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Acute myeloid leukemia (AML) frequently comprises mutations
in genes that cause perturbation in intracellular signaling
pathways, thereby altering normal responses to growth factors
and cytokines. Such oncogenic cellular signal transduction
may be therapeutic if targeted directly or through epigenetic
regulation. We treated 24 selected elderly AML patients with
all-trans retinoic acid for 2 days before adding theophylline and
the histone deacetylase inhibitor valproic acid (ClinicalTrials.
gov NCT00175812; EudraCT no. 2004-001663-22), and sampled
11 patients for peripheral blood at day 0, 2 and 7 for single-cell
analysis of basal level and signal-transduction responses to
relevant myeloid growth factors (granulocyte-colony-stimulat-
ing factor, granulocyte/macrophage-colony-stimulating factor,
interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12)
on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2,
Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by
unsupervised clustering and principal component analysis
divided the patients into three distinguishable signaling
clusters (non-potentiated, potentiated basal and potentiated
signaling). Signal-transduction pathways were modulated
during therapy and patients moved between the clusters.
Patients with multiple leukemic clones demonstrated distinct
stimulation responses and therapy-induced modulation. Indivi-
dual signaling profiles together with clinical and hematological
information may be used to early identify AML patients in
whom epigenetic and signal-transduction targeted therapy
is beneficial.
Blood Cancer Journal (2011) 1, e4; doi:10.1038/bcj.2011.2;
published online 11 February 2011
Keywords: acute myeloid leukemia; ATRA; valproic acid;
theophylline; phosphorylation; cell signaling

Introduction

Acute myelogenous leukemia (AML) is an aggressive malignant
disease characterized by blocked differentiation of the myeloid
cell lineage.1 Extensive studies on AML cytology, cytogenetics
and molecular analyses have confirmed a disease hetero-
geneity that is reflected in the clinical outcome of these
patients.2 Elderly AML patients and patients with serious co-
morbidities are frequently ineligible for intensive chemotherapy
because of unacceptable high risk of treatment-related mortality.
We and others have demonstrated that non-genotoxic therapy,
including all-trans retinoic acid (ATRA), valproic acid (VPA) and
theophylline, has clinical effects in a subset of patients.3–6

Responders are mainly characterized by stabilization of their
disease with partial restoration of peripheral platelet counts.

Retinoic acids receptors have a key role in myeloid differen-
tiation through the modulation of expression of target genes.
ATRA has limited clinical effect in non-acute promyelocytic
leukemia AML when used alone, but may enhance the effect of
chemotherapy if combined with granulocyte colony-stimulating
factor (G-CSF).7 Along with others, we have demonstrated
distinct biological effects in AML cells of patients treated with
ATRA only8,9 (for review see Stapnes et al.10). To enhance the
differentiation effect of ATRA, we combined treatment with the
histone deacetylase inhibitor VPA.10,11 Inhibition of histone
deacetylase activity results in increased protein acetylation and
acetylation of histones may cause epigenetic gene modulation4

that induce differentiation12 and apoptosis in AML cells. The
third agent used was theophylline, a phosphodiesterase inhibitor
that increases intracellular cyclic AMP, and which is reported
to be of benefit in chronic lymphatic leukemia and acute
promyelocytic leukemia.13

Along with others, we have recognized vigorous modulation
of proteins and gene expression early after start of conven-
tional chemotherapy,14,15 but there is limited knowledge on
signal transduction modulation in AML blasts in patients
undergoing therapy. Particularly, with new therapy directed
against signal-transduction enzymes, we would presume that
monitoring signaling cascades in cancer cells may provide
important information about therapy response.16

Analyzing signaling response and basal phosphorylation, our
11 patients predominantly split into three signaling clusters (SCs)
before start of therapy. Patients with clinical response dominate
in the cluster with low basal phosphorylation and high response
to stimuli. The basal phosphorylation level of signaling
molecules was lower in patients characterized as responders
to the therapy compared with the group of non-responders to the
therapy. Furthermore, AML patients with multiple AML blast
subsets demonstrated the modulation of multiple clones during
therapy. We conclude that the clinical responders of this
epigenetic and signal-transduction-directed therapy demon-
strate a signal-transduction signature that may help to indentify
responders and sensitize non-responders.

