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Exploring the evolution process of cancers and its related complex molecular

mechanisms at the genomic level through pathological staging angle is particularly

important for providing novel therapeutic strategies most relevant to every cancer patient

diagnosed at each stage. This is because the genomic level involving copy number

variation (CNV) has been recognized as a critical genetic variation, which has a large

influence on the progression of a variety of complex diseases. Great efforts have been

devoted to the identification of recurrent aberrations, single genes and individual static

pathways related to cancer progression. However, we still have little knowledge about the

most important aberrant genes related to the pathology stages and their interconnected

pathways from genomic profiles. In this study, we propose an identification framework

that allows determining cancer-stages specific patterns dynamically. Firstly, a two-stage

GAIA method is employed to identify stage-specific aberrant copy number variants

segments. Secondly, stage-specific cancer genes fully located within the aberrant

segments are then identified according to the reference annotation dataset. Thirdly, a

pathway evolution network is constructed based on the impacted pathways functions

and their overlapped genes. The involved significant functions and evolution paths

uncovered by this network enabled investigation of the real progression of cancers, and

thus facilitated the determination of appropriate clinical settings that will help to assess

risk in cancer patients. Those findings at individual levels can be integrated to identify

robust biomarkers in cancer progressions.

Keywords: cancer evolution, somatic copy number alteration, aberrant genes, pathological stages, pathway

interaction network

1. INTRODUCTION

Somatic copy number alterations (SCNAs) are one of the prevalent forms of genetic variations
which play important roles in the progression of numerous diseases, such as cancers (Zack
et al., 2013; Heitzer et al., 2016). SCNAs have much clinical relevance compared to other genetic
alterations, and they can be good markers of cancer genome aggressiveness (Heitzer et al., 2016).
Hence, the identification of specific signatures from CNAs will shed light on elucidating the
complex mechanisms behind cancers evolution, and therefore lead to a promotive development
in cancer treatment strategies (Lowe et al., 1994; Tsao et al., 2005; Kim et al., 2008; Cheang et al.,
2009).
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The evolution of cancers involves many complex and dynamic
cellular processes that can be precisely described through
pathological stages, which are often divided into several stages,
from the initial stage to the later deleterious stage. Where cancers
at early appearance (stage I or II) are typically viewed as treatable;
however, many more aggressive and active therapies would be
needed as they developed to harmful stages (stage III or IV).
Thus, there was a critical need toward the extraction of reliable
biomarkers characterizing the dynamics associated with these
stages, including (1) stage-specific recurrent SCNAs, (2) their
related aberrant genes, and (3) their enriched dysfunctional
pathways (Chen et al., 2009, 2010; Lee et al., 2016; Liang et al.,
2016; Wang et al., 2016; Nibourel et al., 2017; Zhu et al., 2017).

Recent developments on high-throughput genomic
technologies have generated diverse tumor datasets with
various clinical/pathological stages, conditions or tissues, for
which CNAs and other omics-data have been collected. They
provide effective ways to identify different biological patterns
including individual genes, pathways, specific loci and individual
chromosomal regions. However, the majority of these proposed
ways completely ignore the topology and the interaction between
these patterns, as well as their specificity along with the pathology
stages. Since specific genes and pathways extracted from these
stages across different regions will often act together in complex
systems (Karczewski and Snyder, 2018; Ma et al., 2018), whose
dynamic events are the results of multiple complex interactions
that help to extract useful dynamic cellular functions, and that
can well illustrate the progression and metastasis of cancers.

Fortunately, the usage of biological networks/pathways has
turned out to be an effective method to describe the details
of the dynamic changes and functional mechanisms associated
with the individual stages of cancers, where individual nodes
represent biological entities, i.e., genes or pathways, and each
edge corresponds to an interaction between a pair of nodes.
Those biological networks include but not limited to cellular
pathways, gene regulation networks (Vaquerizas et al., 2009),
protein-protein interaction networks (Schwikowski et al., 2000),
and many disease related networks (Menche et al., 2015). Such
networks can be efficiently used to investigate the dynamic
biological activity behind cancers evolution.

