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Diabetes is a metabolic disease characterized by insulin deficiency. Bioengineering of
stem cells with the aim to restore insulin production and glucose regulation has the
potential to cure diabetic patients. In this review, we focus on the recent developments for
bioengineering of induced pluripotent stem cells (iPSCs), mesenchymal stem cells
(MSCs), embryonic stem cells (ESCs), and pancreatic progenitor cells in view of
generating insulin producing and glucose regulating cells for b-cell replacement
therapies. Recent clinical trials using islet cells derived from stem cells have been
initiated for the transplantation into diabetic patients, with crucial bottlenecks of
tumorigenesis, post-transplant survival, genetic instability, and immunogenicity that
should be further optimized. As a new approach given high expectations,
bioengineered islets from stem cells occupies considerable potential for the future
clinical application and addressing the treatment dilemma of diabetes.
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INTRODUCTION

Diabetes is one of the major public health challenges of the 21st century and bears heavily to global
health costs. An estimated number of 463 million adults (1 in 11) around the world are living with
diabetes, and this number is projected to reach 700 million by 2045 (1). Type 1, type 2 and
gestational diabetes mellitus are three main categories of diabetes, and type 2 diabetes remarkably
accounts for around 90% of diabetes cases worldwide (1). Although lifestyle modification and
pharmacotherapy are both efficient to treat type 2 diabetes, marked variability in outcomes still
widely exists resulting in irregular monitoring, sub-optimal use of effective medicines and inevitable
disease progression due to decline of b cell function. Therefore, innovative therapies are required to
implement for delaying b cell lost, regeneration of endogenous b cell mass or replenishment of b
cells with engineering islets from stem cells.
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Stem cells are undifferentiated cells with self-renewal and
differentiation into various cell types (2–4). Since 1960s,
scientists have successively identified and isolated hematopoietic
stem cells (HSCs), bone marrow stem cells (MSCs), embryonic
stem cells (ESCs) and developed induced pluripotent stem cells
(iPSCs) (5). Thereinto, adult stem cells such as HSCs and MSCs
are derived from bone marrow, skeletal muscle, fat, amniotic
fluid, umbilical cord blood, skin, placenta and other tissues or
organs, while embryonic stem cells are derived from embryonic
tissues (6–9). IPSC are obtained through genetic reprogramming
of somatic cells by ectopic expression of four transcription factors
(OCt3/4, SOX2, C-MyC and Klf4) and have been generated from
somatic cells such as mouse embryonic fibroblasts (MEF), adult
mouse tail fibroblasts as well as human fibroblasts (10, 11)
(Figure 1). Importantly, embryonic stem cells are totipotent
and can differentiate into cell types derived from all three germ
layers (12, 13). In contrast to embryonic stem cells, multipotent
adult stem cells have limited self-renewal abilities and are prone to
differentiate into specific adult tissue cells such as adipose tissue
and muscle tissue (4).
Frontiers in Immunology | www.frontiersin.org 2
With the continuous exploration of stem cells, an abundance
of studies identified that cells such as MSCs and ESCs can grow
indefinitely outside the body and maintain their ability to
differentiate, which highlight their potentials as alternative
sources of organ and tissue replacement (4, 14–16).
Encouragingly, the results of emerging preclinical studies and
clinical trials for diseases, such as diabetes have deepened our
understanding of the use of stem cells in tissue engineering and
cell therapy (17, 18). To date, new progress has been made in the
treatment of brain diseases such as cerebral palsy (19–23), stroke
(24–28), blood diseases (29), eye diseases (30–32) as well as
diabetes (33–36), and the exploratory research on the treatment
of diabetes with stem cells is developing in the right direction
(36). In this review, we summarize the research field for stem cell
differentiation and islet engineering, emphasizing on the efficacy
of this new bioengineering technology applied for diabetes care,
and elucidate current breakthroughs and future challenges of
stem cell differentiation into islets.
iPSCs-DERIVED ISLET CELLS FOR ISLET
REPLACEMENT THERAPIES

In recent years, it has been demonstrated that iPSCs have
unlimited self-renewal ability and can be differentiated into
multiple cell types such as neural stem cells (NSCs) (37),
cardiomyocytes (38), dopaminergic neurons (39) and
hepatocellular like cells (40). IPSC-derived islet cells might
constitute a new source for islet cell replacement therapies
(41). In vitro, most iPSC-derived cell lines initially express
pancreatic and duodenal homeobox 1 (PDX1) and then further
differentiate into PDX1, glucose transporter 2 (Glut2),
musculoaponeurotic fibrosarcoma oncogene family A (MafA)
and insulin expressing end-stage cells. One specific iPSCs cell
line was detected to first express SOX17 and gradually express
the b-cell-specific marker SOX9, PDX1 at later stages. The co-
expression of C-peptide and PDX1 at a final stage confirmed the
differentiation into insulin-producing cells (42). Additionally, it
was shown that in order to obtain insulin-secreting cells in vitro,
factors such as retinoic acid (RA), glutamine, noggin,
nicotinamide and growth factors such as keratinocyte growth
factor (KGF) and hepatocyte growth factor (HGF) are essential
for the directed iPSCs differentiation (42, 43). Therefore, owing
to the tremendous research potential of iPSCs in b cell
replacement therapies, these stem cells are promising for
further drug development and transplant medicine applications.