Materials and methods

Patient treatment and collection of patient cells
Eleven patients (Table 1) were selected on the basis of white
blood cell counts above 13� 109/l, from the total clinical
trial of 24 patients. Detailed patient protocol is referred in
Ryningen et al.,6 but in short the patients received ATRA
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(Vesanoid; Roche, Basel, Switzerland) 22.5 mg/m2 twice a day
for 14 days. At day 2 VPA (Orfiril, Destin GmbH, Hamburg,
Germany) and theophylline (Theo-Dur; Astra Zeneca, London,
UK) were administered. The doses of VPA were gradually
increased until side effects appeared, and doses of theophylline
were adjusted on the basis of serum levels up to a therapeutic
level of 50 to 100 mM.

Leukemic peripheral blood mononuclear cells were collected
and cryopreserved, as described in the study by Ryningen et al.6

and Abrahamsen et al.,17 before treatment (day 0), 3 days after
treatment with ATRA (day 2) and 5 days after (day 7) treatment
with theophylline and VPA.

The clinical effects of the treatment were evaluated with
regard to (i) normal peripheral blood cell counts and (ii) number/
differentiation/function of circulating AML cells.6 Patients were
divided into responders and non-responders (Table 1).

Stimulation of AML blasts
Preparation and stimulation of AML blast is previously described
in the study by Irish et al. In short, thawed cryopreserved and
rested cells were either unstimulated or stimulated with a final
concentration of G-CSF (20 ng/ml), granulocyte/macrophage-
CSF (20 ng/ml), interleukin-3 (20 ng/ml), Flt3L (50 ng/ml), stem
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Table 1 Clinical and biological characteristics of AML patients

Patient Age/sex Previous malignant
disease, present
disease status

FAB
classification

Membrane molecule
expression a (%)

Mutations
karyotypeb

Clinical response
to treatmentc

Survival
in daysd

CD11b CD15 CD71 CD34

Day 0/2/7

1 68/F MDS, 1st relapse M1 9/13/19 2/3/4 17/30/34 5/12/6 FLT3-ITD, CEBPA A 105
4 60/M 2nd relapse M4 32/40/53 10/17/21 8/4/3 66/67/89 FLT3-ITD F 7
5 50/F Li-Fraumeni M1 3/5/5 2/2/2 19/18/29 77/82/82 Complex karyotype F 34
9 74/M De novo M0 9/10/10 0/0/0 41/43/42 67/74/59 None F 112

12e 61/F MDS, 1st relapse M1 82/79/77 51/60/51 2/3/3 44/43/47 Complex karyotype A 644
13 80/F De novo M2 29/25/53 2/1/0 41/36/66 48/45/50 FLT3 ITD, NPM1 B 8
14 78/M MDS M1 5/9/12 3/6/5 11/8/11 58/78/43 ND A+B 55
15 86/M De novo M4 ND ND ND 42/ND/23 ND A+B 58
16 67/M MDS, 1st relapse ND 40/14/72 51/28/47 8/0/2 32/48/48 FLT3-ITD, CEBPA B 23
21 70/F Chemotherapy M4 44/41/25 37/39/30 2/1/1 11/16/26 NPM1 B 15
23 68/M Myelofibrosis M1 8/6/24 2/6/11 23/18/17 80/84/86 FLT3-TDK B 70

Abbreviations: AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; ND, not determined.
aThe results are presented as the percentage of positive cells. Differences exceeding 10% after 7 days are shown in bold.
bKaryotype is normal if not other indicated.
cResponses were classified as either peripheral blood normal cell counts (A) or decreased circulating AML blasts (B).
dSurvival from start of treatment.
ePatients showing hematological improvement according to the MDS criteria.

Figure 1 Phosphoprotein profiling and bioinformatics analysis of AML cells from patients undergoing combination treatment with all-trans
retinoic acid (ATRA), valproic acid and theophylline. Peripheral blood mononuclear cells were obtained from the patients at three time points:
before treatment at day 0, after all-trans retinoic acid monotherapy at day 2 and after additional therapy with theophylline and valproic acid at
day 7. At the given sample points, the cells were stimulated with growth factors as indicated, before barcoding and pooling into one sample. Each
sample was then divided into five antibody staining panels before being acquired by flow cytometry and analyzed by open-source Cytobank
software developed for this purpose (www.cytobank.org).
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cell factor (50 ng/ml), erythropoietin (10 U/ml) and CXCL-12
(20 ng/ml; all from PeproTech, Rocky Hill, NJ, USA).