A suite of well-established algorithms has also been proposed
at the chromosome level to accurately detect recurrent SCNAs
(Morganella et al., 2011), to investigate multiple cancer stages
(Xia et al., 2004), or to use gene expressions to analyze the
evolution processes of cancers.

To further extend the study to individual cancer
stages, we propose an analysis framework to elucidate
the dynamic evolution processes of cancers. Firstly, the
recurrent aberrations associated with cancer-specific stages
were discerned through (a) the identification of occurring
sequential changes moving from stage I to stage IV and (b)
the determination of correlations between higher frequency
of CNA and the higher aggressive stage. Secondly, the
stage-specific cancer related genes were carefully detected
via the obtained CNV information. Thirdly, the stage-
specific pathways were extracted and a pathway interaction
network was generated by connecting functional pathways

TABLE 1 | The clinical and CNV datasets information from Broad Firehose TCGA

project.

Pathology stages Clinical samples CNV samples

Pathology_t1 9 1,255

Pathology_t2 46 9,232

Pathology_t3 145 32,293

Pathology_t4 19 4,360

in adjacent stages. The remainder of the paper includes
three sections: section 2 discusses the data sources and the
methodology used in the identification framework, section 3
reports the results, and section 4 provides the conclusion of
the study.

2. MATERIALS AND METHODS

2.1. Data Collection and Grouping
Clinical and Somatic copy number alteration (by SNP 6.0
array) datasets on Level3 colorectal cancer (COADREAD) were
downloaded from the Broad GDAC Firehose1.

Somatic copy number alteration (SCNA) minus germline
SCNAwas produced using GISTIC 2.0 and then divided into four
groups based on the available clinical information of the same
group of clinical patients. From clinical data, we take only the
patients with available “pathology t stage” information, which
defines the diagnosis stage of individual samples (t1, t2, t3, and
t4). For the sample collection, we count the number of patients
in the four t stages. Those individual samples with pathological
information were aligned to the corresponding SCNA samples to
get their copy number information for our following analysis.

Finally, 219 samples (t1 = 9, t2 = 46, t3 = 145, and t4 = 19)
retained from clinical data were mapped to 47,140 samples from
SCNA data (t1 = 1,255, t2 = 9,232, t3 = 32,293, and t4 = 4,360),
respectively, and used to conduct our subsequent analysis. These
details are shown in Table 1.

In addition, for recurrent CNAs identification from pre-
computed GISTIC 2.0 SCNA data, GAIA (Morganella et al.,
2011) with FDR Q < 0.10 was applied separately for each
pathology stage using ten iterations. For genomic SCNA gains
and losses plotting, an R script was used with a cut-off also
specified at FDR Q < 0.10. For the genes annotation of the
recurrent SCNA regions, the biomaRt (Durinck et al., 2005)
and GenomicRanges (Lawrence et al., 2013) packages available
through Bioconductor of R Studio were considered.

For the network construction, pathways were extracted from
the Reactome database2. Since pathways with a smaller number
of genes may lack significant biological knowledge, we collected,
in this study, a set of pathways by filtering those with five genes.
We ended up with 447 impacted pathways.

1http://firebrowse.org/
2http://www.reactome.org
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FIGURE 1 | GAIA illustrative example. (A) Represent an example of matrix A, where + denotes gain, − denotes loss and 0 denotes no alteration. (A) Contain two

homogeneous regions from probes P4 to P6 for samples S1 and S2 and from probes P5 to P7 for samples S2 and S3. (B,C) Show the matrices AL and AD

determined of the matrix in (A).

2.2. Stage-Specific Related Recurrent
Somatic Copy Number Alteration Regions
Identification
To identify the recurrent SCNA for the series of the pathological
stages separately, a two-stage GAIA (genomic analysis of
important aberrations) method (Morganella et al., 2011) was
performed to determine the most significant recurrent CNA for
the four pathology stages. In particular, this method follows
two main steps: Significance testing and Homogeneous peel-off,
to identify the most significant independent regions where a
discrete representation of data is mainly considered.