Furthermore, tissue engineering techniques such as 3D bio-
printing have been substantially evolved since the 1980s for
human therapeutic applications, including the creation of a bio-
artificial pancreas. 3D bio-printing involves the isolation and
expansion of human cells, followed by the automated printing of
biodegradable scaffolds containing such cells. 3D bio-printed
scaffolds are under investigation for various applications such as
therapeutic devises, and in vitro model systems for analyzing
diseases or screening drugs (44, 45). Undoubtedly, 3D
bioprinting and regenerative medicine cooperatively hold great
promise in building and assembling a bioartificial pancreas.
FIGURE 1 | Stem cell engineering for type 1 diabetes. Stem cells
originate from various sources, e.g. embryonic stem cells with strong
ability of differentiation and self-renewal from embryonic tissues,
hematopoietic stem cells and bone marrow stem cells from tissues or
organs such as placenta, amniotic fluid, umbilical cord, bone, skeletal
muscle, fat and skin; induced pluripotent stem cells are produced by
genetic reprogramming of somatic cells. In vitro, predicted paired box 6
(PAX6) activates the expression of pancreatic b-cell-specific genes and
proteins, such as pancreatic duodenal homeobox factor-1 (PDX-1) and
NK6 Homeobox 1, (NKX6-1) and musculoaponeurotic fibrosarcoma
oncogene family A (MafA), and interacts with these factors at the protein
level to promote b-cell function. In vivo, hypoglycemic homeostasis is
rapidly reestablished in diabetic immunodeficient mice (NOD/SCID) after
transplantation with subcutaneous, renal capsule or fat pad.
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Organoids are defined as 3D multi-cellular spheroids
obtained in in vitro cultures. Numerous 3D cell culture
methods using islet cells had been described to obtain hetero
cellular islet organoids (46). Remarkably, such hetero cellular
islet organoids may integrate different types of supporting cells,
such as endothelial cells, into insulin-producing structures,
which is a valuable strategy to increase neovascularization of
transplanted islets (46). Therefore, using human pluripotent
stem cells to create organoids that resemble human pancreatic
islets in vivo could help to overcome the organ scarcity. Herein,
Tao et al. produced human islet organoids from human iPSCs
using a perfusable organ on-chip system. The system integrated
functional b-cells obtained after induction of endoderm,
followed by differentiation and amplification of pancreatic
progenitor cells and maturation of endocrine cells (Figure 2)
(47, 48). As described in Figure 2, the islet-like organ was
generated by step wise incubation with essential differentiation
factors. Starting from primary embryoids (EBs), endodermal
production was induced by activin, pancreatic final endodermal
Frontiers in Immunology | www.frontiersin.org 3
production was induced by dorsomorphin and RA, and finally the
insulin producing pancreatic b-cell was induced by nicotinamide.
This islet-like organ was generated under dynamic perfusion
system, a multilayered microfluidic device composed of four
parts top and bottom polydimethylsiloxane (PDMS) layers,
through-hole PDMS membrane and polycarbonate porous
membrane as separators (49). Fresh media was pumped through
the upper and lower layers at 100µl per hour thereby providing
continuous supply of media and nutrients for the formation and
long-term culture of islet organs after EBs formation. In addition,
produced islet-like organs contained heterogeneous islet-specific
a- and b-like cells with sufficient cell viability. Simultaneously,
during culture expression of pancreatic b-cell-specific genes and
proteins such as PDX1 and NK homeobox 1 (NKX6-1), and C-
peptide proteins related to insulin secretion were increased.
Together, these results provide evidences that an islet-like organ
generated through a perfusable islet-on-chip system is similar to
the reproduction and development of human islets. And this
technique offers a feasible and effective engineering method for
generating functional islet-like organoids derived from iPSCs in a
bionic microenvironment. Moreover, Yoshihara’ team also found
that human iPSC-derived human islet-like organoids can rapidly
restore glucose homeostasis after transplantation in diabetic
immunodeficient mice (NOD/SCID) (50). The expression of
immune checkpoint protein programmed death ligand 1 (PD-
L1) in organoids was restored and glycemic homeostasis was
maintained during 50 days in immunocompetent diabetic mice.
Further, interferon-g ex vivo exposure of human islets as well as
human islet-like organoids derived from iPSC induced strong
endogenous PD-L1 expression. Transplantation of PD-L1-
overexpressing islet-like organoids into immunocompetent mice
showed that iPSCs were protected from graft rejection in both allo-
and xenotransplant settings. However, no studies on the
transplantation of PD-L1-overexpressing islet-like organoids
generated from iPSCs in the setting of the human immune
system have been reported, which indicates the lack of evidence
on determining PD-L1 expression profile for protecting human
cells against the allogeneic human immune system. Meanwhile,
this vacancy may greatly stimulate the progress of related
research topics.