Intracellular staining
We fluorescent cell barcoded the three sample points using
Pacific Blue amine-reactive fluorescent dye (Molecular Probe,
Eugene, OR, USA).18

Paraformaldehyde-fixed, methanol-permeabilized and fluorescent
barcoded cells were equally split and stained with five different
antibody panels. All panels contained the same four surface
antibodies: CD11b(ICRF44) Alexa Flour 700, CD15(HI98) PE,
CD33(P67.6) PE-Cy7 and CD34(581) PE-Cy5.5 (all from BD
Pharmingen, San Diego, CA, USA). Two phospho antibodies were
added to each panel with the respective direct-conjugated dye
Alexa Flour 488 and Alexa Flour 647; c-Cbl(pY700) and STAT1
(pY701), STAT3(pY705) and STAT5(pY694), p38(pT180/pY182)
and ERK2(pT202/pY204), pCREB(pS133) and Akt/PKB(pS473),

Zap70/Syk(pY319/pY352) and ribosomal protein S6 (rpS6)(pS240/
pS244) (all from BD Pharmingen, except Akt/PKB and rpS6 from
Cell Signal(CS), Danvers, MA, USA). rpS6 was conjugated with
Alexa Flour 647 protein labeling kit (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions.

Data collection and analysis
Phospho-flow analyses were performed on a four-laser
FACSAria flow cytometer (BD Biosciences). To analyze only
live cells, a strict gate was set in forward- and side-scatter dot
plot including the live population. A log2 change from the
median of measured phospho antibody median fluorescent
differences between a stimulated sample and its unstimulated/
basal phosphorylation state was calculated. The phosphoryla-
tion scale bar is set to maximum range for the data set analyzed.
Analysis of signaling profiles and identification of leukemia cell
subsets was carried out using open-source Cytobank software

NPG_BCJ_BCJ20112

Figure 2 Cluster analyses of basal signaling state and signaling response. The biosignature is presented in a heat map as fold change (log2).
Stimulated samples are calculated by dividing by the corresponding unstimulated sample. Basal phosphorylation is relative to phosphorylation in
the average lymphocyte population. (a) Hierarchical clustering using a Pearson correlation-based distance gave three signaling clusters at sample
time day 0 and given a signaling cluster (SC) nomenclature based on their signaling appearance PFpotentiated, NPFnon-potentiated and
PBFpotentiated basal. Positive clinical parameters represent an increase in normal cell counts or 450% reduction in peripheral blasts. *Normal
cell count response was used as response criteria of the clinical protocol. (b) PCA analysis of phospho-specific signaling data for all three sample
points reflects the patients signaling profiles. The x axis represents stimuli-activated phosphorylation. Y axis represents basal phosphorylation.
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developed for this purpose (www.cytobank.org), and FlowJo
(TreeStar, Ashland, OR, USA). The hierarchical clustering used
a Pearson correlation-based distance measure using TM4: a free,
open-source system for microarray data management and
analysis.19 Principal component analysis (PCA) was carried out
using the prcomp module in the open-source script-based
statistics environment R (http://www.r-project.org/).

Results

Heterogeneity among AML patients reflects differences in the
constitutive expression of signaling proteins in leukemic cells.
To find characteristic signaling profiles for each patient on the
basis of phosphorylation state of signaling proteins (CREB,
STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6), a set
of relevant ligands (G-CSF, GM-CSF, interleukin-3, Flt3L, stem
cell factor, erythropoietin and CXCL-12) was used to stimulate
the pretreated patient cells. Each individual AML patient seems
to have a unique phospho protein signaling profile probably
reflecting the genetic and epigenetic abnormalities in the
leukemic cells (Figure 1, Supplementary Figure S1). To carry
out the process as identically as possible for the three time
points, we barcoded the cell samples allowing staining
procedure for all three samples in the same tube and thereby
avoiding variation between sample time points. Basal phos-
phorylation level in resting leukemic cells (90% or more of cells)
was analyzed by dividing the phosphorylation value by the
average basal phosphorylation in lymphocytes (10% or less of
leukocyte in samples) in the same sample. The basal phos-
phorylation level in vivo are previously reported by others not to
be altered because of freezing and thawing procedure.20

