocessing of resting state fMRI images was performed with SPM-8 (Wellcome Depart-

ment of Imaging Neuroscience, London, UK) and the CONN functional connectivity tool-

box [39] both implemented in Matlab R2008a (Mathworks). Preprocessing of the data

included slice timing correction through interpolation to the middle slices (reference = 17).

Then, the functional images were spatially realigned and the anatomical T1-image was co-reg-

istered to the mean functional image to map functional information into anatomical space.

Anatomical and functional images were then normalized to the standard EPI-template of the

Montreal Neurological Institute (MNI-152), resampled into 3-mm isotropic voxels and

smoothed (Gaussian smoothing; isotropic 5mm full-width-at-half-maximum).

Realignment parameters were included as regressors of no interest. The CompCor strategy

[40] was applied in the CONN functional connectivity toolbox to correct for confounding fac-

tors in white matter and cerebrospinal fluid. Then, the residual time series of the resting state

images were band-pass filtered (0.009< f <0.08Hz). Since even micromovements can already

influence intrinsic functional connectivity [41, 42], mean frame-wise displacement (FD) was

calculated for each patient and included as a nuisance covariate in the group analyses. Note

that patients with excessive head motion, defined as mean FD scores exceeding 0.5 were not

included in the final analyses (8 out of the initial 27 patients were excluded). Additionally, to

account for lesions, region-to-region functional connectivity analyses were performed with

and without regions overlapping with lesion-delineated maps.

2.2.5 Resting-state connectivity analysis. To delineate the functional network relevant

for somatosensory processing, twelve bilateral Regions of Interest (ROIs) (6 left, 6 right) were

adopted from a task-based fMRI study of Chang and colleagues, exploring sensory processing

in nine healthy participants[43]. The central coordinates of the predefined spherical ROIs (6

mm diameter) are reported in Table 1.

For each participant, we extracted the mean time series by averaging across all voxels in

each ROI. We then computed bivariate correlation coefficients for each pair of ROIs. In the

primary analysis, only ROI-to-ROI correlation coefficients were included for connections that

showed no overlap with the predefined lesion [11]. MRIcron (software package version 1,

2015) was used to identify any overlap between the standardized lesion delineations and any of
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the predefined regions-of-interest (ROIs). Across patients, ROI-to-ROI correlation coefficients

were therefore not included in the primary analysis for 26 connections due to overlap with the

delineated lesions (average of 2.25 connections per patient). A group lesion overlay image is

provided in Fig 1. (see S1 Table for detailed list of connections that showed overlap with the

lesions of each patient). Note that secondary analyses were performed on the entire set of ROI-

to-ROI correlation coefficients (i.e., also including the 26 connections that originated from

ROIs in the predefined lesions) to determine the robustness of the main results of the primary

analysis.

The resultant ROI-to-ROI correlation coefficients were Fisher z-transformed and extracted

to perform group-level analyses and brain-to-behaviour correlation analyses in SPSS version

23.

Related to our a-priori hypotheses on alterations in intra- and interhemispheric connectiv-

ity, the following indices of network connectivity were calculated:

i. To obtain an index of intrahemispheric network connectivity of the ipsilesional and con-

tralesional hemisphere, ROI-to-ROI correlation coefficients of all eligible connections (i.e.,

outside the lesion) in the affected (6 x 6 connections) and unaffected hemisphere (6 x 6 con-

nections), respectively, were averaged separately for each participant.

ii. To obtain an index of interhemispheric network connectivity, ROI-to-ROI correlation

coefficients between homologue ROIs (total of 6 interhemispheric connections) were aver-

aged for each participant.

Table 1. MNI coordinates of the twelve regions-of-interests (ROIs) of the somatosensory processing network adopted to explore ROI-to-ROI resting-state func-

tional connectivity.