Another previous study described that glucose-responsive b-
like cells can be efficiently produced by a scalable suspension
culture system from ESCs and iPSCs in vitro (51). These stem
cell-derived b-like cells (SC-b) expressed cytoplasmic C-peptide
and nuclear protein NKX6-1, which is similar to islet b-cells.
Other studies that transplanted human SC-b-cells into immune-
compromised mice also showed b-cell functionality in vivo.
Glucose challenges appeared after SC-b transplantation and
human insulin in the blood was measured within weeks after
transplantation in mice (17, 52, 53). Consequently, the cell
transplantation under the renal capsule of immune deficient
mice rapidly reversed the progressive exacerbation of
hyperglycemia. Besides, 18 weeks after transplantation, it was
remarkably observed that the mice receiving SC-b maintained
normal human insulin secretion. Thus, SC-b transplantation
successfully improved hyperglycemia in diabetic mice. As an
FIGURE 2 | IPSCs-derived islet function replacement. iPSCs differentiate
into insulin-secreting cells under the action of related transcription factors.
Embryoid bodies (EBs) are formed under the influence of SLEy-related high
mobility group box 17 (SOX17) and Forkhead box A2 (FoxA2). Pancreatic
and duodenal homeobox 1 (PDX1), NK6 Homeobox 1 (NKX6-1), Pancreas
Associated Transcription Factor 1a (PTF1a) and SOX9 guide to pancreatic
Endoderms (PEs). Finally, PDX1, NKX6-1, Neurogenin 3 (Ngn3) and
Neuronal Differentiation 1 (NeuroD1) differentiated into pancreatic progenitor
cells. Pancreatic progenitor cells are directed to produce glucose-
responsive b-cells. The figure on the right shows the fabrication method of
microfluidic device. SU-8 photoresist is rotated onto two clean glass wafers
and then selectively cured under ultra violet (UV) light using different masks.
The mixture of Polydimethylsiloxane (PDMS) monomer and hardener then
produces a two-layer copy of PDMS. Finally, the two PDMS replicas are
sealed together with an intermediate porous membrane.
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advantage for clinical application, SC-b-cells can be produced
from iPSCs of patients to avoid allogenic rejection after
transplantation (51). In the future, autologous SC-b cell
transplantation in combination with Treg adoptive
immunotherapies may selectively suppress autoimmunity in
patients with type 1 diabetes mellitus (T1DM), which could
eliminate major obstacle for the cure of T1DM (54–56).

Despite the potential of iPSC to develop into a therapy for
diabetic patients, important issues still need to be solved. The
current limitations include: low reprogramming efficiency,
reprogramming factors related to tumorigenesis, low survival
and engraftment, loss of cell phenotype after transplantation,
genetic instability, epigenomic instability and inherent
immunogenicity need to be considered (57–61). Recently, a
clinical case was reported describing the development of a
teratoma in a diabetic patient after iPSCs-derived b cells
transplantation (62). In this patient, b cells differentiated from
autologous iPSCs were initially injected into the deltoid muscle
where a mass with enlarged axillary lymph nodes were detected
at two months after implantation. This tumor was characterized
by rapid growth, local lymph node metastasis, more cellular
atypia, and chemotherapy-resistance (62). As a milestone in
regenerative medicine, iPSCs also shed new light on the
treatment of age-related macular degeneration (AMD), one of
the main causes of irreversible blindness. The researchers used
the retinal pigment epithelium (RPE) cell sheets induced by
autologous iPSCs from 2 patients with AMD through subretinal
surgery. As a result, no serious adverse event was observed in 25
months of follow-up and no signs of rejection was noted without
the administration of immunosuppressants in one patient, which
provided valuable information on the feasibility and safety of
iPSCs in the treatment of patients with macular degeneration
and created a precedent for the clinical transformation of iPSCs
in the field of regenerative medicine (63). In vivo tumorigenicity
tests and a series of genomic analyses were both performed,
although iPSCs-derived RPE cells had a low proliferation rate. In
the iPSC-derived RPE cells obtained from Patient one, no
genomic aberrations that were suggestive of tumorigenicity was
found. However, three aberrations in DNA copy number
(deletions) in iPSCs obtained from Patient two were detected,
which could affect expression of genes encoded by both the
deleted DNA and by DNA flanking the deletions (63). Based on
the published information, the possible influence of these
alterations on tumorigenicity could not be determined. In the
reprogramming process to pluripotency and the cultivation of
iPSCs, genetic instability was reported to be enhanced,
potentially leading to additional genomic abnormalities (64).
These genetic changes could negatively influence the
performance and functional activities of iPSCs and increase
tumorigenicity in replacing damaged tissues (65). Therefore,
genomic stability must be maintained after reprogramming for
further clinical uses.

As a renewable source of autologous cells, iPSCs have great
prospects in regenerative medicine. It was generally accepted that
autologous cells should be immune-tolerated by the recipient
from whom the iPSCs are derived, whereas accumulating
Frontiers in Immunology | www.frontiersin.org 4
evidences remarkably revealed the rejections from autologous
iPSC-derived cells, although the underlying related mechanisms
remained controversial and still in the process of being gradually
defined. As mentioned above, RPE cells derived from autologous
iPSCs made the remission of AMD achievable. Even in non-
ocular locations, they are also immune tolerated. However,
smooth muscle cells (SMCs) produced from autologous iPSCs
appeared to be significantly immunogenic, partly result from the
abnormal expression of immunogenic antigens in iPSCs-derived
SMCs (66). In C57BL/6 (B6) mouse transplantation model,
immunogenic antigen-expressing B6 iPSCs and their
differentiated target cells were immune tolerated under the
kidney capsule but immune rejected when transplanted
subcutaneously or intramuscularly owing to the lack of
functional antigen presenting cells, indicating that the immune
response toward antigens was also dependent on the immune
environment of the transplantation site (67). Furthermore,
autologous iPSCs and their derivatives were not inherently
immunologically inert for autologous transplantation, due to
de novo mutations in mitochondrial DNA (mtDNA) probably
produced in the process of reprogramming to the iPSCs stage,
long-term culture and differentiation into target cells. And these
mtDNA mutations could encode neoantigens and elicit highly
specific immunological response based on the host’s major
histocompatibility complex genotype, which implied the
indispensability to recheck the mtDNA mutations iPSC-
derived products (68). Aberrant gene expressions in some cells
generated from iPSCs can cause T cell-dependent immunological
response in syngeneic recipients (69). Therefore, the
immunogenicity of therapeutically valuable cells produced
from patient-specific iPSCs should be assessed before clinic
application in patients. In order to adopt the optimum
immunosuppressive strategy to allow their engraftment,
detailed evaluation of the inherent immunogenicity profiles of
iPSC-derived somatic cell lineages is considerably required.
ESCs-DERIVED b-CELLS FOR INSULIN
SUPPLEMENTATION