Based on that, we first build a CNV matrix of regions using
probes meta file from GISTIC 2.0 (available at3). Then, we define
the recurrent CNA by FDR Q < 0.10 using ten iterations.
Finally, we generate the genomic plots of the four stages using
a GAIA plot function in R Studio, with the cut-off set also to
FDR Q < 0.10.

Suppose there is a set of N samples (patients) andM observed
probes, the data can be arranged as an N × M dimension
matrix A. As an illustrative example (Figure 1), A can represent
a chromosome of seven observed probes and three samples. The
matrix A can be split into two matrices AL and AD where each
element a_ij ∈ AL(AD) i = 1, . . . ,N and j = 1, . . . ,M can be
denoted either by 1 as a gain (or loss) found in the j_th marker
of the i_th sample, or by 0 otherwise as shown in Figures 1B,C,
which represents the matrices AL and AD determined from the
matrixA reported in Figure 1A. Three major steps can be applied
to this matrix (gain or loss interest) to identify the significant
peaks and omit the spurious peaks in a region based on q-values
configuration, h-values calculation and multiple iterations. More
details are described here and depicted in Figure 2.

First, a permutation test is performed on every individual
marker to compute the probability distribution, so that we can
estimate the statistical significance of the observed data.

Second, in order to define the homogeneous regions, we focus
on the state of every paired adjacent markers (j and j + 1) rather
than a single marker, and we calculate the degree of homogeneity
between them. Given a matrix H of size (N × M − 1), with an

3ftp://ftp.broadinstitute.org/pub/GISTIC2.0/hg19support/

Performing data preprocessing

Computing discontinuity matrix

Computing probability distribution

Running homogeneous peel-off algorithm

Run GAIA

FIGURE 2 | The flow chart of the GAIA method implementation steps.

element Hij that has the value of 0 for maximum homogeneity,
or the value of 0.5 for a medium homogeneity, or the value of 1
for a minimum homogeneity. From this matrix, we can obtain
overall information on the homogeneity of the dataset based on
the (h-value) that can be computed as follow:

hj =
1

N

N∑

i=1

Hij, j = 1, . . . ,M − 1 (1)

Third, an iterative peel-off procedure is carried out on the matrix
H by expanding the left and right boundaries of the region
until the following conditions are satisfied. The left boundary
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expanded if:

ql−1 ≤ qthr AND hl−1 ≤ hthr (2)

and the right boundary expanded if:

qr+1 ≤ qthr AND hr ≤ hthr (3)

where l and r denote the left and the right boundary of the peak
withminimum q-value, with 1 ≤ l, r ≤ M, while h_thr represents
a significance threshold value for homogeneity measurement.
This value can take 0, 1, or values between 0 and 1.

Remarkably, large recurrent SCNAs have been produced
in this study at different chromosome positions moving from
pathology_t1 to pathology_t4. More details are shown in
Figures 3–6, respectively, which summarize the frequencies of
the four pathology stages.

2.3. Stage-Specific Related Aberrant
Genes Identification
The second essential step allowing a comprehensive elucidation
of the cancer evolution process after SCNA regions identification
is to identify the corresponding signature genes for individual
stages. Therefore, the aberrant recurrent regions obtained
previously at every pathology stage were then annotated to
retrieve the genes that were significantly amplified or deleted.
Using the reference annotation dataset of genes of biomaRt
(Durinck et al., 2005), the final set of genes at cut-off = 0.10 with
the precise co-ordinates regions from human genes in which it
was found to have CNA, have been obtained. Further details are
shown in Table 2, which lists the total number of genes selected
in the four pathology stages.

2.4. Stage-Related Pathways Extraction
After obtaining the deviant amplified or deleted genes at every
pathology stage, the given genes were aligned to pathways
on the basis of the biological pathways in the Reactome
database from which a total of 3,305 was collected. The
pathways found include clusters of pathways from different
pathologies: 396 pathways from pathology_t1, 895 pathways
from pathology_t2, 1,218 pathways from pathology_t3, and 796
pathways from pathology_t4.