LEFT RIGHT

x y z x y z

Primary sensorimotor cortex SM1 -63 -23 47 54 -23 44

Superior parietal cortex SPC -29 -48 64 17 -54 50

Supplementary motor cortex SMA -4 -10 57 7 -9 64

Inferior parietal cortex IPC -54 -43 31 56 -36 30

Insula INS -28 -11 20 44 -19 12

Cerebellum CER -23 -63 -37 18 -56 -25

According to Chang et al. 2009. MNI: Montreal Neurological Institute

https://doi.org/10.1371/journal.pone.0205693.t001

Fig 1. Group lesion overlay image. Fig 1 displays the lesion location of all patients. All lesions were flipped to the right site. Color indicates the lesion locations from red

(not lesioned in any patient) to yellow (lesioned in most patients).

https://doi.org/10.1371/journal.pone.0205693.g001
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Next, for all indices of functional network connectivity, Shapiro-Wilk normality tests were

performed to assess normality of distribution. Normality was not confirmed for the functional

connectivity index of the ipsilesional intrahemispheric network due to one extreme outlier.

Particularly, one patient showed an extreme ipsilesional intrahemispheric connectivity score

(defined as smaller than Q1 ± 3(Q3-Q1), with Q1 and Q3 being the first and third quartile).

All primary analyses were performed after removal of the outlier data point, however, for com-

pleteness; secondary analyses were performed with inclusion of the outlier to assess the robust-

ness of the primary results. Two groups were created based on the median value of the total

score on Em-NSA, to explore whether indices of functional network connectivity were signifi-

cantly different between patients with severe somatosensory impairments (n = 9) (Em-NSA

score of<13 out of 32) and patients with mild to moderate somatosensory impairments

(n = 10) (Em-NSA�13 out of 32). First, mean and standard deviations of functional connec-

tivity values of each index were calculated for the total group and for each subgroup (mild to

moderate and severe). Further, to explore differences in functional connectivity between sub-

groups, a general linear model was constructed with the index of network connectivity as

dependent variable; ‘group’ (severe, mild to moderate) as between-subject factor, and age, cen-

tre (stroke unit where data were collected) and mean framewise displacement (FD) as covari-

ates of no interest (nuisance regressors). Additionally, to investigate potential brain-behavioral

associations between the indices of functional network connectivity and scores of the behav-

ioral somatosensory assessments, non-parametric partial correlations were calculated also

including age, center and mean FD as nuisance regressors. Non-parametric spearman rho cor-

relation tests were adopted due to ordinal scoring of the behavioral somatosensory measures.

Brain-behavior associations were assessed with the following behavioral somatosensory assess-

ments; (i) light touch, (ii) pressure, (iii) pinprick, (iv) sharp-dull discrimination, (v) stereogno-

sis, (vi) two-point discrimination, and (vii) perceptual threshold of touch. Residuals of the

partial correlations were extracted and plotted against the behavioral assessments, when

significant.

Results

3.1 Patient characteristics and behavioral outcome

Patient characteristics of the 19 included participants are presented in Table 2. Eight males

(42%) and 11 females (58%) were assessed at a median of 6 days after stroke (IQR 5–7). The

age ranged between 27 and 92 years with a median of 77 years (IQR 66–86). The majority

(N = 15; 79%) presented with a lesion in the right hemisphere, in 14 patients (74%) the lesion

was caused by ischemic stroke and 5 patients (26%) had hemorrhagic stroke. Most patients

(N = 16, 84%) had combined cortical and subcortical lesions, 1 patient (5%) had a pure sub-

cortical lesion in the basal ganglia and posterior limb of internal capsule and 2 patients (11%)

had lesions in the brainstem. (A detailed overview of lesion location is provided in S2 Table).

The scores on the NIHSS ranged between 5 and 18 with a median score of 9 (IQR 6–15), indi-

cating moderate to severe stroke severity. In addition, generally poor somatosensory function

in the upper limb was found with a median score of 13 out of 32 (IQR 0–29) on the Em-NSA

scale for somatosensory function. Three patients (16%) showed no impairment in any of the

somatosensory subscales.