Insulin-secreting cells derived from pluripotent embryonic stem
cells (ESCs) have emerged as one of the most attractive
therapeutic alternatives for diabetes (70). Recently, it was
shown that after transplantation of in vitro-differentiated stem
cell-derived islets into immune-compromised mice, islets acquire
a mature b-cell gene expression profile and can control blood
glucose in the long term (71). Moreover, under adherent and
suspension culture conditions, ESCs spontaneously differentiated
into insulin-secreting cells in vitro with a very high proportion as
observed through insulin immunohistochemical staining (72). A
refined method for generating more mature insulin-producing cells
from human ES has been described by Wang et al. using a three-
dimensional differentiation culture. Most important steps for ES
differentiation into insulin-secreting structures were first outlined by
Lumelsky et al. (73) (Figure 3). These three-dimensional clusters
were similar in structure to normal islets and contained all cell types
April 2022 | Volume 13 | Article 869514
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of the endocrine pancreas (73). In vitro studies revealed that glucose
as well as various secretagogues could trigger insulin release from
these structures through similar mechanisms as in human islets.
After transplantation into diabetic mice, these insulin-producing
cells underwent rapid vascularization and formed clusters of islet-
like tissue. Further, others showed that transplantation of islet cell
clusters at stage 4 of differentiation, enriched of NKX6-1-expressing
pancreatic progenitor cells through the action of a PKC activator,
accelerates the maturation of insulin-secreting cells in vivo.
Gradually, differentiation of human embryonic stem cells into
islet cells has been widely used (74–76).

Solid evidence unveils that extracellular matrix (ECM) not
only provides structural information for cells, but also plays a
guiding role in cell development, which is crucial for maintaining
tissue homeostasis and of great significance in embryogenesis,
Frontiers in Immunology | www.frontiersin.org 5
tissue-specific development and stem cell differentiation (77, 78).
Cell-stromal interactions can promote b-cell proliferation (79,
80), insulin secretion (81, 82) and islet development (83, 84).
Oberg-welsh and his group have demonstrated that ECM
significantly enhances insulin secretion in fetal pig islet-like cell
clusters in vitro (85). Besides, islet-like organs derived from
human embryonic stem cells were successfully developed in a
biomimetic 3D scaffold by combining collagen with matrix gel
(86, 87). The resulting cell clusters included pancreatic a, b, and
pancreatic polypeptide (PP) cells, but most of the resulting islet
cells did not express glucagon, somatostatin, or PP. Expression of
mature b-cell-marker genes such as PDX1, neurogenin 3 (Ngn3),
insulin, MafA and Glut2 was detected in these 3D-induced cell
clusters, whereas PDX1, NKX6-1 and C-peptide was highly
expressed. Additionally, insulin secretory granules, indicating
mature b-cells, were also detected. Although, neither collagen
nor matrix gel materials are approved for clinical use, the results
shed the light on the feasibility of generating islet-like organs
from ESCs. Future breakthroughs by using supporting materials
may lead to further progress.

A new transplantation strategy was proposed by Song and
Millman who developed a large-pore recyclable 3D printing
device composed of biocompatible poly-lactic acid (PLA) for
subcutaneous transplantation of SC-b-cells (88). Clusters of SC-
b-cells derived from human embryonic stem cells were
embedded in biodegradable fibrin gel and inserted in the
device. Severe transient hypoxia within the device that
occurred after transplantation was mitigated by finite element
modeling of cell oxygen concentration and evaluation of oxygen
diffusion in different sized cell clusters embedded in hydrogel
slabs. These adaptations allowed the device to be operated at
physiological oxygen levels. After subcutaneous transplantation
of the device into immune-compromised mice, SC-b-cells
containing device was found to function for 12 weeks.
Retrieved devices were structurally intact. Despite the observed
host-tissue invasion, the mechanical strength and recyclability of
such a device represent a considerable progress in the field. Other
previous methods transplanting islets or cell clusters
encapsulated in semipermeable microcapsules composed of
alginate are challenged similarly by pericapsular fibrotic
overgrowth (PFO) of microcapsules and the difficulty to
retrieve grafts (89–91). Therefore, such a retrievable devise is
promising for the application of SC-b-cells in regenerative medicine
and serves as a platform for future transplantation strategies.