Patients cluster in three groups by Pearson correlation
and PCA
The phosphorylation data were analyzed by hierarchical
clustering using Pearson correlation-based distance (Figure 2a)
or a PCA (Figure 2b) to examine if patient signaling profile
analysis could indicate patient treatment outcome. An extrac-
tion of all phosphorylation data was performed by variance
analysis (Supplementary Figure S2A) to rule out data of no
significance for hierarchical clustering. We found significant
variance in nine of the basal phosphorylated data and in
21 combinations of stimulated signaling nodes having a change
in variance above 0.1. From this extraction we selected all basal
readouts and 12 of the most prominent response readouts
representing responsive signaling nodes. Before the treatment
was initiated (day 0), the hierarchical clustering analysis reveals
three distinct SCs. The clusters can be divided into a non-
potentiated signaling cluster (SC-NP) in which there is a
relatively low basal phosphorylation and hardly any signaling
response. The second falls into a potentiated basal cluster
(SC-PB) that has a uniformly higher basal phosphorylation and
some signaling response. The third cluster is a potentiated
signaling cluster (SC-P) of four patients, all with a high signaling
response to stimulation but relatively low basal activity. The
time of survival was on average 2.4 months (range 55–105 days,
n¼ 4) in SC-P, versus 4.8 months (range 7–644 days, n¼ 5) in
cluster SC-PB and 6.7 months (range 8–392 days, n¼ 2).

Change in patient clustering reflects treatment response
ATRA treatment, and the combination treatment, gave an altered
effect on the signaling in several patients. It is either seen in

different basal phosphorylation or as a change in response to
stimuli. Calculation of a hierarchical clustering using a Pearson
correlation-based distance measure on the phospho-flow data
after 2 days with ATRA led to a new patient clustering. At day 7,
yet another re-grouping of patients formed three clusters. As one
can see, several patients still group together but some patients
have moved to another group.

PCA of patient data from 0, 2 and 7 days of treatment
PCA of all signaling responses in all patients from all three time
points (Figure 2b) returned similar patient subgroups as the
hierarchical clustering on day 0 (Figure 2a). However, the use of
all the data together in combination with the two-dimensional
clustering achieved with the PCA method also reveals that
patient no. 5 (SC-PB) is rather close to the SC-NP cluster. The
first principal component (x axis), and hence the greatest
variance in the data (42.02%), correlates the highest to lowest
signaling response to stimulus. The second principal component
correlates the lowest to highest signaling level in the basal state
(describing a further 25.65% of the variance). It also shows
that data from each patient on different days has a
strong tendency to cluster close together, thus demonstrating
the stability of the cancerous states of the AML blasts in
each patient. With some variation among the clusters, data
from the same patient also clusters more closely than the data
from other patients belonging to the same cluster group, thus
also demonstrating patient heterogeneity. The very different

NPG_BCJ_BCJ20112

Figure 3 Comparing signaling response between responders and
non-responders. The phosphorylation status for patients representing
the two groups, responders (n¼ 4) and non-responders (n¼7) to the
therapy, was analyzed together to calculate differences. A Student’s
two-tailed t-test was performed to calculate significance (*Po0.05,
**Po0.001). Basal and stimulated phosphorylations are presented as
log2. The standard error of the mean (s.e.m.) is given for all signals for
each time point.
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responses to treatment in patients belonging to the same
clustering groups on day 0, causing the re-grouping seen in
the hierarchical clustering patterns for days 2 and 7, indicate
that the response is worthy of further studies in larger patient
groups.

Basal and stimulated phosphorylation differs
in patients responding to therapy compared with
the non-responding patients
We have previously proposed a significantly increased survival
in patients responding with improvement in peripheral blood
values (Figure 2a).6 Looking at the average signaling pattern in
these groups we found several differences (Figure 3). Basal
phosphorylation was lower in the responding group than in the
non-responding group as a whole (*Po0.05), and phosphoryla-
tion at day 7 (**Po0.001) was also significantly reduced. In
response to stimuli, signaling was reduced in both groups but
was significant in the non-responding group at day 2 and in the
responding group at day 7 compared with day 0. Four of seven
phospho-nodes were upregulated in responders to ATRA
treatment, whereas the opposite response was seen in all seven
in the non-responding group.

Modulation of cellular sub-population
Surface markers revealed sub-populations of leukemic cells in
the majority of the patients analyzed. After 2 and 7 days of
treatment there are changes in population size. Figure 4 shows
two patients representing a non-responder and a responder.

The patient representing the non-responding group (P-21) has an
increase in the CD34þ population by 10.9, 16.2 and 25.9%
for the respective sample days 0, 2 and 7. The changes in
signaling for this patient are representative for the majority of the
non-responding group. For the responding group all patients
responded in a similar manner with regard to signaling, and
represented patient (P-12; Figure 4b). A small reduction in
response to stimuli was seen in the main CD34þ population at
day 7. The biggest reduction in stimulus response was observed
in the smaller CD34� population in which it was remarkably
reduced at day 7. For this patient there were small changes in
the CD34þ population (44.0, 42.7 and 47.0%).