Fig 2 shows the prevalence of different somatosensory deficits. Based on the scores of the

Em-NSA subscales, a total of 14 (74%) patients had deficits in light touch, 13 (68%) in pressure,

11 (58%) in pinprick, and 14 (74%) in sharp-dull discrimination. Both the perceptual threshold

of touch, and the two-point discrimination were impaired in 15 (79%) patients. Finally, 14

patients (74%) experienced a stereognosis deficit.
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3.2 Network connectivity

3.2.1 Group differences in somatosensory network connectivity between patients with

severe and mild to moderate somatosensory impairments. Patients with severe somatosen-

sory impairments (n = 9) showed significantly lower intrinsic functional connectivity com-

pared to patients with mild to moderate somatosensory impairments (n = 10) in terms of (i)

intrahemispheric connectivity of the ipsilesional hemisphere (F(1,18) = 5.667; p = 0.035);

and (ii) interhemispheric connectivity between homologue regions (F(1,19) = 17.088;

p = 0.001). Group differences were also found in terms of intrahemispheric connectivity of the

Table 2. Patient characteristics (n = 19).

Total

n = 19

Mild to moderate

n = 10

Severe

n = 9

Age stroke onset, years: median (IQR) 76.6 (66.1–85.8) 76.8 (75.5–81.8) 74.6 (50.3–87.5)

Gender: n (%)

Male 8 (42.1) 5 (50) 3 (33.3)

Female 11 (57.9) 5 (50) 6 (66.7)

Centre: n (%)

University Hospitals Leuven 7 (36.8) 6 (60) 1 (11.1)

Cliniques Universitaires Saint-Luc 12 (63.2) 4 (40) 8 (88.9)

Days after stroke: median (IQR) 6 (5–7) 6 (5.8–7) 6 (5–7)

Lateralisation: n (%)

Right hemisphere lesion 15 (78.9) 8 (80) 2 (22.2)

Left hemisphere lesion 4 (21.1) 2 (20) 7 (77.8)

Type of stroke: n (%)

Ischemia 14 (73.7) 7 (70) 7 (77.8)

Haemorrhage 5 (26.3) 3 (30) 2 (22.2)

Hand dominance: n (%)

Left 1 (5.3) 1 (10) 0 (0)

Right 18 (94.7) 9 (90) 9 (100)

National Institutes of Health Stroke Scale (/42): median (IQR) 9 (6–15) 8 (6–11.5) 13 (7–17)

Fugl-Meyer, upper extremity (/66): median (IQR) 4 (2–55) 7 (2–55.5) 4 (3–51.5)

Em-NSA- total (/32): median (IQR) 13 (0–29) 29 (18.8–32) 0 (0–5)

Em-NSA- light touch (/8): median (IQR) 5 (0–7) 6.5 (6–8) 0 (0–0)

Em-NSA- pressure (/8): median (IQR) 4 (0–8) 8 (5–8) 0 (0–3)

Em-NSA- pinprick (/8): median (IQR) 4 (0–8) 8 (8–8) 0 (0–2)

Em-NSA- sharp-dull discrimination (/8): median (IQR) 0 (0–7) 6.5 (1.5–8) 0 (0–0)

NSA- stereognosis (/22): median (IQR) 0 (0–19) 17 (1.5–21) 0 (0–0)

Two-point discrimination (/16): median (IQR) 16 (16–16) 16 (16–16) 16 (4.8–16)

Perceptual threshold of touch (/11) median (IQR) (n = 18): 6 (4.4–11) 11 (11–11) 4.8 (3.9–5.5)

Functional connectivity- Interhemispheric network: mean (SD) 0.336 (0.125) 0.419 (0.093) 0.245 (0.096)

Functional connectivity- Ipsilesional intrahemispheric network:

mean (SD)

0.065 (0.083) 0.102 (0.089) 0.018 (0.045)

Functional connectivity- Contralesional intrahemispheric

network: mean (SD)

0.082 (0.081) 0.091 (0.090) 0.071(0.073)

Table 2 provides the patient characteristics for the total group (left) and mild to moderate (middle) or severe (right) separately. Functional connectivity is displayed with

z-transformed r-values for the different indices without values of connections containing a ROI located in the lesion area. Ipsilesional intrahemispheric network consist

of connectivity values of all persons without the outlier.