Insulin-producing cells derived from stem cells can address
organ donor shortage, while cell encapsulation can reduce or
eliminate the need for immunosuppression, minimizing the risks
associated with islet transplantation procedures (92–97). Islet
encapsulation provides a physical semi-permeable barrier not
only preventing immune cell infiltration but also allows diffusion
from necessary smaller molecules such as oxygen, nutrients,
glucose, and insulin through the microcapsule. This is crucial
for achieving widespread clinical use of the technique (98–100).
Therefore, transplantation of microencapsulated stem cell-
derived islets may extend islet transplantation to a larger
cohort of patients. The embedding of immature b-cells derived
FIGURE 3 | ESCs derived insulin supplement. An improved ESCs pancreatic
differentiation protocol was developped. First, under the action of Activin A,
DMEM, and FBS, one definitive endoderm (DE) was established through
mesoderm. In the second step, activin A was removed and kaad-cycloamine
(CYC) and fibroblast growth factor (FGF) were added to facilitate the transition
from DE to the primitive gut tube (PG). The third step is to add retinoic acid (RA)
and B27, and then to the posterior foregut endoderm (PF). Step 4: Extendin 4
(EX4) was added to support pancreatic lineage specific differentiation. The fifth
step is to generate endocrine cells under the stimulation of EX4, IGF (insulin-like
growth factor) and nicotinamide. These cells differentiate in vitro into insulin-
secreting cells, Pancreatic and duodenal homeobox 1 (PDX1), neurogenin 3
(Ngn3), MAF BZIP Transcription Factor A (MafA), glucose transporter 2 (Glut2),
NK6 Homeobox 1 (NKX6-1) and C peptide were expressed. When these cells
are injected into diabetic mice, diabetes is effectively ameliorated by rapid
vascularization and the formation of a cluster of islet organoids. Islet organoids
are obtained from ESCs by combining collagen and matrix gel in the biomimetic
3D scaffold. Islet sacking can quickly restore normal blood glucose without
immunosuppression.
April 2022 | Volume 13 | Article 869514
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from human embryonic stem cells into a sodium alginate
hydrogel alleviated the response to foreign bodies in vivo and
rapidly established normal blood glucose for 25 weeks after its
transplantation into the peritoneum of immunocompetent mice
(101). Vegas et al. reported long-term glycemic correction using
human SC-b-cel ls in an animal model of diabet ic
immunocompetent mice (102). SC-b-cells coated with alginate
derivatives and intraperitoneally implanted into streptozotocin
(STZ)-treated C57BL/6J mice corrected blood glucose levels for
174 days during follow up. Retrieved implants still contained
viable insulin-producing cells and showed minimal fibrotic
overgrowth. In addition, a novel encapsulation approach was
reported by the group of Alice A Tomei, in which transplantation
of conformal coated islets, from fully MHC-mismatched Balb/c
mice, achieved long-term (>100 days) survival after
transplantation into epididymal fat pad or mammary fat pad
of diabetic immune competent C57BL/6 mice (103, 104).
Conformal coating minimizes capsule thickness, complies with
islet shape, reduces transplant volume compared to encapsulated
islets and allows glucose stimulated insulin release in vitro
without delay (105). Moreover, when SC-b-cells were
transplanted into gonadal fat pad of diabetic immunodeficient
NOD-SCID mice, it was found that both uncoated and
conformal coated SC-b-cells reversed diabetes. Blood glucose
levels were maintained at normal levels for more than 80 days as
obtained with human islets, demonstrating thereby safety and
efficacy of this b-cell replacement strategy (103). To date, a small
number of encapsulation systems have been used clinically with
obvious safety (106). For example, bAir devices are designed for
clinical use to ensure oxygen levels necessary for maximum islet
function while microcapsules remain in the body. The device
consists of two main components, an alginate saline gel plate
containing islet modules and a gas chamber. After subcutaneous
implantation, islets are oxygenated daily. Islet cells in the lumen
absorb oxygen through diffusion via the permeable membrane
(107). Remarkably, one case report describes a patient whose
islets remained fully functional during a 10-month study period
(108). Apart bAir devices, Theracyte and Sernova Cell Pouch
also offers clinical devices which allows for pre-vascularization
prior to implantation (106, 109).

In addition, Vertex Pharmaceuticals Incorporated recently
announced unprecedented and positive Day 90 data for the first
patient achieving successful engraftment and substantial
improvement of islet cell function from VX-880, an novel
investigational embryonic stem cell-derived and fully
differentiated pancreatic islet cell replacement therapy for the
treatment of type 1 diabetes (110). In this Phase 1/2 clinical trial,
VX-880 was generally well tolerated with significant
improvements in multiple measures, including fasting and
peak stimulated C-peptide, HbA1c, and daily exogenous
insulin requirement dose (111, 112). These unprecedented
results introduce a potentially transformative medicine and
deliver a life-changing therapy for T1DM patients and confer
the remarkable promotion on the following VX-880 clinical
studies, although there are still uncertain problems that need
to be further clarified, including unexpected side effects, whether
Frontiers in Immunology | www.frontiersin.org 6
the treatment effectiveness would last a lifetime, and whether
repeated treatment would be necessary.
MSCs AND ISLET CO-TRANSPLANTATION
FOR ISLET FUNCTION PROTECTION

Transplantation of microencapsulated islets has been extensively
studied as a promising treatment for type 1 diabetes. Meanwhile,
challenges remain especially in achieving long-term function and
reducing inflammation at the graft site that would lead to early
islet dysfunction. Further, insufficient angiogenesis around graft
sites remains a major issue resulting in malnutrition and hypoxia
of encapsulated islets (113, 114). On the other hand, although
iPSCs and ESCs have received sustained attention over the years,
their clinical transformation is still hampered by ethical issues
and risk of teratoma formation (115, 116). Thus, other feasible
stem cells demand further investigation to overcome the
obstacles mentioned above. Bone marrow mesenchymal stem
cells are multipotent stem cells, which are mainly used for cell
and regenerative therapy (117) (Figure 4). MSCs can secrete
various immunomodulatory molecules, such as leukemia
suppressor factor (LIF) (118), prostaglandin E2 (PGE2) (119),
tumor necrosis factor (TNF)-stimulated gene 6 protein (TSG6)
(120), and inhibit the infiltration of macrophages, neutrophils
and monocytes into inflammatory sites by the release of TSG6.
Besides, MSCs can restrict the fibrotic response by reducing
myofibroblast differentiation and ECM deposition in fibroblasts
and epithelial cells (121). In addition, MSCs also secrete
angiogenic factors such as vascular endothelial growth factor
(VEGF), basic fibroblast growth factor (bFGF) and transforming
growth factor-b (TGF-b) (122). These secreted factors support
islets to build their own vascular system. Thus, these
characteristics confer MSCs the potential for supporting
various functions when co-transplanted with islet cells. Earlier
studies have demonstrated that MSCs and islet co-
transplantation protect islets from problems associated with
instant blood-mediated inflammatory response (IBMIR) and
fatigue, diarrhea, and immune pneumonia caused by long-term
use of immunosuppressive therapy (123–127). In the MSCs and
islet co-transplantation, MSCs produce a microenvironment
conducive to islet repair and longevity in vitro (128), and
promote insulin secretion (129) and islet transplantation
results in STZ-induced diabetic mice (130). Therefore, MSCs
seem to be ideal supporting cells for co-transplantation with
islets, although there are still research gaps to be filled soon.