Discussion

Along with others, we have shown that combination therapy
with ATRA and VPA is of clinical benefit in a subset of
AML patients.11 In this study, we analyzed signal-transduction
nodes in leukemic cells from AML patients treated with
ATRA, VPA and theophylline (Figure 1). Through phospho-flow
cytometry combined with bioinformatics analysis, we searched
for determinants for prediction of long-term responders.

Even if the major effects of ATRA and VPA epigenetic therapy
develop after at least a week of therapy, immediate effects
related to signal transduction have been reported for VPA,
theophylline and ATRA. Within hours, VPA is shown to
activate the PI3K/AKT pathway,21 depolarize mitochondria
with depletion of mitochondrial cytochrome c 22,23 and increase
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Figure 4 Signaling in leukemic cell sub-population. Phospho-signaling analysis of cellular sub-populations in non-responder (a) and responder
(b) patients. Tight gates on sub-population or gating high and low CD marker expression was analyzed for G-CSF-stimulated p-STAT3 and p-rpS6,
and GM-CSF-stimulated p-STAT5. There was no change in unstimulated samples for days 0, 2 and 7, except for a small decreased p-rpS6 in
CD34� for the non-responder (a).
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cellular redox stress.24 This indicates that several pathways and
mechanisms influence the signaling profiles that we observe in
the patient’s cells analyzed in this study (Figure 2, Supplemen-
tary Figure S1), probably resulting in a new steady state signaling
response reflecting the combined therapy as depicted at day 2
and 7 (Figures 2a and b).

Both PCA and non-supervised hierarchical clustering analysis
of basal and stimulated AML cells revealed three groups of
patients with different signaling patterns (Figure 2a, Supplemen-
tary Figure S2B). The three clusters were similar to response
clusters previously reported in a set of 30 AML patients,25 in
which the patients in the SC-P were overrepresented with poor
prognostic markers and the worst outcome. Surprisingly, the
opposite was seen in the cluster (SC-P; Figure 2) of the
combination therapy, where all four patients indicated bene-
ficial response in clinical parameters. Both our previous study
and the data shown in this study are limited with respect to
the number of patients. In our previous study, prognosis was
related to conventional chemotherapy. The patients in this
study were treated with compounds that predominantly altered
signal transduction, and we may speculate whether such a non-
genotoxic therapeutic approach may be more feasible in this
SC-P group of advanced AML.

The SC-P cluster signal response indicated a high signaling
response to G-CSF and GM-CSF, and a relatively low basal
phosphorylation. It is reported that G-CSF treatment in
combination with ATRA can sensitize myeloid cells to
differentiation,26,27 and may represent a possible mechanism
of therapy response in the SC-P group in our study. For some
patients dramatic changes were observed either in basal
phosphorylation or in stimulation response after 3 days of
monotherapy with ATRA, and resulted in reorganization of the
cluster pattern (Figure 2a), indicating that ATRA monotherapy
has altered signaling profile at least in some patients. We
observed altered signaling response after 3 days of ATRA
monotherapy (Figures 2a and 3). This change in clustering is
consistent with biological response in AML cells of all patients,6

further emphasized in analysis of average signal modulation
(Figure 3).

On the basis of improvement of peripheral blood counts,
we may discriminate between responder and non-responder
patients,6 and non-responders demonstrated limited therapy-
induced changes in signaling and basal phosphorylation
(Figure 2). High basal phosphorylation may reflect a high
cellular activation state with limited possibility to enhance the
phosphorylation by stimulation. In contrast, responder patients
demonstrated a lower basal phosphorylation corresponding to a
stronger response to stimulation with growth factors. The
responding patients demonstrated attenuation of basal phos-
phorylation level after ATRA monotherapy, which is further
attenuated by combination therapy for 7 days (Figure 3).

Furthermore, we examined the leukemic subpopulations by
CD34/CD33 surface markers, and found that in patients with
multiple leukemic cell populations (8 of 11 patients) therapy
altered distribution of population and changed the signaling
response (Figure 4). For patient P-12, the CD34� population was
decreasing, and the cell population demonstrated weaker
phosphorylation of rpS6 and STAT3 in response to G-CSF. This
may explain the actual signal modulation that is related to
therapy response, and that AML patients with multiple leukemic
cell populations demonstrate heterogeneous signaling responses.

This study indicates the feasibility of single-cell analysis in
early therapy response evaluation of cancer cells in combination
therapy, and should be followed by more vigorous testing in
larger clinical trials.
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