IQR: interquartile rage; Em-NSA: Erasmus MC modified (revised) Nottingham sensory assessment; NSA: Nottingham Sensory Assessment SD: standard deviation.

https://doi.org/10.1371/journal.pone.0205693.t002
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contralesional hemisphere; lower connectivity scores were revealed in the patient group with

severe compared to mild impairment, albeit not significant (F(1,19) = 2.011; p = 0.180) (Fig 3).

When analyses were performed across all connections (i.e., ‘whole-network’ functional con-

nectivity combining all inter- and intra-hemispheric connections (12 x 12 connections)) a sig-

nificant reduction in functional connectivity of the somatosensory network was revealed

indicating lower connectivity in the severe, compared to the mild affected patient group (F

(1,19) = 9.945; p = 0.008).

3.2.2 Associations between connectivity of the somatosensory network and somatosen-

sory impairments. Brain-behavioral relationships were assessed between the indices of net-

work connectivity and behavioral assessments of somatosensory impairment. Similar to the

categorical group-related analysis, a general pattern emerged, indicating that—on a dimen-

sional scale—patients with more severe somatosensory impairments showed reduced func-

tional connectivity of the somatosensory network. For intrahemispheric connectivity of the

contralesional hemisphere, low, non-significant associations were found (r = 0.23–0.42).

As displayed in Table 3, it can be seen that reductions in (i) intrinsic functional connectivity

of the ipsilesional hemisphere (r = -0.69; p<0.01), and (ii) interhemispheric connectivity (r =

-0.51; p<0.05) were significantly related to somatosensory impairment—in terms of a higher

perceptual threshold of touch. Furthermore, reductions in interhemispheric connectivity were

also significantly associated with somatosensory impairments in terms of light touch (r = 0.55;

p<0.05) and stereognosis (r = 0.64; p<0.01), indicating that patients with more severe impair-

ments showed larger reductions in interhemispheric connectivity. Scatterplots were created to

visualize the individual brain-behavior correlations. (Fig 4).

Note however that the dimensional brain-behavior association with perceptual threshold of

touch seemed to be largely driven by a categorical clustering of patients with ‘more severe’ or

‘more mild/moderate’ impairment on this behavioral score. Indeed, the dimensional relation-

ship between perceptual threshold of touch and the indices of ipsilesional intrahemispheric

Fig 2. Prevalence of somatosensory deficits. Fig 2 displays the prevalence of somatosensory deficits for each subscale

of the Em-NSA, Two-poindiscrimination test and Peceptual Threshold of Touch. Em-NSA: Erasmus MC modified

(revised) Nottingham sensory assessment; NSA: Nottingham sensory assessment (gray scale, 1.5 colllum).

https://doi.org/10.1371/journal.pone.0205693.g002
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connectivity or interhemispheric functional connectivity failed to reach significance when the

factor ‘group’ (severe vs mild/moderate) was inserted as an additional nuisance regressor, indi-

cating that the majority of the observed inter-individual variance in functional connectivity

was already explained by the categorization of the patients in ‘severe’ versus ‘mild to moderate’

subdivisions.

3.2.3 Secondary analyses. Secondary analyses were performed to determine whether the

main findings of the primary analyses were replicated when connectivity analyses are per-

formed on the entire set of ROI-to-ROI correlation values (i.e., also including connections that

originated from ROIs in the predefined lesions). Overall, a similar pattern of results was

Fig 3. Group differences in somatosensory network connectivity between patients with severe and mild to moderate somatosensory impairment. Fig 3 shows the

differences in functional connectivity between subgroups, investigated by a general linear model with the index of network connectivity as dependent variable; ‘group’

(severe, mild to moderate) as between-subject factor, and age, centre (stroke unit where data were collected) and mean framewise displacement (FD) as covariates of

no interest (nuisance regressors). Patients with severe somatosensory impairments (Em-NSA<13/32) displayed significantly lower network intrinsic connectivity in

the ipsilesional intrahemispheric and interhemispheric network compared to patients with mild to moderate somatosensory impairments (Em-NSA�13/32).