As a common scaffold in tissue engineering, 3D cell culture
system and hydrogel compositions can be applied to mammalian
cells, such as islets. The small pore size of hydrogel prevents
immune cells from passing through, thus protecting the islet
from immune rejection, promoting the exchange of oxygen and
nutrients, and improving the results of islet transplantation (131,
132). Some scholars embedded adipose tissue-derived
mesenchymal stem cells (AT-MSCs) and islets into maleimide-
dextrolic anhydride polymer hydrogels to evaluate the
therapeutic effect of AT-MSCs in hydrogel composites on type
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1 diabetic mice (133). in vitro experiments revealed that AT-
MSCs significantly increased insulin secretion. After
transplantation, blood glucose dropped from more than
400mg/dl to less than 150mg/dl within 4 days and remained
Frontiers in Immunology | www.frontiersin.org 7
stable until day 32, indicating prime results in treating type
1 diabetes.

A 3D structured cell transplantation platform called CellSaic
was reported recently and it consisted of cells and petaloid pieces
of a medical recombinant peptide (RCP) (134). Unlike
traditional animal collagen, these petaloid-shaped pieces
increased the surface area for cell adhesion and maintained
empty spaces within the scaffold, which permitted substance-
diffusion within the scaffold-cell aggregates. The vascular-
inducing effect of MSC-CellSaics occured through altered
release of various cytokines and growth factors, such as
interleukin-8 (IL-8), bFGF and VEGF (135). Therefore,
Kogawa’s team compared graft survival among three transplant
conditions, islets, microencapsulated islets and microencapsulated
combined with MSC-CellSaics. Transplant material remained in a
mesh bag under the skin of diabetic mice until recovery (135).
During 4 weeks following transplantation, blood glucose levels
were significantly reduced and no inflammatory response was
observed around the mesh bag within 14 days after transplantation
in the MSC-CellSaic combined transplantation group compared
with other groups. Thus, MSC-CellSaics could inhibit
inflammation and immune rejection in early transplantation.
Co-transplantation of MSC-CellSaics with encapsulated
islets might be a more efficient approach to increase
vascularization of grafts and mitigate inflammatory rejection of
microencapsulated islets.

There is increasing evidence that layered slices of cells to
construct 3D functional tissue through tissue engineering
techniques can help maintain cellular function with nutrition
(136). Herein, Hirabaru’s team used MSC-sheets as a support for
subcutaneous islet transplantation into STZ-induced diabetic
SCID mice. Only mice transplanted with islets cultured on
MSC-sheets showed normalized blood glucose levels for at least
84 days after transplantation and increased neovascularization
compared to islets grafted alone (137). Therefore, this new
technical approach using MSC-sheets demonstrated a protective
effect on islet survival and function.

Reconstructing a favorable microenvironment allowing
integrin interactions could improve the survival rate of isolated
islets (129). For instance, the addition of tripeptide arginine
glycine aspartic acid (ARG-GLy-ASP, RGD) to microcapsules
improves viability and function of C2 and C12 myoblasts (138).
Based on these evidences, Laporte et al. developed a
biocompatible composite capsule by combining M-rich
alginate, RGD G-rich alginate and MSCs (139). This capsule
composition improved the deleterious effect of encapsulation on
human islets in vitro, showing decreased caspase activity and
increased VEGF secretion. Improved islet outcome was possibly
related to the cytoprotective function of MSCs whose paracrine
effect was enhanced by the presence of RGD motif (140, 141).
Therefore, MSCs and RGD G-rich alginate capsules could
substantially ameliorate survival and function of encapsulated
human islets in vitro although further studies are still needed to
validate these results in vivo.