As long as a single gene can be assigned to different pathways,
and the latter would consist of a different number of genes, we
set the study sample to every pathology’s pathways consisting of
genes whose size is >5. This is due to the fact that pathways with
fewer genes would have limited biological content (Ahn et al.,
2014). Therefore, a total of 656 pathways (t1 = 5, t2 = 110, t3 =

447, t4 = 94) was collected (Table 2). Finally, duplicated
pathways were omitted, and only pathways that occurred in at
least two pathological stages were extracted and considered as our
stage-specific pathways to be further analyzed.

2.5. Pathway Evolution Network
Construction
After identifying the signature genes for each stage and
after extracting and integrating their specific Reactome

pathways, they are pooled together, their terms are unified,
and their official annotated pathway descriptions are
obtained from the database. Next, a pathway interaction
network related to SCNA is constructed where each
node represents a biological specific pathway, and if
the two pathways share common genes, then they
are connected.

To clearly illustrate the dynamic evolution process
through this pathway network, specific colors were
used to evince the pathways that get evolved between
the four individual stages, and the width of edges is
applied to indicate the strength of associations between
them. The width was calculated using an overlap score
defined as:

W =
k2

p ∗ q
. (4)

where k represents the number of the overlapping genes between
a pair of pathway Pi and pathway Pj, p and q stand for the total
numbers of genes in Pi and Pj, respectively.

3. RESULTS AND DISCUSSIONS

3.1. Stage-Related Recurrent
Genome-Wide SCNAs Frequencies
The recurrent CNAs from four pathology stages were identified
by investigating the sequential changes from pathology_t1 to
pathology_t4 according to their different frequencies. This is
based on the assumption that higher frequency of CNA will
correlate with higher cancer stages. In fact, large genomic
differences in recurrent SCNAs were observed in each pathology
stage. Figures 3–6 represent the genome-wide amplifications and
deletions of the four pathology stages, which generated with cut-
off defined at FDR Q < 0.10. To be more specific, there were
no significant segments in stage 1, but for stage 2, stage 3, and
stage 4, the most of their regions were significantly amplified
or deleted.

Moreover, more aberrant chromosomes get involved in
these three stages. The frequency of aberrant segments were
higher in stage 2 than in stage 1, and it kept increasing in

stage 3. For example, stage 1 involved only three abnormal

chromosomes with very low frequency. However, stage
2 and stage 3 involved more abnormal chromosomes

segments with higher frequencies of amplifications or
deletions. A clear evolution process of cancer could

be observed by connecting those major chromosomal
abnormalities stage-by-stage.

3.2. The Number of Stage-Specific Related
Genes
The amplified and deleted genes which fully located within the
aberrant regions of the four pathological stages were detected
by using the biomaRt and the GenomicRanges packages in
R (Table 2), wherein a total of 423, 3,265, 8,500, and 2,244
genes were identified as representative signature genes in stage
1, 2, 3, and 4, respectively. All of these potential candidate
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FIGURE 3 | Recurrent genome-wide SCNAs in stage 1. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 1.

FIGURE 4 | Recurrent genome-wide SCNAs in stage 2. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 2.

FIGURE 5 | Recurrent genome-wide SCNAs in stage 3. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 3.

genes were carried out for pathway network generation and
functions interpretation, due to their ability to effectively explore
cancer progression.

3.3. Dynamic Pathway Interaction Network
Generation and Visualization
The evolution network was generated by considering the
enriched pathways as nodes, and the overlapping genes in two

corresponding pathways as edges. The network contains 50
nodes and 339 edges. Different colors (pink, orange, green,
yellow) were used to showcase how these pathways evolved
across the four pathologies adjacent stages, whereas the width of
edges indicated the strength of their connections. The network
was then visualized by Cytoscape software, where the different
significant evolution paths are shown. These further details are
depicted in Figure 7.
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FIGURE 6 | Recurrent genome-wide SCNAs in stage 4. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 4.