Networks are displayed in frontal plane in back view; Error bars display the Standard Error of mean; �p< 0.05; �� p<0.01; ���p<0.001 (gray scale, 2-collum fitting).

https://doi.org/10.1371/journal.pone.0205693.g003

Table 3. Partial correlations (non-parametric) between network indices and somatosensory modalities.

Light

Touch

Pressure Pinprick Perceptual Threshold of

Touch1
Sharp/Dull

discrimination

Stereognosis Two-point

discrimination

Ipsilesional intrahemispheric

network

0.48 0.40 0.31 -0.69�� 0.19 0.33 -0.35

Contralesional intrahemispheric

network1
0.04 0.09 0.22 -0.422 0.20 0.23 0.01

Interhemispheric network 0.55� 0.45 0.48 -0.51� 0.42 0.64�� -0.28

�� Correlation is significant at the 0.01 level (2-tailed)

� Correlation is significant at the 0.05 level (2-tailed); Control variables: age, centre, mean framewise displacement; df = 14
1df = 13
2df = 12

https://doi.org/10.1371/journal.pone.0205693.t003
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shown, indicating that more severe somatosensory impairment was significantly associated

with reductions in functional connectivity of the somatosensory network (most pronounced

for interhemispheric connectivity and intrahemispheric connectivity of the ipsilesional hemi-

sphere). Furthermore, in the primary analysis, the data point of one ‘outlier’ patient was

excluded in the analysis of intrahemispheric connectivity of the ipsilesional hemisphere. Sec-

ondary analysis with inclusion of this data point replicated all primary results, i.e., indicating

that reduced ipsilesional connectivity was associated with more severe somatosensory

impairment.

Discussion

The aim of this study was to investigate functional network connectivity at rest between differ-

ent key brain regions of the somatosensory network in the acute phase post stroke and the

association with resulting upper limb somatosensory impairments. As hypothesized, patients

with mild to moderate somatosensory impairments showed significant higher functional con-

nectivity compared to patients with severe somatosensory impairments. This difference in

functional connectivity was found for the indices of interhemispheric and ipsilesional intrahe-

mispheric functional connectivity but not for the index of contralesional intrahemispheric

functional connectivity. Furthermore, as stated a priori, reduced levels of inter- and intra-

Fig 4. Brain-behaviour associations between specific somatosensory modalities. Correlation plots between behavioural assessment and residuals of the partial

correlations with the index inter- or intrahemispheric functional connectivity. Correlation plot between the perceptual threshold of touch and ipsilesional

intrahemispheric network (A) and interhemispheric network (B); correlation plot between interhemispheric network and light touch (C) and stereognosis (D). (gray

scale; 2-collum fitting).

https://doi.org/10.1371/journal.pone.0205693.g004
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hemispheric functional connectivity of the somatosensory network were associated with more

severe upper limb somatosensory impairments.

4.1 Altered functional connectivity

In general, decreased functional connectivity after stroke is associated with impaired function

[6, 16, 44–48]. Similarly, higher functional connectivity is associated with better function [16,

46] and our results contribute to this field of knowledge in relation to upper limb somatosen-

sory impairments. This association with function is observed in healthy and stroke subjects. In

healthy subjects, Haag et al. [49] investigated the association between functional connectivity

and performance on a two-point discrimination test and found that higher BOLD amplitudes

and stronger regional homogeneity of the voxels in the hand region in the primary somatosen-

sory cortex were associated with lower, and therefore better, two-point discrimination thresh-

olds. This is in line with our findings of overall lower functional connectivity values in patients

with severe somatosensory impairments compared to patients with mild to moderate impair-

ments. In stroke animal and human subjects, longitudinal studies described a decreased func-

tional connectivity in the acute phase after stroke and an increase towards normalisation of

functional connectivity over time, associated with recovery of function [16, 17, 50]. Thus,

severity of impairment seems to be associated with the level of functional connectivity and the

latter could potentially be a biomarker for recovery [51].