To date, it remains obscure whether pericapsular fibrosis
overgrowth (PFO) occurring in an allograft environment could
FIGURE 4 | The role of Mesenchymal Stroma Cells (MSCs) in cell
engineering technology. MSCs are used in cell therapy and might play a role
in the treatment of diabetes. MSCs interact with immune cells such as natural
killer cells (NK), macrophages, neutrophils, mast cells and dendritic cells.
MSCs secrete a variety of soluble factors, Indoleamine 2, 3-dioxygenase
(IDO), prostaglandin E2 (PGE2), C-C motif chemokine Ligand 2 (CCL2), IL-1
receptor antagonist (IL-1RA), complement C3, Tumor necrosis factor- (TNF)
stimulated gene-6 (TSG-6), Transforming growth factor b (TGF-b), interleukin-
10 (IL-10), interleukin-6 (IL-6), macrophage Colony stimulating factor (M-CSF)
and human leukocyte antigen-G5 (HLA-G5) can inhibit the differentiation,
proliferation and activation of various immune cell subgroups. Furthermore,
MSCs interact with inflammatory factors including nitric oxide (NO), PGE2,
tumor necrosis factor (TNF), reactive oxygen species (ROS), interleukin-1
(IL-1) and extracellular matrix (ECM) to promote tissue regeneration, repair
and correct abnormal immune responses. In terms of the regulation of fibrosis
microenvironment, MSCs release IDO, PGE2, interleukin-1 receptor
antagonist (IL1RN), tumor necrosis factor receptor-1 (TNFR1) and other
immunosuppressive factors to inhibit the activation of immune cells and the
infiltration of inflammatory sites, and promote the formation of regulatory T
(Treg) cells. In addition, MSCs produce antioxidant enzymes such as
superoxide dismutase 1 (SOD1) and 3 (SOD3) and manganese superoxide
dismutase (MnSOD) to reduce oxidative stress and reactive oxygen species
levels. In addition, MSCs also secrete hepatocyte growth factor (HGF) and
PGE2 in different ways to promote myofibroblast apoptosis and inhibit
fibroblast proliferation and collagen production, respectively, thereby inhibiting
the fibrotic response. It has also been found in diabetes studies that MSCs
can secrete vascular endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), TGF-b and other angiogenic factors. Promotes the formation of
new blood vessels and protects the islets from blood-mediated inflammatory
response (IBMIR).
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be alleviated after co-inclusion of MSCs and islet. PFO mainly
involves macrophages and fibroblasts, which is related to the low
survival rate of encapsulated islets (142). Therefore, islet co-
encapsulation with MSCs was investigated as a strategy against
PFO. It was previously validated that tumor necrosis factor-a
(TNF-a) or interferon-g (IFN-g) can induce immunosuppressive
activity of MSCs by producing cyclooxygenase-2 (Cox-2) and
PGE2 before transplantation (143). Thus, Vaithilingam et al.
used the co-encapsulation of islets with MSCs either
unstimulated or stimulated by a mixture of cytokines IFN-g
and TNF-a to test PFO and islet survival. C57BL/6 mice were
used for the transplantation with strong immune response and
fibrotic response that were similar to that in humans. The results
indicated that a slight decrease of PFO in the stimulated mice was
sufficient to significantly improve graft survival and islet activity
(144). Immunosuppression in the stimulated MSC group was
correlated to increased production of NO, which played a major
role in regulating T cell immune response (145, 146). However,
prior to clinical translation for patients with T1DM, further
studies should be conducted using stimulated human bone-
derived MSCs (BMSCs) co-encapsulated together with human
islets in allograft settings using humanized mouse models.
PANCREATIC PROGENITOR CELL AS
ANOTHER RESOURCE OF b-CELLS

Progenitor cells are considered as cells which have the ability to
differentiate into a specific target cell. Studies have shown that b-
cell progenitor cells derived from human embryonic stem cells
express high levels of NKX6-1 and are prone to further mature
into glucose-responsive b-cells (76). The key difference between
progenitor cells and stem cells is that stem cells have an
unlimited proliferation capacity, whereas progenitor cells can
divide only a limited number of times (147). There are several
theories about the origin of pancreatic progenitor cells. Mostly
accepted is that islet progenitor cells are derived from pancreatic
ducts, where they regenerate, differentiate and migrate to form
new islets (148, 149). Studies have shown that islet formation
starts early in embryonic development after birth, through the
migration of pancreatic primordial cells out of epithelial ducts to
form clusters of epithelial cells. Later-on these cells differentiate
then into hormone-producing endocrine cells (150, 151).
Formation of new islets, meaning the differentiation of islet
progenitor cells into new islets, in or near ducts, has long been
considered as an active process occurring after birth (152, 153).
In a genealogy-tracing experiment to genetically label duct cells,
the Cre-Lox system, in which Cre recombinase expression was
driven by the promoter of carbonic anhydrase II (CAII), a
marker of mature ducts cells, was used. Thus, pancreatic duct
cells expressing CAII, have been shown to generate new islets as
well as acini after birth and injury (154, 155). In addition,
another potential source for b-cells is the islet itself. Ex vivo
proliferation of b-cells or the plasticity of a-cells are still
interesting concepts for generating b-cells (156). In conclusion,
islet progenitor cells may exist not only in ductal epithelium, but
also in islets itself (148, 157).
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Several in vitro studies have shown that insulin-producing
cells can be differentiated from adult pancreatic duct tissues (158,
159). Bonner-Weir et al. cultured adult duct tissue with matrix
gel and observed islet buds composed of cytokeratin 19 (CK19)
positive duct cells and insulin-positive cells (72). Other studies
have also shown that some CK19-positive ductal epithelial cells
differentiate into endocrine cells (160). Also, progenitor-like cells
isolated from the adult pancreas formed tubular mature annular/
dense colonies expressing PDX-1 and SOX9 and differentiated
into endocrine/acinar colonies. Most endocrine/acinar colonies
contained a majority of b-like cells which expressed and secreted
insulin and C-peptide (161, 162). Further, duct cells under the
action of glucagon-like peptide-1 (GLP-1) differentiate into islet
endocrine cells including b-cells in vitro (163, 164). In addition,
it has been early substantiated that b-cells are regenerated by
duct cell trans-differentiation. Islet and pancreatic regeneration
are achieved by replication of b-cells near or inside the pancreatic
ducts, or by progenitor cells expressing Ngn-3 (165, 166).