TABLE 2 | The number of aberrant genes and enriched pathways detected at

each pathology stage.

Pathology stages Defined # of genes # Of aligned pathways

Pathology_t1 423 5

Pathology_t2 3,265 110

Pathology_t3 8,500 447

Pathology_t4 2,244 94

TABLE 3 | The pathway enrichment of both the amplified and deleted genes from

each pathology stage.

Pathway

DNA repair

Transport of small molecules

Developmental biology

Programmed cell death

Cell-cell communication

Hemostasis

Post-translational protein modification

Cellular responses to external stimuli

3.4. Stage-Related SCNAs Pathways
Specific Functions Interpretation
The substantial analysis in this study confirmed the efficacy of
the proposed framework. The detected genes were first enriched
in many important pathways and these pathways, in turn, were
strongly related to many critical cellular functions, such as cell
cycle, disease, gene expression (Transcription), immune system,
neuronal system, signal transduction, andmetabolism of proteins
and RNA. Some extra extremely enriched pathways obtained
from both the amplified genes and deleted genes are shown
in Table 3.

Interestingly, most of these functions were related to the
immune system. This preliminary investigation can be clearly
seen from the evolution network depicted in Figure 7. In
this network, most of the pathways-related immune system
were strongly related to each other with thicker edges.
Furthermore, since the pathways enriched from the deleted

genes (2,630 pathways) were higher than those of the amplified
genes (2,069), the genes annotated in them were probably
dynamically changed with the four pathological stages as can
be observed from the evolution paths of the constructed
evolution network. This dynamic change may lead to decrease
the immunity in colorectal cancer and thus to homeostasis
perturbance. Therefore, increasing the immunity activities
across the stages will be effective and beneficial for many
cancer types.

Moreover, signal transduction and cell cycle were also
highlighted here. These functions are invariably perturbed in
cancer since they are essential in regulating, activating multiple
cellular process and signaling molecules. They can induce cell
proliferation, differentiation, and survival of various cancers
(Cao et al., 2014).

These functions were also involved in diverse human
and animal diseases, and they provide useful information
to understand the initiation and progression of many
complex diseases.

4. CONCLUSION

Complex diseases evolution process is too difficult to be inferred
by single genes, individual pathways or even a type of genomic
data. However, understanding this evolution mechanism at a
single level can be leveraged to identify more robust biomarkers
and valid biological functions when integrating it with other
genomic levels.

CNAs hold a very important role in cancers. Therefore,
finding the recurrent CNA from cancer specific stages
is a promising task for identifying their essential driver
events. We have proposed to investigate the key indicators
associated with cancer progressions by: (1) identifying
the sequential changes/chromosomal abnormalities related
to these stages, (2) defining their significant key genes,
and (3) generating an evolution network rather than
gene networks.

We have also used an interesting rCNA-algorithm that has the
ability to identify many significant recurrent regions, due to its
powerful homogeneous peel-off and its parameter setting that is
very straightforward.
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FIGURE 7 | Pathway functions interaction network. Node illustrate the biological pathways function. Edges illustrate the relationships between the functions at the

adjacent stages. The size of the node is proportional to the number of genes in the pathway, The thicker the edges, the more overlapped genes between pathways of

the adjacent stages. The color of pink, orange, green, and yellow inside the nodes indicate the pathways functions belongs to the four stages.

These critical factors identified from this valid alternative
method enabled us to identify the differences between the
molecular portraits of the different pathological stages,
and improved our understanding of the pathogenesis and
underlying molecular mechanism related to cancer initiation
and progression. Moreover, the aberrant candidate genes and
pathways characterized every pathology stage identified here
could give us a clue to specific therapeutic targets for treatment
of cancers.

In summary, such findings at a single level will help
decide which types of omics data and methodologies will be
better integrated to improve clinical research endpoints, and
therefore get insights into the serious issues driving complex
diseases. Furthermore, an interesting work would be to not only
compare CNA events between cancer stages, but to also link
these to somatic mutations in CIN (chromosomal instability)
signature genes.
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