4.1.1 Decreased interhemispheric functional connectivity. In literature, decreased inter-

hemispheric functional connectivity is described in rats and humans after stroke to be associ-

ated with impaired sensorimotor function [6, 47, 50, 52], and our study adds to this concept

for the domain of arm and hand somatosensory deficits. Carter et al. [48] presented an associa-

tion between a disruption in interhemispheric functional connectivity of the sensorimotor net-

work and upper extremity motor impairments in the acute phase post stroke. Furthermore,

Bannister et al. [24] explored the association of alterations in functional connectivity with

somatosensory impairments; a relationship was reported between decreased interhemispheric

functional connectivity between ipsilesional and contralesional primary somatosensory corti-

ces and thalamus and more impaired touch discrimination at one and six months post stroke.

Our results extend these prior findings by showing that already at one week after stroke, the

extent of altered (reduced) inter-hemispheric functional connectivity of the somatosensory

network is associated with more severe impairments in somatosensory function. Together,

these observations highlight the behavioural relevance of the integrity of resting-state inter-

hemispheric connectivity for both motor and somatosensory function and therefore provide

further support to the notion that assessments of restorations/normalizations of these altered

interhemispheric connectivity patterns may form a reliable index for evaluating the effective-

ness of rehabilitation therapies at the neural level [6, 17, 52].

4.1.2 Intrahemispheric functional connectivity. In general, decreased ipsilesional and

increased contralesional activity is described and associated with impaired function [12, 25,

53–56]. Albeit, several different effects are described for the acute phase. A paper of Rehme

et al [14] included increased intrahemispheric functional connectivity in their criteria for clas-

sification of upper limb function. In contrast, several studies showed the association between

decreased ipsilesional intrahemispheric functional connectivity and impaired sensorimotor

function [16, 57]. For example, a longitudinal study of Nijboer and colleagues [57] reported a

significant lower functional connectivity between motor areas within the lesioned hemisphere

compared to the contralesional hemisphere at five weeks post stroke. Also Park et al. [16]

reported a decrease in ipsilesional intrahemispheric functional connectivity between M1 and

the sensorimotor cortex at one week post stroke. However, this group also reported increased
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intrahemispheric functional connectivity between ipsilesional M1 and ipsilesional cerebellum

and thalamus [16]. In our results and as anticipated, higher ipsilesional intrahemispheric con-

nectivity was found for the group with mild to moderate somatosensory impairments. On the

other hand, and perhaps surprising, functional connectivity within the contralesional hemi-

sphere did not show any significant associations with somatosensory function, neither in the

analysis between severe and mild to moderate patients, nor in the nonparametric correlations

with different somatosensory modalities. Explanations for this non-conforming finding can be

our sample size or lesion location or size of our subjects. For example, in a rat model, only

increased functional connectivity was found in rats with extensive lesions [50]. So far, in con-

trast to knowledge about motor function, literature did not report explicit findings for somato-

sensory function and associated changes in intrahemispheric functional connectivity. Only the

study of Bannister et al. [24] reported alterations in intrahemispheric connectivity in patients

with stroke, but it was not specified whether this was different from healthy people or in which

direction the alterations were seen. Our results of ipsilesional intrahemispheric functional con-

nectivity were in line with previous studies for motor function. However, we are not aware of

studies explicitly reporting associations of somatosensory function with intrahemispheric

connectivity.

4.1.3 Associations with somatosensory function. As hypothesized, we found strong asso-

ciations between interhemispheric network connectivity indices and somatosensory assess-

ments with significant correlations for PTT, light touch and stereognosis.

As shown in Fig 4, the associations with PTT and light touch were mainly driven by group

(mild to moderate vs severe impaired somatosensory function) in contrast to stereognosis, for

which correlations remain significant after correction for group. Thus, for PTT and light

touch there were rather two groups of impairment levels than a continuum of impairment

severity. First, moderate significant correlations were found between the perceptual threshold

of touch (PTT) and the index of ipsilesional intra- and interhemispheric functional connectiv-

ity. PTT is a standardized measure of light touch performance, by applying transcutaneous

electrical nerve stimulation (TENS) on the light touch receptors of the skin, and activating the

large myelinated Aβ fibres [33]. In previous work of our research group, higher prevalence of

light touch deficits was reported based on PTT compared to other assessment methods [38],

highlighting the further relevance of this assessment method for future research when investi-

gating upper limb somatosensory deficits.