Interestingly, progenitor cells from outside of the pancreas,
such as murine skeletal muscle-derived progenitor cells, have been
differentiated into insulin-producing clusters by a differentiation
protocol comprising four steps of culture. These progenitor cells
transformed into mature b-cells during development and
significantly reduced hyperglycemia and improved survival after
transplantation into STZ-induced diabetic mice (167). Moreover,
Yi Arial Zeng’s team identified a new population of protein C
receptor-positive (Procr+) endocrine progenitor cells by single-cell
RNA sequencing and that did not express known endocrine or
exocrine differentiation markers of the adult mouse pancreas
(168). In clonal density culture, islets can be formed stably, thus
exerting its hypoglycemic function in vivo. It was also found that
transplantation of pancreatic progenitor cells under the mammary
fat pad or renal capsule did not affect their eventual differentiation
into functional b-cells, despite no exposure to the “pancreatic”
microenvironment (169). In conclusion, pancreatic progenitor
cells capable of forming islet-like structures in vivo derived from
human pluripotent stem cells represent a potential cell source for
the treatment of type I diabetes.
DISCUSSION AND SUMMARY

Worldwide, it is estimated that there are currently 463 million
persons with diabetes and this number is projected to reach 578
million by 2030, and 700 million by 2045. About 10 percent of
those have T1DM, while type 2 diabetes mellitus (T2DM) is the
most common type of diabetes that accounts for about 90
percent of all diabetes cases. With a variety of common and
predisposing complications, 10% of global health expenditure
(USD 760 billion) is spent on the prevention and cure of diabetes.

In this review, we expose recent advances in the development
and use of pancreatic progenitor cells, bone marrow stem
cells (MSCs), embryonic stem cells (ESCs) and pluripotent stem
cells (PSCs) as cell sources for engineering islets for future b-cell
replacement therapies, with a focus on recent biotechnology
engineering. Although a significant progress has been achieved for
the development of islet clusters from human stem cells, only a few
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practical applications of bioengineering technology are realized in
the treatment of diabetes. For the treatment of T1DM, novel
attempts have focused on the development of bioengineering
strategies such as microencapsulation with the aim to avoid
immunosuppressive agents (170). For the treatment of T2DM,
the exploration for new treatments includes stem cell
differentiation, drug therapy and other methods (171). Although
autologous iPSCs could theoretically be optimal for clinical use by
avoiding immune rejection, long-term results of iPSC-differentiated
cells transplantation still needs further confirmation.

Besides considerable advances made in the field, such as
improved protocols for endocrine differentiation from SC,
validation of therapeutic efficiency within animals and humans
remains limited. Another challenge in this field is the lack of
allogeneic and autoimmune humanized T1DM models to study
the efficacy and safety of various stem cell therapy or devices.
Given the major challenge remaining for the clinical applications,
the hurdles include immune rejection, recurrence of
autoimmunity, genetic stability and risk of tumorigenesis.
Genetic instability could aggravate the risk of tumorigenicity,
while de novo mutations in mtDNA obtained from
reprogramming to the iPSCs stage, long-term culture and
differentiation into target cells and the immune environment of
the transplantation site could activate immune response in
autologous transplantation. However, evidence on the efficacy of
immunosuppressive molecules in suppressing allogeneic immune
responses remains obscure. Programmed death ligand-1 (PD-L1),
a member of the CD28 T cell family, binds to programmed cell
death (PD-1), and this could downregulate T cell proliferation and
inhibit immune responses, which hypothetically prevents allograft
rejection in organ transplantation (172). PD-L1 knockout caused
the acceleration of cardiac allograft rejection in animal models,
while clinical data from endomyocardial transplant biopsies and
explant hearts indicated that the relative reduction of PD-L1
expression compared with PD-1 could be a defining pathologic
feature (173). Cytotoxic T lymphocyte antigen 4-immunoglobulin
fusion protein (CTLA4-Ig) blocks T cell co-stimulatory pathways
while PD-L1 activates T cell inhibitory pathway, thus they
function jointly in maintaining peripheral tolerance by
suppressing T cell activity. The joint knock-in of CTLA4-Ig and
PD-L1 in human embryonic stem cells (hESCs) successfully led to
the immunoprotection of hESCs-derived teratomas, fibroblasts,
and cardiomyocytes in humanized mice (Hu-mice) (174). Besides,
PD‐1/PD‐L1 checkpoint axis is substantiated with its predominant
role in regulating immune response in human heart transplant
recipients and a mouse model of heart transplant rejection.
Reduced graft endothelial PD-L1 expression was negatively
Frontiers in Immunology | www.frontiersin.org 9
relevant to the proportion of CD8 +T-cell infiltration in human
heart transplantation, meanwhile, the abrogation of graft
endothelial PD-L1 expression may facilitate acute rejection and
lead to decreased graft survival (175). Therefore, the protective
strategies addressing immune response without requiring systemic
immune suppression are urgent to be developed. Herein, systemic
use of exogenous PD‐L1‐Ig, overexpression of PD‐L1 in
transplanted cells and tissue overexpression of PD‐L1 before
transplantation are three promising strategies in preclinical
induction of immune tolerance with PD‐1 signaling (176).
Furthermore, clinical data indicated the considerable relevance
between PD-L1 expression in HSCs and degree of T cell apoptosis,
which conferred further research potential in allogeneic
transplantation of HSCs (177).

Future countermeasures and therapy strategies may benefit from
a better knowledge of molecular pathways that affect immune
conditions, such as the PD1/PD-L1 checkpoint axis, contribute to
reducing graft rejection risk of patients, and effectively promote the
development of stem cell-derived therapies. Also, ongoing research
is needed to stimulate bioengineering technologies toward long-
term functional medical devises for the radical cure of diabetes, and
benefiting diabetic patients.
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