The association between stereognosis and interhemispheric connectivity can be explained

by the integrative properties of stereognosis. Somatosensory information from the arm and

hand will be integrated to obtain information of different properties of the object, such as size,

shape, and weight. [58]. Thus, the integration of these properties combined with propriocep-

tive information could explain the significant correlation between stereognosis and functional

connectivity [59]. Our findings therefore extend previous literature by Borstad and colleagues

[60], who reported the association between haptic performance and the integrity of interhemi-

spheric tracts connecting bilateral frontoparietal white matter and M1 in chronic stroke

patients. As we found strong associations between interhemispheric network connectivity

indices and stereognosis.

4.2 Strengths and limitations

Our study investigated 19 patients in the acute phase post stroke. The testing protocol con-

sisted of state-of-the-art clinical and instrumented assessments for somatosensory function

and a resting-state fMRI scan. One of the strengths of this study is that we used an extended

and standardised test battery to investigate several somatosensory modalities of the included
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patients. A second strength is the use of resting state fMRI to be able to include and investigate

severely impaired patients. However, a few limitations need to be considered. First, only the

affected upper limb of the patients was assessed. Due to the extended test battery and the lim-

ited work load of patients in the acute phase, we chose to not assess the contralateral upper

limb in addition. Second, the effect of the lesion area on the connectivity data is unknown. To

date, different methods have been adopted to correct for this influence. One way to consider

the effects is to include a cost-function modification excluding the lesion area during spatial

normalization [61, 62]. In the current study, we have remediated this possible bias by exclud-

ing the ROI’s located into the lesion area [11]. Third, there was no group of healthy subjects

included; therefore, a comparison to healthy functional connectivity in these brain areas was

prohibited. However, we have been able to demonstrate differences in somatosensory net-

works within the acute stroke population, namely according to somatosensory severity.

Another limitation relates to our relatively small sample. Although this was the first study con-

ducted in this population with a focus on somatosensory function early after stroke, it would

be worthwhile to replicate our results within a larger sample and with the addition of healthy

controls. Further, resting-state fMRI is based on fluctuations in BOLD signal, which can be

influenced by haemodynamic characteristics. Potential sources of noise such as cardiac- and

respiratory-related variables are reported to possibly confound the interpretation of resting

state data in healthy subjects [63, 64]. However, our inclusion of mean framewise displacement

as a variable of no interest limits the possible confounding by movement. Further research to

investigate the possible influence of stroke and stroke types on haemodynamic parameters is

recommended.

With this study, we investigated the differences in functional connectivity in the acute

phase post stroke associated with somatosensory impairments in the upper limb. We found

that higher connectivity was associated with better somatosensory function at one week. Fur-

ther research should address stroke-related changes over time in functional connectivity and

their relationship with presence and recovery of somatosensory deficits. In addition, longitudi-

nal changes in functional connectivity related to the effects of a somatosensory rehabilitation

program and the association with recovery, need to be investigated.

Conclusion

This resting-state fMRI study investigated the somatosensory network in the acute phase after

stroke. The results provide evidence that the somatosensory network is a vulnerable network

to be associated with somatosensory deficits after stroke. This study showed that higher func-

tional network connectivity in ipsilesional intra- and interhemispherical network indices were

related to better somatosensory function. Furthermore, the association between brain connec-

tivity and somatosensory function was most pronounced for light touch function. The novelty

of this study is the use of resting state fMRI in combination with an extended test battery of

standardized clinical assessments and a more sensitive measurement, i.e. the perceptual

threshold of touch to investigate the relationship between somatosensory deficits and func-

tional connectivity of the brain in the acute phase post stroke. To the best of our knowledge,

the differences in functional connectivity between severe and mild to moderate somatosensory

impairments was not investigated yet. Further research is needed to confirm these results and

to gain further insights in brain connectivity related to somatosensory function throughout

the different phases and related to recovery and therapy post stroke, including studying

differences with healthy control subjects. To this end, knowledge about the underlying neural

connectivity change post stroke might be valuable for prognosis and therapy selection in

future.
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